
Automatic program synthesis—From CAD to 
CAM* 

by ROBERT T. CHIEN and TONY C. WOO 
University of Illinois at Urbana-Champaign 
Urbana, Illinois 

INTRODUCTION 

The technology gap between design and manufacturing 
has stimulated a number of research projects whose com
mon objective is to bring design specification into some 
form of procedure that specifies the manufacturing se
quence and tool path. Most notably, there are two related 
areas of study—sculptured surfaces and process planning. 
The former is concerned with representing non-analytic 
surfaces in parametric forms so that points on a surface 
can be generated from the parametric equations as cutting 
tool locations. The latter is concerned with grouping 
conventional machine parts and describing the part in spe
cial programming languages or representing them in codes 
to arrive at operation sequences, choice of machine tools, 
cutting data, and other information. 

It is recognized that differential geometry is a powerful 
tool for representing sculptured surfaces. Coons' and Be-
zier's methods1'2 have led to many developments and suc
cessful implementations of surface modeling systems with 
the use of computer graphics.3'4 It is noted that there are 
logical operations in manufacturing, such as deciding the 
machining operations, or sequencing the operations, that 
cannot be represented in the framework of differential 
geometry alone. 

On the other hand, studies in the area of process plan
ning are just as successful. There are currently many 
systems in existence that accept special format inputs and 
generate work orders in batch or interactive modes.5-6'7 

Most of these systems deal with turned components by ex
ploiting the symmetry of the part. Curiously enough, very 
little attention is given to the possibility of using designs 
done on computers as input to integrate the design and 
planning stages. 

We see the problem of computer aided manufacturing 
as that of transforming geometric information into proce
dural information—from how something looks like into 
how it can be manufactured. We believe that there is 
enough information in a design to be processed auto
matically and to produce procedures for manufacturing 
purposes, if a person (a process planner, a part program-

* This work was supported under the Joint Services Electronics program 
(U.S. Army, U.S. Navy, U.S. Air Force) under contract DAAB-07-72-C-
0259. 

mer, or a machinist) can do so with the same amount of 
information given. 

In order to have a firm grasp of the problem, we have 
chosen three-dimensional machine parts as the problem 
domain. We feel there is sufficient structure in parts 
geometry and in numerical control machine tools for us to 
understand the problem and to develop the solutions. 

To state our objective, we wish to associate the cavities 
in a given machine part design with the appropriate ma
chining operations, sequence them, and expand the opera
tions into numerical control programs. 

DEVELOPMENT AND APPROACH 

The basic issue addressed in this paper is that the shape 
of an object suggests a procedure. The handle of a tea ket
tle, a hammer, or a door knob suggest their functions in 
relation to the object they are attached to. Similarly, a fa
miliar shape such as a hole in a machine part suggests 
drilling, a slot or a pocket milling. Our task is to attempt 
the construction of a manufacturing procedure from the 
shape information in geometry. 

We understand that during the design stage, an opera
tion such as "side mill roughing" can be associated with a 
particular cavity being designed. Consider the simple case 
of a hole. It may seem that attaching a label "drill" to a 
graphical representation would solve our problem. Not 
exactly. There are other key information that must be 
available before such a "drill" subroutine can be called. 
For example, is the hole all the way through? If not, how 
should the workpiece be set up, or from what direction 
should the hole be drilled? Should the hole be drilled 
together with other holes? Are there other holes of the 
same size? These are some of the specific questions nor
mally asked by a part programmer when examining a 
design. 

It would seem very convenient if a program can 
manipulate the representations of cavities at the level of 
bodies. As we learned in engineering graphics, a part can 
be visualized as a composition of simpler objects in an 
exploded view. This idea has been implemented in a com
puter aided design system by I. C. Braid.8 Consequently, 
we assume an algebraic description of a machine part as 
obtained from Braid's system, i.e., in terms of a set of 

813 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1499949.1500131&domain=pdf&date_stamp=1975-05-19


814 National Computer Conference, 1975 

Figure 1—Create a slot by removing 

puter to carry out automatic operations such as using the 
right cutting tool, approaching the workpiece in the right 
direction, move the cutting tool a proper distance, it must 
first understand what it is going to cut. In other words, a 
program must first relate the geometry of a "slot" to in
formation such as part surface, tool diameter, tool loca
tions. 

PARSING THE DESCRIPTION 

A major concern in dealing with part descriptions is that 
it is a many-to-one geometry to machining concept map
ping problem. In order to capture the intent of a design, 
we have constructed a grammar that transforms a design 
description into an internal representation in terms of ma
chining operations. The grammar handles the six primi
tive bodies (cube, cylinder, fillet, sector, tetrahedron, and 
wedge) and commands (translate, rotate, scale, copy, 
negate, combine, and intersect) used in Braid's system. 

Let us first analyze the structure of a design. We define 
an object (OBJ) as a concatenation of a modifier (MOD) 
and an object, where an object may be a primitive object 
or a modified object, and a modifier may be any combina
tion of the three transformations—translation, rotation, 
and scaling. 

OBJ=MOD OBJ 
OBJ = primitive body/ OBJ 
MOD=translate/ rotate/ scale/ MOD 

primitive bodies such as cubes and cylinders, and rela
tions such as adding and removing. 

We see such a description as a very good way of telling 
to the computer how a machine part looks like, in a lan
guage of bodies. It is interesting to note, however, that 
there are many ways in which the same machine part can 
be described using the same set of primitives and opera
tions. This is not particularly surprising because we hu
mans can express an idea in natural language in just as 
many, if not more, ways using different components such 
as words, phrases, and clauses, and different arrange
ments of the components. Our problem here is in inter
preting a body description of a machine in such a way that 
different descriptions of the same object should have the 
same interpretation. 

To understand the problem of interpreting the geometry 
of a design, let us consider an example of a slot. A "slot" 
can be represented, as in Braid's system, by a negative 
body B l initially transformed from a primitive cube (by 
scaling in the X direction, for example). If this negative 
body Bl is removed from a larger cube CI, a "slot" is 
formed. See Figure 1. The same object can be described 
by building up on both sides of the slot (yet to be formed). 
As in Figure 2, one could add two long blocks, B2 and B3, 
on a flat block B4. 

We have just seen two of the many ways of syntactically 
representing a cavity in a computer. In order for the corn- Figure 2—Create a slot by adding 



Automatic Program Synthesis 815 

An object can be operated on by copying, or negating it. 
We call the concatenation of an operation on a body an ob
ject group (OG). 

OG = OPOBJ 
OP=copy/ negate 

A machine part can be composed by joining several ob
ject groups together either by combining and merging the 
surfaces of the bodies involved, or by intersecting and 
creating new surfaces. A part is therefore a string of object 
groups joined together. 

PART = OG JOIN OG 
JOIN = combine/ intersect 

Having analyzed the structure of constructing a part 
from primitive bodies, we need to define the grammar for 
machining terminologies such as holes, slots, and pockets. 
Our grammar parses the design description by looking for 

(a) 

(b) 

>\i 
i c >• ' i 

Not a Hole 
(c) 

Figure 3—A hole procedure 

possible constructs of such cavities. Since they are in the 
form of programs, they are best explained as decision 
procedures. 

We define a hole as a negative cylindrical object. A 
cylindrical object may be a modified primitive cylinder, 
e.g., a rotated and scaled cylinder. It could also be four 
sectors joined together forming a cylinder. See Figure 3b. 
Since joining four sectors together arbitrarily does not 
necessarily form a cylinder, as shown in Figure 3c, we look 
at the modifier for each sector involved to make sure that 
they are of the same size (the same scale modifier) first. 
We further note that rotating a symmetrical object with 
respect to a certain axis is a modulo operation. For 
instance, rotating a cube, scaled in the X-axis, 180 degrees 
around any of the three axes does not cause any change. 
Our program takes this into account and eliminates re
dundant transformations that may occur in the design. We 
also check the translation of each sector involved to make 
sure that the surfaces "mate" in the right manner. When 
these conditions are met, our program concludes that there 
are four bodies in the description of a machine part that 
forms a hole. A third possibility of a hole is the intersec
tion of a cube with four negative fillets, i.e., taking away 
the corners of a cube. See Figure 3d. A similar procedure 
for checking each body involved is carried out. 

Our program is context sensitive in that it not only 
checks the constituents in an algebraic expression of 
bodies and relations for a possible cavity, it also checks 
the relationship between the cavity and the body in which 
the cavity is supposed to reside. An example of this 
context sensitive aspect of our grammar is finding a rec
tangular open slot created in the manner shown in Figure 
2. Our program first checks the scale, translate, and rotate 
modifiers of the two objects to make sure that there are 
indeed two parallel surfaces belonging to two different 
bodies flanking the "slot." It then concludes a cavity and 
checks for the size of the formed cavity with respect to 
the size of the two 'objects creating it. See Figure 4b. If the 
cavity is too wide, program perceives the two blocks as 
some sort of "walls" and does not treat the cavity as a slot. 
Our program also recognizes the importance of the relative 
sizes and orientations of the two bodies creating the slot 
and the body on which the slot is intended. If the two 
bodies are too small, the possibility of a slot is rejected. 
Similarly, if the two bodies are not oriented correctly, as 
in Figure 4c, the result is not interpreted as a slot. 

MODEL OF NUMERICAL CONTROL MACHINE 
TOOL 

After the cavities are interpreted, the results are passed 
onto another set of programs that produces an internal 
representation of the cavities in terms of cutting tool, tool 
diameter, approaching and cutting surfaces, and tool loca
tions in space. Very often, our program returns more than 
one way of machining a particular cavity. This informa
tion is kept and saved for later processing. 

At present, we have a model of a numerical control ma-



816 National Computer Conference, 1975 

a Slot 

Not a Slot 

(c) 
Figure 4—A slot procedure 

chine tool which has the capability of 3-axis drilling and 
milling. Our model is built around the idea of a negative 
cylinder propagating in space. There are three such 
cylinders corresponding to the shapes of the most ele
mentary cavities created by a drill, a side mill, and an end 

mill. Strictly speaking, the cylinders differ only in the 
bases, i.e., they are pointed, flat, and spherical, respec
tively. 

The model is a collection of programs that simulates the 
cutting motions of the three kinds of tools. A slot, for 
example, is modeled as a two dimensional propagation of a 
flat-based cylinder moving in a straight line or following 
an arc. The result is a list of tool locations. 

For bodies with complicated boundaries, such as a 
pocket with islands, a more general algorithm is needed to 
generate the tool paths. The basic ideas are partitioning 
the area enclosed and sequencing the partitions. This 
method is particularly useful in dealing with pockets with 
a concave boundary and with islands inside the pocket. 
Since the boundary is composed of line segments and arcs, 
local concavity points are first computed. They are next 
sorted according to their locations. The area enclosed is 
then partitioned into several regions with parallel line seg
ments connecting the local concavities to the boundary. 
These regions are then traced and labeled. Since cutting is 
assumed in an increasing X, increasing Y manner, the 
regions form a lattice. They are partially ordered in the 
sense that a region cannot be cut unless the ones below it 
have all been cut. Lattice traversing algorithms have been 
developed for this purpose. The entire boundary including 
those for the islands is then digitized using scan-line 
conversion technique.9 The digitized boundary is then off
set and sorted in the increasing X, increasing Y order; the 
points provide a zig-zag tool path that runs between the 
boundary of the pocket and that of the islands. 

In general, before these programs are called, more in
formation on the cavity should be obtained. A special 
program for a specific kind of cavity is called to analyze 
the tool required. At present, there are ten sizes for each of 
the three types of cutting tools available. If, for instance, a 
hole is too large for drilling, an alternative machining 
method, milling in this case, is taken. In addition, the 
program checks what surfaces of the cavity in question are 
external, hence accessible to the cutting tool, and what 
surface the tool should reside on (the part surface in 
APT). If there is more than one possibility in which the 
tool could approach the cavity and does not penetrate 
other parts of the workpiece, they are reported to pro
grams to be described in the next section. 

GROUPING AND SEQUENCING 

With the cutting tools selected, and the possible ap
proach surfaces available, our program next sorts the ca
vities into groups. Basically, the program attempts to use 
the same cutter as much as possible without another set
up. 

The algorithm proceeds by first grouping all cavities ac
cording to the plane on which their approach surfaces lies. 
This implies the number of set-ups. Very often, a cavity 
occurs in different groups because it may be cut from a 
number of directions. The multiple occurrence is first 



Automatic Program Synthesis 817 

partially eliminated by considering the number of 
identical operations within a group. If there are less than 
three of the same kind, and if the group is not the last one 
in the list, the occurrences are deleted from the group. 
There may still be cavities occurring in more than one 
group after this operation. A semi-circular cut-out is an 
example. It can be interpreted as a hole and as a slot, thus 
it can be machined in more than one way provided the re
quired cutting tools are available. The groups are next 
divided into subgroups according to the type of cutting 
tool needed. An elimination of multiple occurrence may 
happen if there are less than three cavities using the same 
kind of tool. If multiple occurrence still exists, drilling 
operation is given the preference to milling. 

CODE SYNTHESIS 

Our code synthesizer is quite simple. It is APT-like and 
has two kinds of information. If a list of points is given to 
it, the result is a series of statements of the form: 

GOTO/Pi 

If a list of line segments and arcs are supplied, it produces 
statements of the form: 

GO*/Li%Li+l 

where the modifier, *, is to be replaced by LFT or RGT, 
and % is to be replaced by TO, ON, or PAST, depending 
on the angular relationships between Li and the segment 
preceding it Li-1, and the one following it, L i + 1 . A com
puter graphics package is written that translates these 
statements into graphics commands, thus enabling one to 
visually examine the tool paths on a machine part. 

CONCLUSION 

We view our system as a pilot study of a totally integrated 
manufacturing automation system. Our objective, as we 
indicated earlier, is to create an environment in which 
design information can be utilized to produce manufactur
ing procedures directly and automatically. 

We have shown that the problem of manufacturing is 
one of transforming graphical descriptions into program 
descriptions. We have divided the problem into two 
stages—obtaining from the many ways of describing a ma
chine part in primitive bodies a kernel description of a 
machine part in terms of cavities, and interpreting the 
cavities in terms of the capabilities of a numerical control 
machine tool. It is hoped that our work provides the basis 
for bridging the automation gap between design and fabri
cation. 

REFERENCES 

1. Coons, S. A., Surfaces for Computer-Aided Design of Space Forms, 
MIT MAC-TR41, June, 1967. 

2. Bezier, P., Numerical Control—Mathematics and Application, John 
Wiley Sons, 1970. 

3. POLYSURF User Manual, Computer Aided Design Centre, 
Cambridge, England, 1974. 

4. SSX4 Sculptured Surfaces Project, Computer Aided Manufacturing 
International, Arlington, Texas, 1974. 

5. Bockholts, P., "TNO Miturn Programming System for Lathes," 
Proceedings of PROLAMAT '73, Budapest. 

6. Hellstrom, P., "An Interactive System for Operations Planning for 
Turning on Centre Lathes," Proceedings of PROLAMAT '73, 
Budapest. 

7. Sohlenius, G., "CAM-PRAUTO-DRILLING," Proceedings ofCAM-I 
Congress, Hamilton, Ontario, Canada, May, 1974. 

8. Braid, I. C, Designing with Volumes, Cantab Press, Cambridge, 
England, 1973. 

9. Metzger, R. A., "Computer Generated Graphic Segments in a Raster 
Display," Proceedings ofSJCC, 1969, pp. 161-172. 






