Check for
Updates

OMEGA:

A DATABASE MANAGEMENT SYSTEM

FOR ACADEMIC USE

Colleen Deegan

IBM

Gaithersburg, MD

John Atkins and Mike Henry
Department of Statistics
and Computer Science
West Virginia University

Morgantown,

Abstract

This paper describes an implementation
of the relational database management
system, OMEGA. OMEGA is designed to be
"query language independent" in order to
promote the investigation of experimental
query languages by graduate students,
OMEGA also supports the query language SQL
and as such, 1is used 1in undergraduate
database courses to demonstrate the
features of SQL.

Introduction

One of the fastest growing application
areas of computer science is databases.
Industry and business more and more rely
on databases to remain competitive. As a
consequence of the demand for database
management systems, software companies are
heavily engaged in the design of such
systems. These database management
systems must meet the diverse needs of the
business community and at the same time be
accessible to the entire wuser community,
i.e., be "user friendly." It is therefore
incumbent upon colleges and wuniversities
to provide well-trained and knowledgeable
computer scientists to both create new
database management systems and to become
database administrators. To meet this
challenge, college and university computer
science curricula must include several
courses in database design and
application.

should
database
used to

Undergraduate database courses
have available sophisticated
management systems which can be
demonstrate to the student typical
applications of databases. Graduate
database courses should have systems which
permit the graduate student to experiment

with new query languages and novel user
interfaces,
This paper describes a relational

database management system, OMEGA, which
meets both of these needs and is available
to the academic community at mno cost.
OMEGA supports the query language SQL with
all of its powerful facilities, and at the

BIGCSE

BULLETIN Vol. 18 No. 4

Dec. 1986

11

WV 26506

same time 1s essentially 'query language
independent"” in that it actually executes
very low level commands thereby allowing
experimentation with new query languages
which can easily interface with it. SQL
was chosen as the supported query language
because of its wide acceptance by the user
community. SQL 1s not only the query
language supported by SYSTEM R, but is
also the query language supported by IBM's
DB2, ORACLE, and other commercial systems.
Indeed, Date [7] states that "There can be
little doubt that the importance of [SQL]
will increase significantly over the next
few years." In view of the increasing
importance of $QL, students in
undergraduate database courses must have
an exposure to this query language.

Overview of OMEGA

OMEGA is a relational database

management system that supports very
powerful retrieval facilities and
incorporates several optimization

features. It was designed to be "query
language independent”™ in order to provide
a mechanism for advanced students to
design experimental query languages
without the mneed for the intricate file
access and manipulation code that
constitutes the file manager component of
a database management system,

OMEGA executes relatively simple
"atoms" or quadruples which are often
interrelated. The format of the atoms has
the general form:

(code; old file; new_file; condition)

The atoms are
quUery processor
passed to OMEGA
The array of atoms
communication

placed in an array by the
and the array is then
when OMEGA is invoked.

constitutes the only
between the query processor

and OMEGA. Thus, the processor is
essentially a parser which parses the
queries and translates a query into a

sequence of atoms.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F15003.15006&domain=pdf&date_stamp=1986-12-01

OMEGA Operations

The heart of any database management
system is the ability to select tuples
from a relation and test such tuples
against a Boolean expression, OMEGA's

facility wuses a combination of
Since the selection process

selection
five atoms.

often mimics a loop, two atoms that serve
the looping process are the label atom
(code 13) and the branch atom (code 12),.

A tuple is selected for consideration with
the atom whose code is 07. This atom has
the format

(07, relation [(variable name)]:;
tuple_name) -

The variable name 1s optional and
corresponds to the tuple variable in SQL
or the RANGE OF statement in QUEL, The
tuple name is the name by which the tuple

is referenced in the text atom.

The tuple 1is tested via an atom with
code 11 having the format:

(11 tuple _name; new_relation; Boolean
expression)
The selected tuple, wvhich is
identified by the tuple name, is tested
(13;0133) /% label O01%/
(07;S;;%A01) /* gselect a tuple from §;
(08;0253)

(11;%A01;%T01; STATUS, 20,

3

CITY,

the Boolean expression and if the
is placed in the

against
Boolean result is true,
new_relation,

The fifth atom used in the selection
process is a branch on end of_file (code
08) and follows a select (code 07) atom.

We shall illustrate the interplay of
the atoms using the well-known
suppliers/parts database which appears in

[5]. The schema for this database is:

S(S#, SNAME, STATUS, CITY)
P(P#, PNAME, COLOR, WEIGHT, CITY)
SP(S#, P#, QTY)
A typical query, in SQL, from the
suppliers/parts database might be:
SELECT SNAME
FROM S
WHERE STATUS < 20 OR CITY =
'LONDON'

The atoms that would be executed as a

result of this command would be:

name it *AQ01 */

/* branch on EOF to label 02 */

'LONDON' , = , OR)

/* test tuple *%A0l and place it in relation *TOl */

(12;0133) /* branch to label 01 */

(13;0253;) /% branch to label 02 */

(evovs) /* project and print atoms */
Note that the comments are provided for

clarity and are not actually generated.
The selection atoms are usually
followed by a project atom (code 17) and a
print atom (code 16).
(17;%T01;%T02;SNAME) /%

(163%T02;

A more complex example will illustrate

OMEGA's versatility. A relational
database management system must support a
form of Cartesian product and should
provide for the mnotion of a "tuple
variable." OMEGA does both as

demonstrated in the following example:

BIGCSE

BULLETIN O

18 No. 4 Dec. 1986

In the previous example,
sequence of atoms would be:

the remaining

project SNAME from *TOl and
place the result in *T02 */

12

/* print #T02 %/

SELECT SNAME, P#

FROM 5, SP SPX
WHERE P# IS NOT IN

(SELECT P# FROM SP WHERE S# <> SPX.S#)

AND S,S8# = SP,S#

The atoms that are executed
result of this SQL command are:

as a

(06:;5,SP(SPX);*T01;)

/*Cartesian product of § and SP;

is relation *TO01 */
(13;01;3) /* label 01 */
(07;%T01;;*A01)

SPX references SP; result

/*select tuple from *TOl and name it *A01 */

(08;0233) /* on EOF,

branch to label 02 *

/* atoms generated by inner select */

(13;03;;) /% label 03 */

(07;8P;;*%A02) /#* select tuple from SP and name it *AQ2 */

(08;04;;) /% on EOF,
(11;%A02;%V02,54#,8SPX.S#,

(13;0453) /*label 04 */
(17;%V023%V03;P#)
*V03 */

/*end of atoms from inner

SELECT is relation #V03 */

(11;%A01;%V04;P#,%V03,18_NOT_
/* test tuple *A0l and place in *VO04
branch to label 01 */

(12;0133) /+*
(13:02;:) /*label 02 #/

branch

to label 04 */

) /#test tuple *A02 and
place in relation #*V02 */
(12;03;;) /#*branch to label 03 */

/* project P# from #V02 and place in

block; result of inner

IN,S.S#,SP.S#,=,AND)
* /

(17,*%V04;*%V05;SNAME:P#) /#* project SNAME and P# from
V04 and create *V05 */

(16;%V05;3;) /% print #V0S5S */

Most sophisticated query languages
have a '"group by" facility whereby tuples
are grouped together by common values on
one or more fields and then groups are
selected and/or a built-~in function 1is
applied to teach group. SQL, QUEL, and
QBE all provide for this 'group by"
option. OMEGA supports a group by option
and provides the standard six Dbuilt-in
functions: SUM, MAX, MIN, AVG, COUNT, and
SET. The first five functions are
self-explanatory, SET 1is applied only to
groups., The SET function takes the values
from one or more attributes in a group and
makes these values a relation so that the
set of wvalues from that group may be
compared to another relation.

(14;8P;*G0O1;P#)

As an example, consider the

query:

following
SQL

SELECT P#, AVG(QTY)
FROM SP

GROUP BY Pf#
HAVING SET(S#) =
(SELECT $# FROM SP)

The atoms
query are:

generated as a result of this

/% group tuples in SP by P# and place in relation #*GO1 */
(17;8P;%T02;S#) /*project S# from SP and place in *T02 */
(15;%G01;*G0O3,SET(S#),*T02,=) /* select groups from *GOI

for which the set of S#'s

equals the relation *T02 */

(17;%G03;*T04;P#:AVG(QTY) /*project the P# value from *GO03
and compute the average QTY value from each group */

(163;%T0433) /*print *TO04 */

OMEGA provides for all of the file
maintenance operations that are necessary
in a database management system, These
operations include the ability to create a
file, introduce new tuples to the file,

SIGESE

BULLETIN o0

18 No. 4 Dec. 1986

13

modify tuples in the file, and to delete
tuples from the file. These operations
are standard in any database management

system and little from

system.

vary system to

Optimization

The files in OMEGA are each direct
access files (hash fdiles). Although
tuples are stored in the files in a
sequential fashion, the direct access file
format was chosen to facilitate
optimization, The design of OMEGA

creation of a substantial
number of intermediate, temporary files
(files with the name *Tnn, *Von, #Gnn) .
The overhead resulting from the creation
of numerous temporary files can seriously
degrade the performance of the system,
For this reason, the temporary files are
in fact logical files whenever possible.
This means that if a new file dis to be
created from an existing relation and it
has the same schema as the existing
relation, then the new file will be a list
of pointers into the existing file. This
optimization technique 1s exploited in
three operations: (1) selecting tuples
from one relation and placing them in a
second relation (code 11), (2) grouping
tuples Dbased on an attribute (code 14),
and (3) selecting groups that satisfy some
Boolean condition (code 15),

requires the

In a high~level query language, many
queries involve nested select commands.
The results of the nested selects are used
to determine if a tuple from an outer
select block meets a condition and is to
be included in a new file. In some cases,

the relation resulting from an dinner
select block does not depend on the tuple
being tested 1in the outer block and
therefore, need not be re-computed with
every iteration of the outer block. OMEGA
recognizes those situations where
relations that result from inner blocks

need only be computed once.

As an example, consider the

query:

following
sSqQL

SELECT S#
FROM SP SPX
WHERE
(SELECT P#
FROM SP
WHERE S# = SPX.S#)
CONTAINS
(SELECT P#
FROM SP
WHERE S# = 'S3')
In this example, the relation
resulting from the first SELECT clause (in
the outer WHERE clause) must be computed

for each tuple being tested from the outer
SELECT., However, the second SELECT clause

SIGCSE

BULLETIN 18 No.

Vol. 4 Dec. 1986

14

is independent of the outer SELECT block
and therefore will be computed once and
used by OMEGA in each iteration from the
outer SELECT.

Conclusion

OMEGA has provided an opportunity for

computer science students to gain a
hands-on experience with an actual
database management system, Students

indicate that their learning experience
and their interest in the course was very
much increased by their ability to access

an actual database management system.

Graduate students are using OMEGA as a
starting point in several graduate
projects. These projects are
investigating new query languages and new

ideas in user dinterfaces. For example,
graduate students are involved with
writing ©pre-processors to make OMEGA
accessible from a high level language.
Others are exploiting the direct access
file structure of OMEGA to further
optimize record retrieval and a third

group is using OMEGA to explore artificial

intelligence applications to produce
"user-friendly" interfaces.
References

1. M. M. Astrahan, et.al., "System R:
Relational Approach to Database
Management," ACM Transactions on Database
Systems ,1, No. 2 (June 1976).

2. M. M, Astrahan, et.al., "System R,
A Relational Database Management System,'
IEEE Computer Society: Computer 12, No. 5
(May 1979).

3. D. D, Chamberlain and R, F. Boyce,
"SEQUEL: A Structured English Query

T

1974 ACM SIGMOD Workshops
Access and Control.

Language,'" Proc.

on Data Description,

4, D. D. Chamberlain, et.al., "SEQUEL
2: A Unified Approach to Data Definition,
Manipulation and Control," IBM J. R&D, 20,

No, 6 (November 1976).

>. €. J. Date, An Introduction to
Database Systems, 4th Ed., Vol. 1, Addison
Wesley, 1985,

6. C. J. Date, "Some Principles of

Good Language Design,'" SIGMOD Record, 14

(3), November 1984,

7. C. J, Date,
Database Language,"
November 1984,

"A Critique of the SQL
SIGMOD Record, 14 (3),

8. Jeffrey D. Ullman, Principles of
Database Systems, 2nd Ed., Comp. Sci,
Press, 1982,

