
A program for software quality

by PAUL OLIVER

Department of the Navy
Washington, D.C.

INTRODUCTION

The Automatic Data Processing Equipment Selection Office
(ADPESO) of the Department of the Navy is engaged in a
development program for software to be used in the quanti­
fication of computer systems selection criteria, and the ap­
plication of quality control procedures to selected software
products.

That such a program be undertaken by this centralized
ADPE Selection Office is both proper and important to the
successful performance of our mission. This mission, briefly
stated, is to evaluate and select, or review the selection of,
commercially available automatic data processing equipment
for approval by the Assistant Secretary of the Navy for
Financial Management.

This development program is the responsibility of AD­
PESO 's Software Development Division, and is concentrated
in three areas. A COBOL Compiler Validation System has
been designed, implemented, and is being used throughout
the Federal Government to determine the degree to which
COBOL compilers conform to the published standard. A
system to facilitate the process of COBOL benchmark pro­
gram conversion, evaluation, and implementation has been
completed and is being field tested. Finally, an experiment in
using a library of synthetic programs for system performance
measurement is being conducted.

An evaluation of such a program requires a description of
the projects, the identification of project controls which have
been applied, and the resultant or expected payoffs. These
will be discussed in turn.

Why a quality control program?

The problem we are attempting to alleviate is a financial
one. During fiscal year 1973 ADPESO participated in 189
acquisition actions with a monthly rental value of $691,000.
This does not include 173 reutilization actions. The scope of
these actions is quite broad. Recent acquisitions have in­
cluded 100 mini-computer configurations, 50 key-to-disk
configurations, and a medical laboratory information system.

How do the above dollar figures relate to software? Pre­
cise measurements are difficult, but we estimate that the
Department of the Navy's annual software expenditure is

control

approximately three times that of hardware. Barry Boehm
has cited a similar figure for the U. S. Air Force,1 and we
suspect this figure is fairly universal.

Our present work has as one of its principal purposes the
lowering of software production and maintenance costs.
These costs will of course vary with the nature of the system
in question. A1964 SDC report2 suggested that approximately
19 man-months were required for the delivery of 1000 ma­
chine language instructions. The data were derived from 26
projects, and included program design, coding, and testing
time. The incremental time per 1000 additional lines of code
was 5 man-months. Corbato's data gathered from the Multics
project3 indicate that productivity can be vastly increased
through the use of a higher level language, but software still
remains an expensive product.

Much of the high software cost is the result of duplication
and of conversion costs. Williams4 has reported on a con­
version project undertaken in 1964 by the Lockheed Missiles
and Space Company. The 220 FORTRAN programs which
were converted, from an IBM 7094 to a UNI VAC 1108,
required five months for the job, at a cost of approximately
$241,000. To alleviate this problem we need to ascertain the
degree to which higher level language translators conform to
published standards, and we could certainly use more in the
way of conversion aids, particularly data conversion.

Finally, we have found that the entire competitive selec­
tion time can be disturbingly long—nine to 23 months in our
experience. We say "disturbingly" because a long selection
process is expensive for both buyer and vendor. We are
interested in software which could perhaps be used in shorten­
ing the time span.

THE PROJECTS

The goals

The user of higher level languages in software development
will reduce the cost of such development, principally by in­
creasing programmer productivity. Two languages, FOR­
TRAN and COBOL, have been standardized so as to increase
their usefulness. Standardization efforts are also under way
for BASIC and PL/1 . If standardization is indeed to bear
some advantages, commercial compilers must adhere, in their

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1500175.1500262&domain=pdf&date_stamp=1974-05-06

National Computer Conference, 1974

translation, to the published standard. The adherence to a
standard must include language semantics (where unam­
biguous) as well as language syntax. Effective implementation
of a standard requires a means of measuring the degree to
which compilers conform to the standard. Thus, the develop­
ment, use, and maintenance of a validation system for CO­
BOL compilers has been an important effort on the part of
the Software Development Division.

Portability is a measure of the ease of moving a computer
program from one environment to another. Many factors
affect a program's portability: the computer system, the
language used, program design, and the application. At this
time, we are specifically interested in COBOL program
portability. A COBOL program would be completely portable
if all non-standard functions (e.g., extensions to the lan­
guage) could be reduced to standard functions, all imple-
mentor names could be resolved, data representation were
standardized across computer systems, and no "implementor
defined" language elements were used. Practically, this
means that a completely portable COBOL program is a
figment of the imagination! We can, however, greatly im­
prove a program's portability by developing software which
addresses itself to the above problems.

I t is also important that we not sacrifice too much ef­
ficiency for the sake of portability. A recent study by Inter­
national Computer Systems, Inc.5 indicates that COBOL
programs are generally easier to convert (to other COBOL
dialects) than programs in FORTRAN or assembly lan­
guages. Unfortunately, the same study also indicates that the
relative operating costs of converted COBOL programs are
much higher than those for other languages. Our aim is to
achieve significant portability at a modest cost in efficiency.
Because such an aim is quite relevant to benchmark pro­
grams, we refer to the conversion system we are developing
as the Benchmark Preparation System (BPS).

A significant factor contributing to delays in computer
systems acquisition has been the preparation and processing
time of user benchmarks. Some way of measuring minimal
system throughput capability is required. For selection pur­
poses, benchmarks are the accepted measurement tool in the
Department of the Navy. The major problems with natural
benchmarks (i.e., existing application programs) have been
the following:

(a) Each time an agency selects a system a new set of
benchmarks is prepared. This is wasteful.

(b) The benchmarks are often not debugged, and usually
biased toward a given architecture.

The latter problem will be partially alleviated by the
BPS. In order to reduce production duplication and costs we
are developing a "reference benchmark program library."
This is a set of task-oriented synthetic programs which can
be used individually or in a mix, in conjunction with or in­
stead of natural benchmarks.

Systems to fulfill the goals

The COBOL Compiler Validation System consists of audit
routines, their related data, and an executive routine (VP-

routine) which prepares the audit routines for compilation.6

Each audit routine is a COBOL program which includes
many tests, and supporting procedures indicating the results
of the tests. The audit routines collectively contain the
features of Standard COBOL (except for the Report Writer
module). The executive routine automates the creation of a
file containing the audit routines with implementor names
inserted in the source code, and the operating system control
cards required for compiling and executing each routine. The
testing of a compiler in a particular hardware/operating sys­
tem environment is accomplished by compiling and executing
each audit routine. The output report produced by each
routine indicates whether the compiler passed or failed
(individually) the tests in the routine. If the compiler rejects
some language element by terminating compilation (giving
fatal diagnostic messages) or terminating execution ab­
normally, then the test containing the code the compiler was
unable to process is deleted, and the audit routine compiled
again. A test is deleted by inserting NOTE at the beginning
of the test paragraph, thereby changing the source code in the
test paragraph to comment statements. The output reports
of the audit routines constitute the raw data from which the
members of the Federal COBOL Compiler Testing Service
(an activity of the Software Development Division) produce a
Validation Summary Report, which provides a consolidated
summary of the results obtained from the validation of a
compiler.

The results of running the COBOL Compiler Validation
System do not suggest the degree to which the compiler is
usable (i.e., capable of data processing applications) but the
degree to which individual language elements are usable.
This will give an indication of conversions which will be
necessary in order to utilize a source program from another
system supporting the same language specifications/stand­
ard. Thus, the Validation System tests a COBOL Compiler's
adherence to the standard language syntax, and, where un­
ambiguous, language semantics. The latter of course is a more
difficult area because of the lack of appropriate mechanisms
for precise semantic specifications. The Validation System
does not evaluate the implementation of a compiler (i.e., is it
a text-in-core or compiler-in-core, etc.) nor its quantitative
performance characteristics.

Additionally, the. summary of a validation-includes &n indi­
cation of unspecified language semantics (i.e., where latitude
is given for vendor implementation), and ambiguous language
semantics. Finally, tables summarizing the running time and
memory utilization of the audit routines, and a characteriza­
tion of compiler hard copy output and diagnostics are in­
cluded in Validation Summary Reports.

The benchmark preparation system performs conversion
in the major areas affecting portability of application
COBOL programs; nonstandard COBOL functions, imple­
mentor names, and data representation. A COBOL source
program translator (NAVTRAN-C) takes native machine
COBOL programs and converts them to machine indepen­
dent COBOL (ANSI X3.23-1968 language specifications).
Those functions in the native machine COBOL which are
extensions to the ANSI language specifications (and therefore

A Program for Software Quality Control 413

cannot be converted) are flagged by the translator. Imple-
mentor names in the benchmark programs are replaced with
unique names in the machine independent source programs.
These names are recognized and replaced by the VP-Routine
when the programs are implemented on the target machine.

Input data files associated with the benchmark programs
are translated by a series of COBOL programs. These data
translation programs make use of data conversion subroutines
inherent in the respective COBOL Compilers (native or
target machine) in translating the machine dependent data
to machine independent format and vice versa. Machine
dependent data characteristics may include arithmetic sign,
word boundary alignment, and certain internal representa­
tions. The COBOL data translation programs are created
from the benchmark program file descriptions. The creation
is performed by program generation. File descriptions in the
data translation programs are those for the native machine
file, machine independent file, and ANSI/target file. The
native machine file description is used to read the native
machine data files and build machine independent data files.
All data in these will be in display or character mode with the
signs of numeric data stored separately. Essentially, machine,
dependent data are translated to a string of characters which
may then be subject to straight character code translations
for the appropriate machine.

Upon transfer of the data files to the target machine, the
reverse operation occurs. The machine independent data are
read according to the file descriptions, and written using the
ANSI/target file descriptions. The data translation programs
also provide the capability of validating the data files, e.g.,
numerically described fields which do not contain numeric
data are identified. This can be done by a separate execution
or in conjunction with creating the independent or target
machine data files. The benchmark package (programs and
data files) which is distributed is itself in machine independent
form. Programs are in a source program library (Population
File). The Population File contains the benchmark source
programs, data translation programs and the VP-Routine.
Prior to benchmark processing the VP-Routine selects the
machine independent COBOL programs from the population,
inserts the necessary COBOL implementor names and creates
a job stream file for input into the computer system. The
VP-Routine also provides the updating capability for the
Population File. A summary of all changes made to the
Population File and the job control language generated for
the run stream file is part of the output created by the VP-
Routine. This summary is used to determine the changes a
vendor has to make in implementing the benchmark on his
system.

The Reference Benchmark Programs Library has been
used in performing an experiment to determine the suitability
of synthetic programs in alleviating the problems created by
natural benchmarks. Five processing tasks were selected as
representing, in varying combinations, a large number of ap­
plication tasks. These were sequential file processing, in­
dexed sequential file processing, relative I/O processing,
sorting, and computation. COBOL programs were written to
perform each of these tasks, with each program controlled

by a set of compile-time and execution-time parameters. The
ability to vary automatically certain parameters at compile-
time provides us with the flexibility to develop a fairly rich
mix from just a few basic programs.

We have found, through our testing with these programs,
that a small number of simple, task-oriented, synthetic
modules can be combined into a versatile job mix. A rela­
tively small number of parameters is sufficient to enable a
single program to reflect the characteristics of a broad class
of applications. Also, individual modules have proven useful
in exercising isolated computer system features, such as I/O
handling. Finally, if one accepts a "modest" workload charac­
terization, aimed more at reflecting extremities and crucial
areas rather than comprehensiveness, it is possible and
reasonable to construct a benchmark from a set of synthetic
modules.

PROJECT CONTROLS

Why

Boehm1 has suggested that the phrase "software engineer­
ing" is a contradiction in terms because we have no data base
to be used in measuring, in some way, what we produce and
how well we produce it. Yet, his own studies indicate that we
do have some data to work with. In order to obtain more,
those of us whose business it is to develop software must
keep records of our efforts, and thereby control them. This
does not present an undue hardship in our case since the
Department of the Navy strongly encourages that we be ac­
countable for what we do, how we do it, and what it is worth.

How

Because we are a small organization, our controls are
modest but, we think, effective.

Much has been made of structured and modular program­
ming.7 These concepts are gaining acceptance in Government
and private industry. While we take no issue with their merits,
we would suggest caution in their applicability. Modularity
will often reduce some of a system's complexity, but may
introduce additional complexity, particularly in the inter­
module connections. The nature of the COBOL Validation
System dictates that it be highly modular, but we have found
that much of its complexity is due to its modularity. We have
also found that GOTO-less programming can be awkward
and, especially in COBOL, costly. We realize that deviations
from the concepts are "allowed," but then we are back to
what have for years been recognized as simply good program­
ming practices.

We do follow modular programming concepts as design
aids. This seems to have become a very common practice. A
recent Hoskyns survey8 for the British Government showed
that 98 percent of modular programming practitioners did so
in the design stage. A major benefit of this practice has been
a lowering of maintenance costs.

414 National Computer Conference, 1974

It JUNE 2 JULY 30 JULY 27 AUG
1 1 1

29 SEPT 22 OCT

i 1 —

DEBUG PARAMETER TESTING PACKAGE DOCUMENT

6 © O 6

1. Submit Narrative
2. Submit Parameter Specifications
3. Complete Population File
4. Complete Instruction Manual

Figure 1—Project history chart for synthetic benchmarks

We've considered the "lead programmer"9 idea and dis­
carded it as inapplicable to our environment. We are blessed
with a surplus of "lead" programmers, and our projects,
while sometimes large, as in the case of the Validation Sys­
tem, are not massive.

We keep records of our work. An "initial project form" is
used to identify the project requestor, the purpose and nature
of the project, time requirements, resources required, and ex­
pected payoff. We generally cannot afford the luxury of con­
tinuing if resources required exceed payoff, in dollars. We
then prepare a work plan. This includes a schedule, check­
points, milestones, and manpower requirement distribution.
Milestones are distinguished from checkpoints in that the
former require a concrete action or document to be taken or
produced, while the latter may simply consist of an indication
that "parameter testing is complete". Figure 1 shows the
work plan for our synthetic program library project. I t
is important that we indicate the distribution of manpower
over the project lifespan, since this enables us to coordinate
manpower requirements for several projects. We review the
workplans whenever we feel it is necessary (but at least at
the checkpoints and milestones). If we fall behind we revise
the workplan. Thus far, we've successfully resisted the temp­
tation to add manpower or adopt unreasonable catch-up
schedules when we fall behind. The necessity for such resis­
tance has been well documented by Brooks10 and others.

We maintained a log of compiler errors (computation, se­
quence control, input-output, etc.) but we abandoned this
because we did not find it overly useful. Over a sample period
of five months we produced approximately 10,000 lines of
COBOL code: and 42 compile-time errors. Approximately
half of these were "clerical" errors (bad keypunching, sloppy

printing, etc.). Recognizing the smallness of the sample, we
would still make the generalization that any overly extensive
effort in beefing up a compiler's syntax diagnostics capability
may be a waste of time.

A test log is kept for all projects. The log indicates which
program or module is being tested, aims of the test, whether
these were achieved, and resources used. The same five
month sample showed that we achieved our aims in just
under 60 percent of the tests, and that new problems were
discovered in some 30 percent of the tests. Also, the average
test run used less than three memory minutes of UNIVAC-
1108 time. All our work is done in a remote job entry (batch)
mode. Yet, the above figures seem to imply that our testing
habits are more consistent with what would be expected in an
interactive program development environment. Sackman11

and others have suggested that on-line programming im­
proves efficiency. It appears that, additionally, experienced
programmers tend to behave as if they were in an on-line
environment, even if they are not.

Boehm's1 statistics indicate that 45-50 percent of software
efforts are devoted to checkout and testing, and that only
about 20 percent of the time is spent in coding. The data
base for these figures was derived from large systems projects,
such as the OS/360 development. Ours are much more modest
projects, and our results are both different and more variable.
About 50 percent of our time in the synthetic library project
was devoted to coding, and less than 25 percent of the time
was spent on integration and testing. The Benchmark
Preparation System figures are quite different. Coding has
taken up less than 25 percent of our time, with integration
and testing using up some 60 percent of the time. The result­
ing low figure for analysis and design (15 percent) is due to
the simple fact that much is already known about the port­
ability problem areas in COBOL.

Packaging and distribution of all our software products fol­
low fairly simple guidelines. The programs, in machine inde­
pendent form (all implementor names are parameterized, as
are machine dependent features such as precision and size of
numerical fields), are placed on a standard magnetic tape
reel, together with a copy of the VP-Routine. The latter is
used for parameter substitution (to a form acceptable to any
specific system), "library management", and job control
statements generation. Accompanying the tape is a user
guide, brief narrative description of the system, and, where
applicable experimental results. The programs are self-
documented, so that we can avoid excessive external docu­
mentation. While we recognize the importance of adequate
documentation, we have found that excessive documentation,
such as detailed flow charts can be a hindrance to proper
documentation. Distribution is through the National Tech­
nical Information Service.

A few words of caution about these and other published
statistics and practices. First of all, they reflect a very specific
environment. We have a small (eight people) staff with very
homogeneous backgrounds. Our systems are modest in size,
and "utility" oriented. All our work must be portable, since
we are currently using UNIVAC-1108, IBM 360/65, and
HIS 6050 systems for product development. Furthermore,

A Program for Software Quality Control 415

our COBOL compiler validation responsibilities have re­
cently required us to use our software on a Burroughs 6700,
HIS 437, and IBM 370/155 system. Thus, portability is truly
a necessity for us.

Secondly, even for a similar environment, the statistics
should be viewed as "guidelines". They are simply products
of our experience which we hope to learn from but do not
expect to be bound by.

THE PAYOFF

What has it all cost us?

Total cost for the synthetic programs library, including
machine time, clerical support, and salaries was under
$6,000. This benchmark preparation/conversion package has
cost us about $8,000. The COBOL Compiler Validation Sys­
tem was originated in 1969 by the U.S. Navy Programming
Languages Group under the direction of Capt. Grace M.
Hopper, USNR. A reasonable estimate of its initial cost is
not possible, but we do have an expected cost for the audit
routines we are preparing in anticipation of the revised
COBOL standard. Our schedule calls for completion of the
project by November, 1974. Total calendar time for the
project will be 15 months and we anticipate to expend 36
man-months on the effort. Total cost for the new Validation
System should be in the neighborhood of $75,000. The new
system will be approximately twice the size of the current
one, which is comprised of about 130 programs, or 100,000
lines of COBOL code. The implication here is that we expect
our productivity to be about 33,000 lines of COBOL code
per man-year; a remarkably high figure (Corbato3 has re­
ported a number in the neighborhood of 1200 PL/1 lines of
code per man-year on the Multics project). This is due almost
entirely to the fact that we are "borrowing" most of the de­
sign work from the present Validation System. We know the
modules we will require since the standard is defined for us.
The VP-Routine is already available. Many of the audit
routines will be extensions of current ones. Thus, our time
will be spent primarily in identifying tests, coding, and
testing.

What are the benefits?

We expect the returns on our investment to be substantial.
The best COBOL compiler we have tested to date ("best"
in its conformance to the standard) has had some 30 areas of
non-conformance. This not only impacts portability, but can
have serious side effects. Many data base management sys­
tems are COBOL-based. Errors in a compiler can easily re­
sult in "dirty" data getting into the data base. We have, for
example, identified some four different treatments of arith­
metic statements, each producing different results! The vali­
dation of a compiler tells us where the danger areas lie.
Furthermore, vendors are required to correct discrepancies
once these have been identified. Thus, our validation of
COBOL compilers enables us to reap the benefits of standard­

ization. Without such a measurement tool standardization is
a fruitless endeavor.

The high costs of processing benchmarks has already been
mentioned. We know of a recent selection where the total
award was for approximately $5 million. Included in that
figure were some $500,000 which the vendor spent in process­
ing the benchmark. Both the benchmark preparation system
and our synthetic programs library would pay for itself if
even a small portion of these potential savings in vendor
expenditures are passed back to the Navy.

FUTURE EFFORTS

The benefits derived from validating COBOL compilers
would also accrue in the validation of compilers for other
languages. FORTRAN, BASIC, and, later, PL/1 are natural
candidates.

Compiler efficiency, in terms of object code execution speed
and storage utilization, has a significant impact on an instal­
lation's throughput. This in turn affects the timing of selec­
tions and therefore of expenditures. We believe more ef­
ficient compilers mean fewer dollars spent, or more work done
for the same dollar. Thus, we are planning a set of test rou­
tines to determine the relative worth of a given compiler.
That is, we want to measure how much room there is for
improvement in execution speed and storage required. This
project is in the design phase and will restrict itself, initially,
to FORTRAN compilers, principally because it is easier to
measure efficiency of FORTRAN compilers than those for
most other languages. Knuth's work12 suggests that our ef­
forts may prove fruitful.

Finally, we believe that serious thought must be given to
validating generalized data base management systems.
Specifically, we are interested in finding ways of ascertaining
that the data base one builds with these systems does indeed
contain what we wish it to, that in retrieving data we get all
that is proper, and only what is proper, and that use of such
systems does not impact the integrity of the data base. We
also plan to develop simple analytical models to be used in
evaluating different types of data organizations. The possible
ongoing contamination of these data bases by inconsistent
object code has already been commented on.

CONCLUSION

Software to be used in improving or measuring the quality of
other software is neither difficult nor expensive to produce.
Our efforts are concentrated in the system selection area.
We believe, however, that the benefits to be derived from
such efforts have a broader scope, and are substantial enough
to warrant persual by any data processing organization.

REFERENCES

1. Boehm, B. W., "Software and its Impact: A Quantitative Assess­
ment," Datamation, May, 1973.

2. System Development Corporation, Estimation of Computer Pro­
gramming Costs, SP-1747, September, 1964.

416 National Computer Conference, 1974

3. Corbato, F. J., "PL/1 as a Tool for System Programming," Data­
mation, May, 1969.

4. Williams, D. A., "Conversion Case Study and Experiences,"
American Management Association, Administrative Services Brief­
ing Session #6379-02, "A Hard Look at Software".

5. International Computer Systems, Inc., Programming for Transfer­
ability, AD-750 897, National Technical Information Service, 1972.

6. Baird, G. N., "The DOD COBOL Compiler Validation System,"
Proceedings FJCC, 1972.

7. Liskov, B. H. and E. Toster, The Proof of Correctness Approach to
Reliable Systems, The MITRE Corporation, ESD-TR-71-222, Bed­
ford, Massachusetts, 1971.

8. Rhodes, John, "Tackle Software with Modular Programming,"
Computer Decisions, October, 1973.

9. Baker, F. T., "Chief Programmer Team," IBM Systems Journal,
Volume II, No. 1, 1972.

10. Brooks, F. P. Jr., "Why is the Software Late?," Data Management
August, 1971.

11. Sackman, A., Man-Computer Problem Solving, Auerback Publishers,
Inc., 1970.

12. Knuth, D. E., "An Empirical Study of FORTRAN Programs,"
Software-Practice and Experience, Volume 1, John Wiley and Sons,
1971.

