
A study of fault tolerance techniques for associative processors*

by BEHROOZ PARHAMI and ALGIRDAS AVIZIENIS

University of California
Los Angeles, California

INTRODUCTION—ASSOCIATIVE PROCESSING

Associative processing techniques have been suggested for
numerous application areas and have been proven to be
superior to more conventional procedures for a number of
specialized applications.1 Recent advances in computer tech­
nology and development of new architectural concepts for
associative devices have made the design of larger and more
flexible systems possible. Such systems are extremely complex
and must be adequately protected against failures. This
paper reports on the results of a study2 which has indicated
the techniques that are applicable and difficulties that may
be encountered in the design of fault-tolerant associative
processors.

In the remainder of this section, we will briefly review the
four basic organizations for associative processors; i.e., fully
parallel, bit-serial, word-serial, and block-oriented. This dis­
cussion is motivated by the fact that each of these organi­
zations requires a different treatment for some fault toler­
ance considerations, such as the detection of failures. This
classification is based on the degree of parallelism in oper­
ations or, alternatively, the amount of storage associated
with each unit of processing logic. A more detailed discussion
of these concepts and a comprehensive set of references can
be found in Reference 1.

In fully parallel associative processors, processing logic is
associated with each bit of stored data. Most fully parallel
systems implement only the exact-match search operation
in hardware and use software techniques for arithmetic, logic,
and more complex searches. An associative processor has
been proposed3 in which a variety of comparison and arith­
metic operations are performed in parallel on each word.

In bit-serial associative processors, processing logic is as­
sociated with each word of stored data. All the words can be
processed in parallel, each in a bit-serial manner. Bit-serial
systems represent a compromise between fully parallel and
word-serial systems and can be economically implemented
with state-of-the-art technology4 since they can utilize con­
ventional storage elements.

In word-serial associative processors, a single processing
unit operates serially on all the words.5 This approach es-

* This research was supported by the National Science Foundation,
Grant No. GJ 33007X.

sentially represents hardware implementation of a simple
program loop which is used for linear search. The elimination
of instruction fetching and decoding time and the high data
rates that can be achieved by circulating memories con­
tribute to the relative efficiency of this approach as compared
to programmed linear search.

In block-oriented associative processors, one block of infor­
mation is associated with a unit of processing logic. A low-
cost implementation of such a system may use a head-per-
track magnetic recording memory in which each block is
stored on one or more tracks.6 Block-oriented organization
is particularly suitable for applications such as information
storage and retrieval where a large storage capacity is
required.

FAULT TOLERANCE OF ASSOCIATIVE
PROCESSORS

Based on the applications that have been proposed for
associative devices, there are at least three reasons for
studying the fault-tolerance problems of such devices: (1) In
some proposed application areas for associative processors,
such as air traffic control,7 the effect of an undetected fault-
induced error may be catastrophic; (2) To be able to perform
control functions8 in a fault-tolerant computer, an associative
device must itself be fault tolerant, since, otherwise, it will
become part of the system's hard core and will contribute
heavily to its unreliability; (3) The extreme complexity of
large, general-purpose associative processors necessitates the
incorporation of fault tolerance features into their design.

It is remarkable, therefore, that the problem of fault-
tolerance of associative devices has remained virtually un­
touched. Ewing and Davies4 give techniques for coping with
some hardware malfunctions in a plated-wire implementation
of a particular associative processor. Furthermore, they are
only concerned with detecting such errors and disabling the
corresponding cell. Fault detection is done by performing
certain operations periodically. Proudman9 suggests that a
single error correcting code can be used in conjunction with
mismatch detectors with a threshold of 2. However, this
scheme is not valid if logic or masked write operations have
to be performed, since such operations destroy the coding.
Lipovski10 presents an associative processor architecture in

643

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1500175.1500299&domain=pdf&date_stamp=1974-05-06

644 National Computer Conference, 1974

ADDRESS
REGISTER

INPUT
REGISTER

CONTROL
UNIT

COMMAND BUS

MASK
REGISTER

a.-.i

MULTIPLE
RESPONSE
RESOLVER

PE(O)

PE{1)

PE(K-I)

ADDRESS
DECODER

I . J

OUTPUT
REGISTER

Figure 1—General model for an associative processor

which the processing elements are connected into a tree
structure. He contends that such a system is fail-soft since
faulty subtrees can be easily isolated from the rest of the
system. However, he does not indicate how faults are de­
tected.

In the remainder of this paper, we will identify and discuss
some techniques that are applicable in the design of fault-
tolerant associative processors. We will concern ourselves
with hardware faults and will assume the programs to be
correct representations of intended algorithms for the speci­
fied domain of operation. We may note, however, that the
simplified software of associative processors (e.g., fewer loops),
with respect to conventional systems, results in a propor­
tional simplification in the problem of software fault toler­
ance. A summary of the results presented here has been
published elsewhere.11

Figure 1 shows a model for an associative processor which
applies to all of the classes described in Section 1 except for
word-serial systems. Since word-serial associative processors
closely resemble conventional systems, their fault tolerance
problems can be studied separately. Each processing element
(PE) in Figure 1 consists on one unit of ^rocessin0- logic
and its associated storage elements. In general, the processing
elements in the PE array communicate with each other and
the exact pattern of intercommunication is application-
dependent.

A study of fault-induced errors in an associative processor
shows that they are not easily detectable since a single fault
may cause an arbitrary number of errors. This is evident for
faults in global subsystems of Figure 1, such as the input and

mask registers. For example, in a search operation a smaller,
larger, or an entirely different set may respond.2 A single
fault in one processing element may cause errors in others
because of PE intercommunication, making concurrent fault
detection highly desirable. The problem is further com­
pounded by the fact that each PE performs logic and selective
write operations on individual data bits which as we know
are not easily checkable without a high level of redundancy.12

The selection of applicable redundancy techniques is the
most important step in the design of fault-tolerant digital
systems. The first basic choice is between static (masking)
and dynamic (replacement) schemes. The advantages of
dynamic redundancy schemes over static ones are well-
known.13 For associative processors, there are at least two
other advantages to the dynamic redundancy approach:
(1) The high degree of internal complexity makes the imple­
mentation of a statically redundant associative processor
very costly and inconvenient; (2) The highly regular structure
of a major part of an associative processor (PE array) lends
itself naturally to modularization. Such modules can be
made identical in structure and can share spare modules.

LejLW.ajsumeJhat.the associative processor of Figure l i s
divided into M modules, each consisting of P processing
elements. Figure 2 shows a possible structure for each module
if the decoding and multiple response resolution functions
are distributed among the modules. As shown in Figure 2,
the information regarding the responses is passed serially
through the modules. Clearly fully parallel and mixed series-
parallel schemes can be used in much the same way as carry-

FROM MODULE I - 1

, * .
MULTIPLE DISABLE
RESPONSES

DATA COMMUNICATION
WITH OTHER MODULES

TO MODULE I + 1

Figure 2—Organization of a module in a modular associative processor

http://LejLW.ajsumeJhat.the

A Study of Fault Tolerance Techniques for Associative Processors 645

lookahead circuits for adders. Figure 3 shows the modules
and their interconnections. One-dimensional intercommuni­
cation between modules will be assumed for simplicity.

Given a modular associative device as shown in Figures
2 and 3, it can be made fault tolerant by the following steps:
(1) Incorporating internal failure detection ability within
each module; (2) Adding S spare modules; and (3) Designing
switching mechanisms and corresponding algorithms for re­
configuration. We will assume that the M + S operating and
spare modules are permanently connected to the main data
buses and that special isolating circuits exist between each
module and the data buses. Therefore, reconfiguration takes
place by "power switching" and by providing alternate
intercommunication paths between modules.

ERROR DETECTION TECHNIQUES

As noted earlier, the problem of error detection in as­
sociative processors is a difficult one and conventional coding
techniques are generally not applicable. However, there are
special cases where low-redundancy coding techniques can
be used. We now discuss some such special cases with respect
to the four classes of associative processors mentioned earlier.
This discussion will be followed by a brief introduction to
the self-checking design technique which is applicable in all
cases.

A fully parallel associative memory with only "exact-
match" search operation and without masking capability
can be protected by using a code with a minimum distance
of d. With this scheme, if conventional mismatch detectors
are used, stored words containing d— 1 or fewer errors will
never respond to a search operation (there is always at
least one mismatch signal) and are effectively isolated from
the rest of the system until periodic diagnosis routines detect
their failure. On the other hand, if mismatch detectors with
a threshold of d-i-2 are used, up to k = [d+2~]—l bit errors
can be masked by the search logic; i.e., a wTord containing k
or fewer errors will still match its original value (k or fewer
mismatch signals) and will not match any other value (fc+1
or more mismatch signals). The difficulty is that such an

, , j ; j > / > r £ CONTROL
UNIT <r

i i i i i t J r

/
<J7

/ / / / /

U , MODULE H

/
/
/

z z z

DATA
BUSES

2_S / / / iftrT-T-.

&L

MODULE A l> MODULE /JL # z £

\/7

MODULE ^Lk

M-1 "^

Figure 3—Module intercommunication in a modular associative
processor

P-S
TRANSLATOR
AND CHECKER

S-ENCODED
DATA WORDS

SELF-CHECKING
PROCESSING LOGIC
AND CONTROL

P-ENCODED
DATA WORDS

S-P
TRANSLATOR
AND CHECKER

Figure 4—A fault-tolerant word-serial associative processor

associative device will have no application besides simple
table look-up. For most other applications, masking capa­
bility and more complex search types are essential. Also, in
associative processors, arithmetic and logic operations need
to be performed. Clearly, low-redundancy codes are not
applicable for such operations.

Considerations for bit-serial systems are similar to those
for fully parallel systems. One advantage which exists here
is the serial processing of bits in each word. This allows us
to artificially extend each operation to the entire word by
performing "null" operation on bit positions not originally
specified. Now, since all the bits of each word are processed
serially, codes with lowx-cost serial encoding and decoding
can be used to protect against storage errors. Simple parity
checking is particularly attractive because of the small
amount of additional circuitry required for encoding and
checking. It should be noted, however, that if operations on
small fields within the words are to be performed frequently,
the above scheme may result in a significant reduction in
speed. Also, operations on multiple fields within the same
word (e.g., adding two fields and storing the sum in a third
field) do not lend themselves to this approach unless a
complete circulation is used for each bit operation, resulting
in an almost intolerable speed reduction.

As noted earlier, because processing is performed serially
in a word-serial system, protection against failures becomes
relatively simple. Low-redundancy coding can be used to
protect against storage errors. Failures in the processing
logic may be detected through self-checking14 design. Self-
checking translators may be needed to convert the storage
encoding (S-encoding) to an encoding suitable for processing
(P-encoding). The main requirement on the P and S en­
codings is that fast (parallel) translation between the two
must be possible. This is true since the data rates achieved
by circulating memory devices are very high (bit rates of

646 National Computer Conference, 1974

INPUT
PATTERNS

1 2 3 4

0 1 0 1
0 1 0 1
0 1 1 0
0 1 1 0
1 0 0 1
1 0 0 1
1 0 1 0
1 0 1 0

5

0
1
0
1
0
1
0
1

6

1
0
1
0
1
0
1
0

TESTABILITY OF LINES
S-A-1, S -A-0 ,

1

1
1

0
0

2 3 4 5 6 7

1
1 0 1

0 1 0 1
0 0 1 0 1

1 0 1
1

1 0 1 1 0 0
1 O i l

OB NONE

8

1
1
1
0
1
1

1

9

1

1
0

1 1 1
0 1 2

1 0
1 0

0 1 0
1 0 1

1 0
1 0

1 0 1
1 0

Figure 5—A two-level realization of two-rail masked comparison and its
testability with code-space inputs

10-100 MHz). Figure 4 shows a possible configuration for a
fault-tolerant, word-serial associative processor. Since during
each operation cycle, the entire memory content is circulated
through the processing logic, 2-dimensional codes may be
used for additional protection against storage errors, if
desired.

One favorable property of block-oriented systems with
respect to fault tolerance is that during each operation cycle
a processing element operates on the entire block of infor­
mation assigned to it. This enables the use of block codes
which result in relatively low redundancy and have simple
serial checking algorithms. The simplest possible scheme is
to use a parity bit per block of information which detects
all single errors. However, if mechanical storage devices are
used, error bursts become very probable due to dust particles,
minute scratches, or defects in the oxide coating. It has been
noted that low-cost arithmetic error codes are very effective
for coping with such burst errors.15 The checking algorithm
for these codes is very simple and requires little additional
hardware if an adder is already present in each PE.6

As can be seen from the previous discussion, low-redun­
dancy coding techniques are applicable only in special cases.
Design of logic circuits in self-checking and self-testing form14

(i.e., in a way that internal circuit failures manifest them­
selves on the circuit's output and such that each failure is
detected by the circuit's normal inputs) particularly if 1-out-
of-2 encoding is used appears to be promising. However,
because of the relatively higher complexity of the self-
checking design approach as compared to low-redundancy
coding techniques, this approach should be used when others
fail or for protecting the system's hard core.

A detailed discussion of self-checking design concepts is
beyond the scope of this paper. Instead, we present as an
example a self-checking circuit for masked comparison of
twro bits. Denoting the mask bit by m, data bit by x and
the stored bit by s, the mismatch result z is defined as

z = m-{x@s);

i.e., we have a mismatch if the given bit position is not
masked (m = l) and the data bit x does not equal (match)
the stored bit s. Figure 5 shows a two-level, self-checking,
and self-testing realization with two-rail encoding of the
variables; i.e., a variable y is represented by a pair (yl, y°)
with yl = y and y° = y during error-free operation. It is easy
to show that any single-line failure results in the correct
output or one of the "illegal" combinations (0,0) or (1,1)
on the output. Hence, the circuit is self-checking. The fact
that the circuit is self-testing is verified by applying an
APL/36016 program called TESTDETECT17 to it. The table
given in Figure 5 is the output of the TESTDETECT
program applied to a description of the given circuit. An
entry of 1(0) in this table indicates that the corresponding
input pattern detects s-a-1 (s-a-0) failure of the given line
by producing on the circuit's output one of the "illegal"
combinations (0,0) or (1,1). Figure 5 indicates that each line
in the given circuit is tested for both s-a-1 and s-a-0 failures
during normal operation.

RECONFIGURATION TECHNIQUES

For a modular associative device to tolerate module fail­
ures, the module interconnections should not be rigid as
shown in Figure 3.. Rather, the modules should be inter­
connected through specially designed switching circuits which
prevent a system failure as a result of the failure of a module.
The setting of these switching mechanisms determines the

\ \

BASIC CELL CROSSED MODE BENT MODE

Figure 6—A two-state switching cell

A Study of Fault Tolerance Techniques for Associative Processors 647

system configuration and can be changed by a central
monitor if required. If a module error is indicated and the
existence of a permanent failure is determined, reconfigur­
ation procedures must be initiated to establish a new working
configuration. In general, data transfers between modules
and correction of fault-induced errors is needed as part of
the reconfiguration process.

As will be seen the additional complexity introduced by
the modularization overhead and reconfiguration switching
mechanism is an increasing function of the total number of
modules M + S . Therefore, improving the reliability by in­
creasing M and S is possible only to a certain point. There­
fore, the optimal module size, in terms of the number of
processing elements it contains, and the number of spare
modules must be determined for each application through
tradeoff studies involving reliability improvement and the
corresponding increase in cost.

In the remainder of this section, we will assume only uni­
directional (left to right) data flow between the modules in
Figure 3. The generalization of the results to bidirectional
data exchange is straightforward. After detecting the exist­
ence of a faulty module, the following steps must be taken
before normal operation can resume: (1) Locating the faulty
module; (2) Determining a new working configuration;
(3) Initiating appropriate data transfers; and (4) Effecting
reconfiguration through switching. The criteria that should
be used in evaluating each scheme include: (1) The amount
of data transfers needed; (2) The complexity of the recon­
figuration algorithms; (3) The number of spares S needed
for tolerating f module failures; and (4) The complexity of
additional switching circuitry.

A straightforward solution is the use of a "permutation

r r _ . . • 1 - ' » 2 - l * 3 J • • • • k.Mj.c . _^

V INPUT

FROM
CONTROL
UNIT

»" M + S J • • •
TO
CONTROL
UNIT

(a) M + S MODULES CONNECTED TO A SHORTING NETWORK

(b! NORMAL OPERATION WITH ONE SPARE

FAULTY

(c) OPERATION AFTER THE FAILURE OF MODULE NUMBER 2

Figure 7—Reconfiguration with a shorting network

H INPUT MODULE
" • H OUTPUT

V OUTPUT

Figure 8—Basic module for distributed reconfiguration

network"18 which can interconnect the modules in any order.
Such a permutation network can be implemented as a cellular
array19 of two-state basic modules shown in Figure 6. Since
the complexity of such a cellular permutation network is
roughly proportional to the square of the number of modules,
its use can be justified only if a relatively small number of
modules are involved.

The basic module of Figure 6 can be used in a different
way to form a "shorting network."18 As shown in Figure 7,
such a shorting network can be used to route data around
the faulty and spare modules. One disadvantage of these
schemes, particularly as shown in Figure 7, is the excessive
amount of data transfers needed in the case of a failure. The
number of transfers needed can be reduced by optimal
placement of the spare modules. It can be shown2 that data
transfers are minimized if the fcth. spare module is in position

ik = k+(k-0.5)XM+S

for k = l, 2, . . . , S. For example, with M = 6 and S = 3 and
the modules numbered 1, 2, . . . , 9, the spares should be in
positions 2, 5, and 8. Intuitively, this corresponds to dividing
the string of M + S modules into S roughly equal groups and
placing a spare in the middle of each group. Reference 2
also contains APL/360 algorithms for and examples of recon­
figuration with shorting networks.

Another approach to the reconfiguration problem is the
use of a distributed switching mechanism; i.e., distributing
the switching function among the modules. This can be done
by providing each module'with a set of input and output
lines instead of one as shown in Figure 3. Then, if a successor
module connected to one module output fails, a module
connected to another output can act as its successor. The
simplest case, which will be discussed here, is when each
module has two sets of inputs and two sets of outputs. As
shown in Figure 8, the two inputs and two outputs are
distinguished by the letters H and V (horizontal and vertical).
The module has four states denoted by HH, HV, VH, and
W , depending on whether the H or V input is used and
whether the output is generated on the H or V output.

648 National Computer Conference, 1974

FROM CONTROL
UNIT o

TO CONTROL
UNIT i i

*m—*Q
• " " « 1

t] •[f] . . . - * [M]

1' i B 1
(a) MODULE INTERCONNECTION PATTERN

xxA C h -
(SPARE

r * -t- —
HH + HH * H H * HH. H i HHA

{ *] — ^ 1

(b) NORMAL OPERATION WITH M = 5

i T f 1
H H i H V i X X i VH , , H H i

i i i—_—i .

(c) OPERATION AFTER THE FAILURE OF MODULE NUMBER 3

Figure 9—Distributed reconfiguration with simple sparing

Figure 9 shows how modules of Figure 8 can be inter­
connected in a simple sparing scheme with S = l. The spare
module can replace any one of the operating modules and
only one module's data need to be transferred in the event
of a failure. For S > 1 , this scheme can be used if the M
operating modules are divided into S groups each having
one spare. The disadvantages of this scheme are: (1) only
one module failure can be tolerated in each group; (2) If a
faulty module is not reliably powered off, it may produce
meaningless data on the common connection to the spare
module.

Figure 10 shows a two-dimensional arrangement of the
basic modules. It can be seen in Figure 10 that all 9 modules
can be connected into a string similar to Figure 3 by ap­
propriate selection of module states. If any single module
fails, the remaining 8 can continue their operation. Double
module failures will leave at least 6 usable modules. Hence,
with M = 8 and S = l, this scheme can tolerate all single
module failures. With M = 6 and S = 3, all double failures
can also be tolerated as well as some triple failures. Note
that if both successors of a module fail, it cannot be used.
Hence the tolerance of two module failures requires three
spare modules. Two interesting and equivalent unsolved
problems exist for the two-dimensional arrangement of

modules: (1) Given M + S modules with M required to be
operating, how should one interconnect them to tolerate the
maximum number f of failures? (2) Given the requirement
for M operating modules and tolerance of f failures, what is
the minimum number S of spares required and the corre­
sponding interconnection pattern?

The basic advantage of this scheme is that the switching
mechanism is not part of the system's hard core since a
failure in the switching circuits is equivalent to a module
failure. The working configuration is supported solely by the
non-failed modules. The only place where interference from
failed modules may result is on the output bus. This can be
avoided by using an output selector circuit to isolate the
modules from the bus. The main disadvantages of this
scheme are the complexity of the reconfiguration algorithm,
excessive data transfers, and tolerance of fewer than S
failures. APL/360 algorithms have been written for the
reconfiguration process.2

It is interesting to note that in a rectangular two-dimen­
sional configuration (Figure 10) with r rows and c columns,
one can obtain bounds on the number of modules in various
states. Let us denote, by nHH the number of modules which

FROM
CONTROL -
UNIT

XJ XJ "O

TO
->- CONTROL

UNIT

(a) THE INTERCONNECTION PATTERN

HV VH HV

SPARE

(b) NORMAL OPERATION WITH ONE SPARE

(c) OPERATION AFTER THE FAILURE OF MODULE NUMBER 2

Figure 10—A two-dimensional arrangement of basic modules

A Study of Fault Tolerance Techniques for Associative Processors 649

are in state HH. Similarly, define nnv, ^VH, and nVv- It
can be shown that if M is the. number of operating modules,
then :2

n H H < (r X e - M) - K r - l) (M - e H (r - l)

<WHV = «VH<C M — 2cX

< n w

< (M - c) X (r - 2) - (r - l)

Such bounds are useful in verifying the correctness of a given
configuration.

A FAULT-TOLERANT ASSOCIATIVE PROCESSOR

In this section, we illustrate the applicability of some of
the techniques discussed previously by presenting the design
and evaluation of a fault-tolerant associative processor called
SPARE (inverse acronym for Error-tolerant and Recon-
figurable Associative Processor with Self-repair). SPARE is
essentially a fault-tolerant version of an associative processor
which has been described previously.4 Figure 11 shows a
block diagram of the non-redundant system. The random-
access memory is used for storing instructions and constants
and consists of 4096 24-bit words. The associative memory
contains 512 96-bit words. External data can be transferred
directly to either one of the memories under automatic
interrupt control.

The non-redundant associative processor of Figure 11 can
be divided into two parts: (1) The associative (parallel)
section, which consists of the associative memory array, bit
column selection logic, and word logic; (2) The control and

(96)

ASSOCIATIVE
MEMORY
ARRAY

WORD
LOGIC

BIT COLUMN
SELECTION LOGIC

(7)
A COUNTER

INPUT/.
OUTPUT

(7)
B COUNTER

(?)
C COUNTER

J

"^ (24)

I/O REGISTER

J

CONTROL
UNIT

SERIAL
ADDER

(24)

MEMORY
REGISTER

(24)

INSTRUCTION
REGISTER

(24)

RANDOM
ACCESS
MEMORY

Figure 11—Block diagram of the non-redundant associative processor

ASSOCIATIVE
(PARALLEL)
SECTION

<<
/

\
S.

V

ERROR
INDICATION
AND STATUS
SIGNALS

/

,

#± 4 r4 r

: \
OR , COUNTER
GATE , INPUTS
OUTPUT .

TEST INPUTS AND
RECONFIGURATION
CONTROL LINES

1 ^ '
, CONTROL'
, LINES

* " 6 '

CONTROL AND SEQUENCING
(SEQUENTIAL) SECTION

Figure 12—The parallel and sequential sections of SPARE and their
interface

sequencing (sequential) section, which contains all other
subsystems of Figure 11. Figure 12 shows the parallel and
sequential sections of SPARE and their interface require­
ments. The sequential section uses the status signals and
test inputs for monitoring the operation of the parallel
section. We now briefly discuss the three main features of
SPARE; i.e., error tolerance, reconfigurability, and self-
repair.

To achieve error tolerance, the parallel section of SPARE
is divided into M indentical modules. S spare modules are
shared by the operating modules. Each module has internal
failure detection capability which is provided by self-checking
design of its circuitry using two-rail encoding of logic vari­
ables. When a module error is indicated to the sequential
section, the recovery mode is entered and the final result
may be the replacement of the faulty module by a spare
module. The sequential section of SPARE resembles a small
general-purpose computer and can, therefore, be made fault
tolerant by conventional techniques.

One of the very important properties of associative
processors is simple modular growth. The size of an associ­
ative processor can grow without a need to alter its algorithms.
This suggests that if additional processing capability is re­
quired, the redundant processing logic in SPARE can be
utilized. Even the two channels of the two-rail circuits can
be used independently to double the processing capability if
certain design criteria are met.2 Specifically, we postulate
the following operation strategy for SPARE: (1) During
normal operation the system works in redundant mode with
a number of spare modules; (2) If a module failure occurs
or additional processing capability is needed and if a sufficient
number of spares are available, they are switched in; (3) If
a module failure occurs or additional processing capability
is needed and spare modules are not available, the system

650 National Computer Conference, 1974

! I 1 1 I I I I I I
0.01 0.02 0.05 0.1 0.2 0.5 1 2 5

COMPLEXITY CONSTANT (K!

Figure 13—Relative complexity of SPARE as a function of K

reconfigures into simplex mode by utilizing the two channels
of the two-rail circuits independently.

Of the reconfiguration techniques discussed earlier, the
one using a permutation network seems to be suitable for
SPARE since only one intercommunication line (two in self-
checking design) exists between modules and the number of
modules is expected to be small (M = 4 or 8, for example).
The self-repair process will then essentially consist of com­
puting and setting of a new state for the permutation net­
work. This process must be followed by a recovery procedure
to transfer the data stored in the failed module to the one
which replaces it. The permutation network has a two-rail
self-checking design but no spare is provided for it.

The detailed design of SPARE2 shows that if K is the
relative complexity of one storage bit with respect to a logic
gate, the hardware complexity (cost) of various designs, in
terms of gate equivalents, are as follows:

Non-redundant system NRC = 15872+49152 X K

Permutation network PNC= - 3 1 + 2 5 X (M + S) 2

Each self-checking module M C = 512X(H0+192X
K)-=-M

Redundant system RC = P N C + (M + S)
XMC

The value of K is technology-dependent and has been chosen
as a parameter for generality. Figure 13 shows the ratio of
complexity for the redundant and non-redundant designs as
a function of K for several configurations of SPARE. In
computing the complexity factors, we have only considered

the parallel section of SPARE and have ignored the se­
quential part.

To compute the reliability of SPARE, we will assume that
the coverage factor C includes the reliability of the permu­
tation network. Using the reliability modeling technique of
Bouricius et al.,20 we find the following reliability equations
directly

Rnr(T) = exp(-\nrXT)

s /M+z-lX
JRr(7

1)=exp(-MXXmXT)Z I
*=° \ i I

X{C[l -exp(-X m X7 1)]} i

where T is the mission time, X„r and Xm denote the failure
rates for the non-redundant system and a self-checking
module, and Rnr and Rr denote the non-redundant and
redundant reliabilities, respectively. Figure 14 shows the
reliability improvement factor defined as [l — Rnr(T)2 +
[I — Rr(J1)] as a function of mission time T for several
configurations of SPARE.

From the preceding discussions we conclude that for mis­
sion times which are short compared to the MTBF for the
non-redundant system, a significant increase in reliability is
possible with a relatively small number of spare modules. A
more detailed study of the effect of mission time T, coverage
factor C, and complexity constant K on the optimal con­
figuration of SPARE is being carried out. (For a given set of
values for T, C, and K, an optimal configuration is defined

100 1000 10,000 50,000

TIME (HOURS)

Figure 14—Reliability improvement for various configurations of
SPARE with respect to the non-redundant system (K = 0.1, C = 0.99)

A Study of Fault Tolerance Techniques for Associative Processors 651

as a pair of values for M and S which result in a lower system
cost than all other pairs with the same or higher reliabilities.)

CONCLUSION

In this paper, we have presented the results of a study on the
fault-tolerance of associative processors. Our main conclu­
sions are as follows:

(1) Dynamic redundancy is to be preferred over static
approach because associative processors lend them­
selves naturally to modularization and since spares
can be shared by a number of identical modules;

(2) Low-redundancy coding techniques are applicable for
error detection in associative processors but only in
special cases. In particular, the use of arithmetic
error codes for block-oriented systems appears to be
promising;

(3) Application of self-checking circuit design techniques
seems to be an attractive alternative for error de­
tection in associative devices;

(4) Complex switching mechanisms and algorithms need
to be devised to enable the sharing of spares by a
collection of identical modules which communicate
with each other.

Further research is needed in two equally important areas.
The first area is the design of completely checked digital
circuits. Systematic techniques need to be developed to aid
the designers in choosing suitable input and output encodings
and producing a self-checking design when presented with a
non-redundant circuit or its functional behavior. Cost and
effectiveness studies are also needed for the self-checking
design approach to determine the increase in complexity
over non-redundant designs and the actual error detection
coverage which it provides.

The second area is general techniques for reconfiguration
in array processors. Extension and generalization of the
results presented here.are possible in two directions. First,
one can conceive of other interconnection schemes for the
case where one-dimensional intercommunication exists be­
tween modules. For example, we may consider a three-
dimensional interconnection pattern in which there are three
choices for each of the left and right neighbors for a module.
Second, one may seek generalizations to the cases where
multi-dimensional module intercommunication is used. This
is a considerably more complex problem. As an example, it
may be possible to embed a two-dimensional intercommuni­
cation pattern into a three-dimensional or four-dimensional
matrix of interconnected modules. Then, each module can
choose its left, right, upper, and lower neighbors in the same
manner as a module could select its left and right neighbors
in the case of one-dimensional intercommunication.

Also, we have not considered the testing aspects of associ­
ative processors. This is an important area for future investi­
gation since the design of a fault-tolerant associative processor
must be initially verified through testing. In addition, for an

associative processor which is dedicated to a certain task,
there is frequently some idle time which can be utilized by
periodic diagnostic routines.

REFERENCES

1. Parhami, B., "Associative Memories and Processors: An Overview
and Selected Bibliography," Proceedings of the IEEE, Vol. 61, No.
6, pp. 722-730, June 1973.

2. Parhami, B., "Design Techniques for Associative Memories and
Processors," Technical Report UCLA-ENG-7321, Computer Science
Department, University of California, Los Angeles, March 1972.
(Also published as a Ph.D. dissertation.)

3. Shore, J. E. and F. A. Polkinghorn, A General-Purpose Associative
Processor, Naval Research Lab. Report, Washington, D.C-, March
1969.

4. Ewing, R. G. and P. M. Davies, "An Associative Processor,"
AFIPS Conference Proceedings, Vol. 26 (1964 Fall Joint Computer
Conference), Spartan Books, Baltimore, Maryland, 1964, pp. 147-
158.

5. Crofut, W. A. and M. R. Sottile, "Design Techniques of a Delay
Line Con tent-Addressed Memory," IEEE Transactions on Electronic
Computers, Vol. EC-15, No. 4, pp. 529-534, August 1966.

6. Parhami, B., "A Highly Parallel Computing System for Informa­
tion Retrieval," AFIPS Conference Proceedings, Vol. 41 (1972 Fall
Joint Computer Conference), AFIPS Press, Montvale, New
Jersey, 1972, pp. 681-690.

7. Thurber, K. J., "An Associative Processor for Air Traffic Control,"
AFIPS Conference Proceedings, Vol. 38 (1971 Spring Joint Com­
puter Conference), AFIPS Press, Montvale, New Jersey, 1971,
pp. 49-59.

8. Berg, R. O. and M. D. Johnson, "An Associative Memory for Exec­
utive Control Functions in an Advanced Avionics Computer Sys­
tem," Proceedings of IEEE International Computer Group Con­
ference, June 1970, pp. 336-342.

9. Proudman, A., "Bulk Associative Memory with Error Correction,"
IBM Technical Disclosure Bulletin, Vol. 12, No. 7, pp. 1076-1077,
December 1969.

10. Lipovski, G. J., "The Architecture of a Large Associative Pro­
cessor," AFIPS Conference Proceedings, Vol. 36 (1970 Spring Joint
Computer Conference), AFIPS Press, Montvale, New Jersey,
1970, pp. 385-396.

11. Parhami, B. and A. Avizienis, "Design of Fault-Tolerant Associative
Processors," Proceedings of the First Annual Symposium on Com­
puter Architecture, Gainesville, Florida, December 1973, pp. 141-145.

12. Peterson, W. W., and M. O. Rabin, "On Codes for Checking Logical
Operations," IBM Journal of Research and Development, Vol. 3,
No. 2, pp. 163-168, April 1959.

13. Avizienis, A., "Design of Fault-Tolerant Computers," AFIPS
Conference Proceedings, Vol. 31, (1967 Fall Joint Computer Con­
ference), Thompson Books, Washington, D. C , 1967, pp. 733-743,

14. Carter, W. C. and P. R. Schneider, "Design of Dynamically Checked
Computers," Information Processing 68, (Proceedings of IFIP
Congress, Edinburgh, Scotland, August 1968), North Holland Pub­
lishing Company, Amsterdam, 1969, pp. 878-883.

15. Parhami, B. and A. Avizienis, "Application of Arithmetic Error
Codes for Checking of Mass Memories," Digest of International
Symposium on Fault-Tolerant Computing, Palp Alto, California,
June 1973, pp. 47-51.

16. Falkoff, A. D. and K. E. Iverson, APL/S60 User's Manual, IBM
Thomas J. Watson Research Center, Yorktown Heights, New York,
August 1968.

17. Bouricius, W. G., W. C. Carter, K. A. Duke, J. P. Roth and P. R.
Schneider, "Interactive Design of Self-Testing Circuitry," Proceed­
ings of Purdue Centennial Year Symposium on Information Process­
ing, Lafayette, Indiana, April 1969, pp. 73-80.

652 National Computer Conference, 1974

18. Levitt, K. N., M. W. Green, and J. Goldberg, "A Study of Data
Commutation Problems in a Self-Repairable Multiprocessor,"
AFIPS Conference Proceedings, Vol. 32 (1968 Spring Joint Com­
puter Conference) Thompson Book Company, Washington, D.C.,
1968, pp. 515-527.

19. Kautz, W. H., K. N. Levitt, and A. Waksman, "Cellular Inter­

connection Arrays," IEEE Transactions on Computers, Vol. C-17,
No. 5, pp. 443-451, May 1968.

20. Bouricius, W. G., W. C. Carter, and P. R. Schneider, "Reliability
Modeling Techniques for Self-Repairing Computer Systems,"
Proceedings of the 24th National Conference of ACM, San Francisco,
California, August 1969, pp. 295-309.

