
OMEGA : A DATABASE MANAGEMENT SYSTE M
FOR ACADEMIC US E

Colleen Deegan

IB M

Gaithersburg, M D

John Atkins and Mike Henr y
Department of Statistic s

and Computer Scienc e

West Virginia Universit y
Morgantown, WV 2650 6

1 1

Abstrac t

This paper describes an implementatio n

of the relational database

	

managemen t

system,

	

OMEGA .

	

OMEGA is designed to b e
" query language independent " in order

	

t o

promote the investigation of experimenta l
query languages by graduate

	

students .
OMEGA also supports the query language SQ L

and as

	

such,

	

is used in undergraduat e

database

	

courses

	

to

	

demonstrate

	

th e
features of SQL .

Introductio n

One of the fastest growing applicatio n
areas of computer science is databases .

Industry and business more and more rel y

on databases to remain competitive . As a
consequence of the demand for databas e

management systems, software companies ar e
heavily engaged in the design of suc h
systems . These database managemen t
systems must meet the diverse needs of th e
business community and at the same time b e

accessible to the entire user

	

community ,
i .e ., be " user friendly . " It is therefor e

incumbent upon colleges and universitie s

to provide well-trained and knowledgeabl e
computer scientists

	

to both create ne w

database management systems and to becom e

database administrators . To meet thi s
challenge, college and university compute r

science curricula must include severa l
courses

	

in

	

database

	

design

	

an d

application .

Undergraduate database courses shoul d

have available sophisticated databas e

management systems which can be used t o
demonstrate

	

to

	

the

	

student

	

typica l

applications of databases . Graduat e
database courses should have systems whic h

permit the graduate student to experimen t

with new query languages and novel use r
interfaces .

This paper describes a relationa l

database management system, OMEGA, whic h
meets both of these needs and is availabl e
to the academic community at no cost .
OMEGA supports the query language SQL wit h

all of its powerful facilities, and at th e

EIGCSS
Vol . 18 No . 4 Dec . 1986

BULLETIN

same time is essentially "query languag e
independent" in that it actually execute s
very low level commands thereby allowin g
experimentation with new query language s
which can easily interface with it . SQ L
was chosen as the supported query languag e
because of its wide acceptance by the use r
community . SQL is not only the quer y
language supported by SYSTEM R, but i s
also the query language supported by IBM' s

DB2, ORACLE, and other commercial systems .
Indeed, Date [7] states that " There can b e
little doubt that the importance of

	

[SQL ]
will increase significantly over the nex t
few years . "

	

In view of

	

the

	

increasin g
importance of SQL, students i n
undergraduate database courses must hav e
an exposure to this query language .

Overview of OMEGA

OMEGA

	

is

	

a

	

relational

	

databas e
management system that

	

supports

	

ver y
powerful

	

retrieval

	

facilities

	

an d
incorporates

	

several

	

optimizatio n
features .

	

It was designed to be " query
language independent " in order to provid e
a

	

mechanism for advanced students t o
design

	

experimental

	

query

	

language s
without

	

the need for the intricate fil e

access and manipulation code tha t
constitutes the file manager component o f
a database management system .

OMEGA

	

executes

	

relatively

	

simpl e
" atoms " or quadruples which are ofte n
interrelated .

	

The format of the atoms ha s
the general form :

(code ; old file ; new file ; condition )

The atoms are placed in an array by th e
query processor and the array is the n
passed to OMEGA when OMEGA is invoked .
The array of atoms constitutes

	

the onl y
communication between the query processo r
and OMEGA .

	

Thus,

	

the

	

processor

	

i s
essentially a

	

parser which parses

	

th e
queries and

	

translates a query into a
sequence of atoms .

http://crossmark.crossref.org/dialog/?doi=10.1145%2F15003.15006&domain=pdf&date_stamp=1986-12-01


OMEGA Operation s

The heart of any database managemen t
system is the ability to select tuple s

from a relation and test such tuple s
against a Boolean expression .

	

OMEGA' s
selection facility uses a combination o f

five atoms . Since the selection proces s

often mimics a loop, two atoms that serv e
the looping process are the label ato m

(code

	

13)

	

and the branch atom (code 12) .
A tuple is selected for consideration wit h
the atom whose code is 07 .

	

This atom ha s
the forma t

	

(07 ;

	

relation

	

[(variable_name)] ; ;
tuple name )

The variable name is optional an d
corresponds to the tuple variable in SQ L

or the RANGE OF statement in QUEL . Th e
tuple name is the name by which the tupl e
is referenced in the text atom .

The tuple is tested via an atom wit h

code 11 having the format :

(11 ; tuple_name ; new_relation ; Boolea n
expression )

	

The

	

selected

	

tuple,

	

which

	

i s
identified by the tuple name,

	

is

	

tested

against the Boolean expression and if th e
Boolean result is true, is placed in th e

new_relation .

The fifth atom used in the selectio n
process is a branch on end_of_file (cod e

08) and follows a select (code 07) atom .

We shall illustrate the interplay o f

the atoms using the well-known
suppliers/parts database which appears i n

[5] .

	

The schema for this database is :

S(S11, SHAME, STATUS, CITY )

P(P11, PNAME, COLOR, WEIGHT, CITY )

SP(S11, P11, QTY )

A typical query,

	

in

	

SQL,

	

from

	

th e

suppliers/parts database might be :

SELECT SNAME

FROM S

WHERE

	

STATUS

	

<

	

20

	

OR

	

CITY =
'LONDON '

The atoms that would be executed as a
result of this command would be :

(13 ;01 ; ;)

	

/* label 01* /
(07 ;5 ; ;*AO1)

	

/* select a tuple from S ; name it *AO1 * /
(08 ;02 ; ;)

	

/* branch on EOF to label o2 * /
(11 ;*AO1 ;*TO1 ; STATUS, 20,

	

, CITY, 'LONDON' , = , OR )
/* test tuple *A01 and place it in relation *TO1 * /

(12 ;01 ; ;)

	

/* branch to label 01 * /
(13 ;02 ; ;)

	

/* branch to label 02 * /

(	 )

	

/* project and print atoms * /

Note that the comments are provided fo r
clarity and are not actually generated .

The selection atoms are usuall y
followed by a project atom (code 17) and a
print atom (code 16) .

In the previous example, the remainin g
sequence of atoms would be :

(17 ;*TO1 ;*TO2 ;SNAME) /* project SNAME from *TO1 an d
place the result in *T02 * /

(16 ;*TO2 ; ;)

	

/* print *T02 * /

	

A more complex example will illustrate

	

SELECT SNAME, P11
OMEGA ' s

	

versatility .

	

A

	

relationa l

database management system must support a

	

FROM S, SP SP X
form of Cartesian product and

	

shoul d

provide

	

for

	

the notion of a " tuple

	

WHERE P11 IS NOT I N
variable . "

	

OMEGA

	

does

	

both

	

a s

demonstrated in the following example :

	

(SELECT P11 FROM SP WHERE Sf <> SPX .S11 )

AND S .S11 = SP .S11

BIGCBE
Vol . 18 No . 4 Dec . 198 6

BULLETIN 12



The atoms that are executed as a

result of this SQL command are :

(06 ;S,SP(SPX) ;*TO1 0
/*Cartesian product of S and SP ; SPX references SP ; resul t

is relation *TO1 * /

(13 ;01 ; ;) /* label 01 * /

(07 ;*T01 ; ;*A01 )
/*select tuple from *TO1 and name it *A01 * /

(08 ;02 ; ;)

	

/* on EOF, branch to label 02 *
/* atoms generated by inner select * /
(13 ;03 ; ;) /* label 03 * /
(07 ;SP ; ;*A02) /* select tuple from SP and name it *A02 * /
(08 ;04 ; ;) /* on EOF, branch to label 04 * /
(11 ;*A02 ;*V02 ;S1,SPX .S11,

	

) /*test tuple *A02 an d
place in relation *V02 * /

(12 ;03 ; ;) /*branch to label 03 * /
(13 ;04 ; ;) /*label 04 * /

(17 ;*V02 ;*V03 ;P1i) /* project P1l from *V02 and place i n

*V03 * /
/*end of atoms from inner block ; result of inne r

SELECT is relation *V03 * /

(11 ;*A01 ;*VO4 ;P,#,*V03,IS_NOT IN,S .S1,SP .S1/ , = ,AND )
/* test tuple *A01 and place in *VO4 * /

(12 ;01 ; ;)

	

/* branch to label 01 * /
(13 ;02 ; ;) /*label 02 * /

(17,*VO4 ;*V05 ;SNAME :P//) /* project SNAME and P11 fro m
VO4 and create *V05 * /

(16 ;*V05 ; ;) /* print *VO5 * /

Most sophisticated query language s
have a " group by " facility whereby tuple s
are grouped together by common values o n

one or more fields and then groups ar e
selected and/or a built-in function i s

applied

	

to

	

teach group .

	

SQL, QUEL, an d
QBE all provide for this " group

	

by "
option .

	

OMEGA supports a group by optio n
and provides the standard six built-i n
functions :

	

SUM, MAX, MIN, AVG, COUNT, an d

SET .

	

The first

	

five

	

functions

	

ar e
self-explanatory,

	

SET is applied only t o
groups . The SET function takes the value s

from one or more attributes in a group an d
makes these values a relation so that th e
set of values from that group may b e

compared to another relation .

As an example, consider the following
SQL query :

SELECT Pd, AVG(QTY )

FROM S P

GROUP BY P11

HAVING SET(S11) =

(SELECT SP FROM SP )

The atoms generated as a result of thi s
query are :

(14 ;SP ;*G01 ;P11 )
/* group tuples in SP by P11 and place in relation *GO1 * /

(17 ;SP ;*T02 ;S11) /*project S11 from SP and place in *T02 * /

(15 ;*G01 ;*G03,SET(S11),*TO2 , = ) /* select groups from *GO 1
for which the set of Sf's equals the relation *T02 * /

(17 ;*G03 ;*T04 ;P11 :AVG(QTY) /*project the P1i value from *G0 3
and compute the average QTY value from each group * /

(16 ;*TO4 ; ;) /*print *T04 * /

OMEGA provides for all of

	

the

	

file

	

modify tuples in the file, and to delet e

	

maintenance operations that are necessary

	

tuples from the file .

	

These operation s

in a database management system .

	

These

	

are standard in any database managemen t

	

operations include the ability to create a

	

system and vary little from system t o

file, introduce new tuples

	

to

	

the

	

file,

	

system .

SIGCSE
Vol . 18 No . 4 Dec . 1986

BULLETIN 13



1 4

Optimization

The files in OMEGA are each direc t
access

	

files

	

(hash files) .

	

Although
tuples are stored

	

in the

	

files

	

in a
sequential fashion, the direct access fil e
format

	

was

	

chosen

	

to

	

facilitat e
optimization .

	

The

	

design

	

of

	

OMEGA

requires the creation of a

	

substantia l

number of intermediate,

	

temporary file s
(files with the name *Tnn, *Vnn, *Gnn) .
The overhead resulting from the creatio n

of numerous temporary files can seriousl y
degrade

	

the performance of

	

the system .
For this reason, the temporary files

	

ar e
in fact logical files whenever possible .
This means that if a new file is to b e
created from an existing relation and i t
has the same schema as the

	

existin g
relation, then the new file will be a lis t
of pointers into the existing file .

	

Thi s

optimization technique is exploited i n
three operations :

	

(1)

	

selecting

	

tuple s
from one relation and placing them in a
second relation (code

	

11),

	

(2)

	

groupin g
tuples based on an attribute (code 14) ,

and (3) selecting groups that satisfy som e
Boolean condition (code 15) .

In a high-level query language, man y
queries involve nested select commands .
The results of the nested selects are use d

to determine if a tuple from an oute r
select block meets a condition and is t o
be included in a new file .

	

In some cases ,
the

	

relation resulting from an inne r
select block does not depend on the tupl e
being

	

tested in the outer block an d
therefore, need not be re-computed wit h
every iteration of the outer block .

	

OMEG A

recognizes those situations wher e
relations that result from inner block s
need only be computed once .

As an example, consider the followin g
SQL query :

SELECT Sit

FROM SP SP X

WHERE

(SELECT P11

FROM S P

WHERE SO = SPX .SO1 )

CONTAIN S

(SELECT PO

FROM S P

WHERE SO = ' S3 ' )

In this example, the relatio n
resulting from the first SELECT clause (i n

the outer WHERE clause) must be compute d
for each tuple being tested from the oute r
SELECT . However, the second SELECT claus e

EMCEE
Vol . 18 No . 4 Dec . 1986

BULLETIN

is independent of the outer SELECT bloc k
and therefore will be computed once an d
used by OMEGA in each iteration from th e
outer SELECT .

Conclusio n

OMEGA has provided an opportunity fo r
computer science students to

	

gain

	

a
hands-on

	

experience

	

with

	

an

	

actua l
database management

	

system .

	

Student s
indicate that their learning experienc e
and their interest in the course was ver y
much increased by their ability to acces s
an actual database management system .

Graduate students are using OMEGA as a
starting

	

point

	

in

	

several

	

graduat e
projects .

	

These

	

projects

	

ar e
investigating new query languages and new
ideas in user

	

interfaces .

	

For example ,
graduate

	

students

	

are

	

involved with
writing pre-processors to

	

make

	

OMEGA
accessible from a high

	

level language .
Others are exploiting

	

the direct acces s
file structure of OMEGA to furthe r
optimize record retrieval and a thir d
group is using OMEGA to explore artificia l
intelligence

	

applications

	

to

	

produc e
" user-friendly" interfaces .

Reference s

I .

	

M . M . Astrahan, et .al ., " System R :
Relational Approach to Databas e
Management," ACM Transactions on Databas e

Systems ,1, No . 2 (June 1976) .

2. M . M . Astrahan, et .al ., " System R ,
A Relational Database Management System, "
IEEE Computer Society : Computer 12, No . 5
(May 1979) .

3. D . D . Chamberlain and R . F . Boyce ,
" SEQUEL : A Structured English Quer y
Language , " Proc . 1974 ACM SIGMOD Workshop s
on Data Description, Access and Control .

4. D . D . Chamberlain, et .al ., " SEQUEL
2 : A Unified Approach to Data Definition ,
Manipulation and Control , " IBM_ J . R&D, 20 ,
No . 6 (November 1976) .

5. C . J . Date, An Introduction t o
Database Systems, 4th Ed ., Vol . 1, Addiso n
-------- -------
Wesley, 1985 .

6. C .

	

J .

	

Date, " Some Principles o f
Good Language Design," SIGMOD Record,

	

1 4
(3), November 1984 .

------ ------

7. C . J . Date, " A Critique of the SQ L

Database Language , " SIGMOD Record, 14 (3) ,
November 1984 .

----- ------

8. Jeffrey D . Ullman, Principles o f
-----------

Database

	

Systems,

	

2nd

	

Ed .,

	

Comp .

	

Sci .
Press, 1982 .


