
The assignment of computational tasks
among processors in a distributed system

by CAMILLE C. PRICE
Southern Methodist University
Dallas, Texas

ABSTRACT

The flexibility afforded by multiprocessor systems opens the
question of how to assign computer program modules among
functionally similar processors in a distributed computer net­
work. In the model under consideration, the modules of a
program are to be assigned among processors in such a way as
to minimize interprocessor communication while taking ad­
vantage of affinities of certain modules to particular pro­
cessors. The problem is formalized as a zero-one quadratic
programming problem, and a solution is sought through an
iterative technique that performs a series of transformations
on an assignment matrix. Convergence to a locally optimum
assignment is guaranteed, and an easily testable condition is
given for which this local optimum is also a global optimum.
An illustration of this algorithm is provided, results of per­
formance experiments are reported, and suggestions are
made for further study.

INTRODUCTION

A distributed computer network is considered to be a set of
programmable processors interconnected to some extent by
communication links.14 Recent technological advances, such
as the economical fabrication of processors and the devel­
opment of broadband communication facilities, have con­
tributed to the feasibility of distributed computing systems;
and the trend toward large shared database systems promises
an increased popularity for the use of distributed networks. It
is important that cost-effective methods be developed for
these systems to control the allocation of computing resources
among the jobs introduced into the network.

Scheduling theory deals with the general problem of allo­
cating limited resources among multiple tasks when choices
exist in the allocation process.7 The policies governing the
apportionment of the resources are called scheduling rules or
scheduling algorithms. Scheduling problems have demanded a
great deal of attention since the development of digital com­
puter systems, because scheduling algorithms are needed to
assign a set of jobs to computer resources which are used in
executing or servicing the jobs.6

The nature of job scheduling in a computer system depends
on the functional similarity of the processing nodes and on the
degree of communication available between processors. If the
network consists of functionally different processors, then job
scheduling is simple since each job would be designed for, and
therefore assigned to, one particular specialized processor.

In a network of functionally similar processing nodes, it
may be possible to assign the parts of a program freely among
the processors; but in a practical sense, the communication
links in a distributed network constitute inherent bottlenecks
and therefore constrain -the assignment of computational
tasks. When high penalties are imposed for communication,
the practical solution is to minimize the amount of commu­
nication between processors by assigning related tasks to the
same processor. However, if the processors in the network
were fully connected by high capacity data links, many fea­
sible alternative assignments of computational tasks to proces­
sors would exist and should be evaluated by the job scheduler.
In such cases, interprocessor communication would no longer
be regarded as a serious constraint, but rather as a means of
improving the overall efficiency of the system. The Cm*
multimicroprocessor system23 provides an example of pre­
cisely the kind of distributed system that will be considered in
this paper. In the Cm* system, computational tasks, called
utilities, may in general be executed by any microprocessor in
the system.

The problem to be examined here is that of assigning com­
putational tasks among processors in a distributed computer
network having functionally similar nodes, but in which cer­
tain nodes have an advantage over others for particular jobs.
The assignment is to be made in such a way as to take advan­
tage of particular efficiencies of some processors for certain
jobs while minimizing the costs of communication between
jobs that are assigned to different processors.

In the next section, the problem is stated formally and
formulated as a zero-one quadratic programming problem.
The following section contains a description of an algorithm
that can be applied to this scheduling problem. Conditions are
given under which the local optimum achieved by this algo­
rithm is also a global optimum. Results of performance ex­
periments are reported. The final section contains a brief
summary of work that has been done on this problem and
gives suggestions for further study.

291

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1500412.1500453&domain=pdf&date_stamp=1981-05-04

292 National Computer Conference, 1981

BASIC ASSUMPTIONS AND
FORMULATION OF THE PROBLEM

The programs being executed within the distributed computer
system are assumed to be partitioned into functional modules
(containing executable code and/or data) which, in general,
may reside on any processor in the system. There is no paral­
lelism or multitasking of module execution within a program.
Each processor may be multiprogrammed, and divide its time
among several programs, but concurrent execution of the
modules in one program is not considered. Thus the programs
to be discussed here are serial programs, for which execution
can shift from one processor to another.

Although the processors in the distributed system under
discussion are functionally similar, they need not be identical.
In fact, certain processors may have particular efficiencies for
executing particular program modules. For example, some
processors may have high speed arithmetic capabilities, access
to a needed database, a large high-speed memory, access to
certain peripheral devices, or other facilities associated with
them that make them particularly well-suited for executing
specific program modules.

The network is considered to be a fully-connected one, i.e.,
there is a direct communication link between every pair of
processing nodes. It is also assumed that the communication
paths between all processors are similar, that is, that the cost
of sending a unit of data between any two processors is the
same.

The modules of a modular program must be assigned
among the processors in such a way as to minimize inter-
processor communication while taking advantage of affinities
of certain modules to particular processors. Therefore, there
are two kinds of costs that must be considered in the search for
a good assignment.

1. Each module has an execution cost that depends on the
processor to which it is assigned. Let eit represent the
cost of executing module i on processor /'.

2. Any two modules that communicate during program ex­
ecution incur a penalty if they are assigned to different
processors. (It is assumed that the cost of such commu­
nication is zero when the reference is made between
modules residing on the same processor.) Let the cost of
communication between program modules i and k be
denoted by c(*.

An optimal assignment is one which minimizes the sum of
the execution costs of the modules on the processors and the
intermodule reference costs incurred when communicating
modules reside on different processors.

It should be noted that the costs eti and cik must be mea­
sured in the same units of money or time. If these costs are
measured in time, then the assignment minimizes the actual
utilization of system resources.

Since the distributed program is to be executed in a serial
fashion, and therefore all execution costs and communication
costs are incurred in disjoint time intervals, the cost of the
assignment is actually the minimal completion time of the
program.

The problem can be formulated as a zero-one quadratic
programming problem as follows:

minimize
m n m m m n m

2 2 eijXij + 2 2 cik— 2 2 2 cikXijXkj
i= l y=l i=l * = i + l /'=1 j=\ k=i+\

subject to the constraints

xtj = 0, 1 for all i, j (cl)

ixu = 1 for all i (c2)

where m is the number of program modules and n is the
number of processors.

Zero-one polynomial programs can be converted to linear
programs with nonlinear secondary constraints,12 but this
problem is approached here with techniques which take ad­
vantage of the special structure of the problem.

The problem has been solved for n =2 by Stone.29 A model
is developed that can be interpreted as a commodity flow
network, and an assignment is made by applying a maximum
flow algorithm.11 Efforts to extend this method to the general
n -processor case have not been completely successful.30

For n -processor problems in which the intermodule refer­
ence pattern is constrained to be a tree, an optimal assignment
can be obtained by using a shortest path algorithm.510'31 The
graph model developed for this restricted problem has been
extended to allow an arbitrary module intercommunication
pattern, but a modified shortest path algorithm that has been
developed is guaranteed to yield an optimal assignment only
when the graph model exhibits certain identifiable structural
properties.25

Assignment algorithms, such as the ones mentioned above
and the one to be described in the following section, may be
used to find a static assignment of modules to processors, but
may also be applied repeatedly during the life of a program to
reassign modules dynamically as the program's working set
changes. (Models have been developed for special cases and
an algorithm has been given to handle dynamic reassignment
of modules.4)

THE ASSIGNMENT ALGORITHM

Solutions to scheduling problems, assignment problems,
and transportation problems have frequently been sought
through iterative techniques. Examples are the simplex
method for linear programming problems,8 the "Hungarian"
method21617 for assignment problems, and the "modified dis­
tribution" method24 for transportation problems. Such tech­
niques begin with an initial solution which is then augmented
at each step of the procedure until an optimal feasible solution
is obtained.

An iterative procedure is defined here, for the multi­
processor scheduling problem under consideration, that be­
gins with an initial feasible assignment and repeatedly reas­
signs modules to processors until no further improvement is
achievable by continuing the process. This reassignment of

The Assignment of Computational Tasks 293

modules is accomplished by performing a transformation on
the assignment matrix X.

An assignment X is an m x n matrix such that

Xtj = 0, 1 for all i, j and

2 Xtj = 1 for all i.

The element x(i = 1 if and only if module i is assigned to
processor/. The set of all assignments X is called A. The cost
of an assignment X is defined to be

m n m m m n m

c(X)= 2 2 eijXij + 2 2 c,*—2 2 2 cikXipckj
1=1 j=X 1 = 1 fc=»+l (=1 y=l /fc=i+l

A transformation is described below that maps the set of all
assignments into itself. The procedure determines whether
reassignment is advisable and, if so, performs the most advan­
tageous reassignment. The transformation T: A-*A is de­
fined as follows.

Transformation

1. For each element (i,j) in X, compute a "penalty" which
is the cost of executing module / on processor j plus all com­
munication costs for module /, given that all other modules
(other than /) are assigned as indicated in matrix X. Thus the
penalty matrix P is defined as

m

pij = eil + 2 cik (l-xkj)

as

2. For each row / in X, compute the minimum penalty 0 ,

Gi = greatest possible improvement in cost achievable in
one step on row /; that is, by reassigning module i
and leaving all other modules unchanged

= penalty for current assignment of module i minus
least penalty for any assignment of module i

n

= 2 pijXij - min \p£
/=1 l s / s n

and let t be the value of / giving this minimum. Note all
0 , ^ 0 .

3. Select the row that permits the most profitable reas­
signment by finding

max {0,}
l s /sm

and let s be the value of i giving this maximum.
4. Change the assignment matrix X by setting

and

X st 1

xsj = 0 for / £ t.

The transformation T is applied repeatedly until all 0 , = 0.
The transformation is illustrated by the following example.

Let m = 3 and n = 3. The matrices E, C, and X represent

execution costs, communication costs, and the assignment,
respectively, and are initially defined as

E =

where X is obtained by assigning each module to the pro­
cessor for which the execution cost is least (ignoring commu­
nication costs). The cost c(X) is 12. In the first iteration, the
penalty matrix P is computed as

4 2 5
1 8 8
4 6 3.

C =
0 1 2
0 0 3
0 0 0.

X =
0 1 0
1 0 0

.0 0 1

p =

'6 5 6'
5 11 9
6 9 8.

The theta values are

0 i = 5 - 5 = O, 0 2 = 5 - 5 = O, 03 = 8 - 6 = 2

and of these the maximum is 0 3 . Therefore s = 3 and t = 1 and
the third row of X is changed to (1 0 0). The cost c(X) now
is 10. In the second iteration,

P =
4 5 8'
2 11 12
.6 9 8.

The theta values are

0 i = 5 - 4 = l , 0 2 = 2 - 2 = O, 03 = 6 - 6 = 0

and 0 i = 1 is selected as the maximum. Therefore 5 = 1 and
t = 1 and the first row of X is changed to (1 0 0). The cost
c(X) is now 9. In the third iteration,

[4
1

L4

5
12
11

8]
12
8_l

p =

and all 0 , are zero:

0 ! = 4 *- 4 = o, 02 = 1 - 1 = 0, 03 = 4 - 4 = 0.

Therefore the procedure terminates and the assignment ma­
trix X is

X =

1 0 0"
1 0 0
1 0 0.

The cost c(X) = 9, which happens to be the optimum cost for
this problem.

It is important to ascertain that the iterative procedure de­
scribed above does not "cycle" indefinitely, thereby gener­
ating assignments that have been previously generated. The
following theorem states that the iterative procedure does
converge, after finitely many applications of the transforma­
tion T, to a local optimum.

294 National Computer Conference, 1981

Theorem. Let A be the set of all feasible assignments for a
particular assignment problem. Then the transformation T
has a fixed point, that is, T(X) = X for some X in A.
Proof: There are only finitely many assignment matrices X
in A (in fact, K = NM of them, where M is the number of
modules and N is the number of processors). The trans­
formation T is monotone with respect to cost, that is,

c(X)^c(T(X)) for all X.

Therefore c{Xt) 5* c(Xj) for i <j.
Let X0 be the starting feasible solution. Then

Xx = T(X0)
X2=T(Xt)

Xk=T(Xk-x)andk *£ K - 1.

It is always true that T(Xt) = X,, i { X, \ I = 0,.. . , / - 1 }.
Since the procedure continues only as long as an improvement
can be made in one step, the transformation can be applied
only finitely many times.

Optimal assignments are frequently obtained by assigning
each module to the least expensive processor and using this as
a starting feasible solution, but the following example pro­
vides a counter-example to guaranteed optimality.

Let m = 4 and n = 2. The matrices E, C, and X are initially
as follows:

6 10
8 6
8 6

l_8 10J
C =

0 10 0 0
0 0 30 0
0 0 0 10

Lo o o oj
x =

1 0
0 1
0 1

Li o

ro
0
0

Lo

1
1
1
l j

At the first iteration, 5 = 4 and t = 2, and row 4 of A' becomes
(0 1). At the second iteration, s = 1 and t = 2, and row 1 of
X becomes (0 1). At the third iteration, all 6, =0, therefore
the procedure terminates with the assignment

X =

and c(X) = 32, whereas the optimal assignment is

X =

for which c(*) = 30.
The procedure terminates because no improvement is

achievable in one step. In this example, the communication
cost c23 = 30 is so high, relative to the difference in execution
costs for modules 2 and 3, that no improvement is possible by
temporarily assigning modules 2 and 3 to separate processors.

A slight modification may be made to the iterative pro­
cedure that would guarantee convergence to a global opti-

1
1
1

Li

ol
0
0
oj

mum, but at considerable computational expense. The mod­
ification consists of the following extensions. If 0, = 0 for all
/, then the procedure continues by considering all two step
transformations, that is, all simultaneous reassignments of

two modules. This requires that for each of the (9 j possible

two-module reassignments, the penalty matrix P be com­
puted. Values of 0 are then generated, the maximum is
selected (unless all 0 are zero), and the appropriate two rows
in the assignment matrix X are adjusted. If all 0 values are
again zero, then no improvement is possible by reassigning

only two modules. The procedure then considers all (.,)

three-module reassignments, all G) four-module reas­

signments, and ultimately the simultaneous reassignment of
all M modules. Clearly, generalization of the iterative pro­
cedure approaches an exhaustive search that requires a com­
plete enumeration and evaluation of all reassignments in or­
der to achieve a guaranteed global optimum.

Recall that, in the example shown just above, the difficulty
arose because the communication costs were high relative to
the differences in execution costs. By contrast, an optimal
assignment can be achieved easily when communication costs
satisfy the following condition

2 c,*<min (%-e,/)
k all j*l

(c)

for all /. If condition (c) is satisfied then the optimal assign­
ment is that which assigns each module to the processor with
least execution time. Intuitively, under condition (c), commu­
nication costs are sufficiently small that they can be ignored
and the assignment can be made solely on the basis of exe­
cution costs (i.e., no significant communication cost penalty is
paid for distributing the program modules to the processors
best suited for them).

It is worth noting that the standard form for the objective
function to be minimized in a quadratic programming prob­
lem with continuous decision variables is

Q (x) = 2 bjXj + \ 2 £ dijXiXj

When this quadratic function has the property that its qua­
dratic part is non-negative for all x(and xh then Q{x) is a
convex function. And in cases where the objective function is
convex, a local optimum is a global optimum. In the problem
under consideration in this paper, condition (c) guarantees
that the quadratic terms in the objective function are negli­
gible and thus provides a discrete approximation to the
convexity condition in the general problem. Thus, under con­
dition (c), a local optimum produced by the iterative trans­
formation algorithm is also a global optimum.

A FORTRAN language implementation of the iterative
algorithm has been developed for performance testing. Ran­
dom test data for experimentation were systematically gener­
ated for hypothetical networks of 5,10,15, and 20 processors,
and 5, 10, 15, and 20 program modules. Nine different net­
works were generated for each problem size (m,n).

Average computation times for the algorithm are reported
in Table I. The computation time exhibited on these sample

The Assignment of Computational Tasks 295

TABLE I—Computation times

m = 5
m = 10
m = 15
m = 20

n=5

.0107

.077

.260

.587

n = 10

.023

.163

.557
1.407

n = 15

.034

.283

.883
2.114

n =20

.043

.359
1.203
2.820

M = number of program modules.
N = number of processors.
Computation times in seconds.

test cases is 0(nm3). As expected (based on the discussion
just above), the algorithm's performance varied depending on
the nature of the network. In networks having high execution
costs and relatively low communication costs, the algorithm
runs in approximately one-third the time required for net­
works having relatively high communication costs.

SUMMARY

The scheduling problem considered here has an efficient solu­
tion for n = 2. It has been shown that the problem is NP-hard
for n 2=4.30 This property has not been established for the
3-processor case.

There are nm possible assignments to be considered in this
scheduling problem and, indeed, actual computational experi­
ments using an enumerative algorithm require time that is
0(nm). An optimal search procedure described in Price26 re­
quires 0(nm) computation time in the worst case, but typi­
cally runs in polynomial time.15' 20' 22 The shortest path and
non-backtracking branch-and-bound algorithms25 and the it­
erative algorithm (see above) are of low polynomial complex­
ity but generally produce suboptimal solutions.

A variety of techniques have been applied to scheduling
problems. For this particular scheduling problem, there re­
main several interesting alternative approaches, which to date
have been explored with only limited success, but which
probably deserve further study.

Stone's two-processor network flow approach27 might be
extended by using the multiterminal cut techniques of
Gomory and Hu.13 (The problem of processor load balancing
in a two-processor system has also been studied28 and it, too,
may be extendable with multiterminal techniques.)

Spanning trees are of interest in various problems which can
be studied through graph models.9, 18 It may be possible to
devise a graph model of a modular computer program in such
a way that a minimal spanning tree can be interpreted as an
optimal assignment of modules to processors.

This scheduling problem is formulated above as a quadratic
programming problem. Perhaps algorithms, such as that of
Balas, can be tailored to solve particular problems very effi­
ciently.1' 19'32

Clustering algorithms33 might be applied to this problem to
cluster program modules having high intercommunication
costs together on the same processor.

It is clear that reasonable approaches to scheduling prob­
lems include (but are not limited to) techniques from the areas
of mathematical programming, network analysis, and graph

theory.3' 9' n-21 Future practical developments will likely con­
sist of heuristic methods and combinations of algorithms con­
tributed from diverse fields.

ACKNOWLEDGMENTS

The first part of this paper is based on sections of a doctoral
dissertation under the direction of Professor Udo W. Pooch at
Texas A&M University. The author wishes to thank him, and
Professors Don T. Phillips and A. P. Lucido, for their helpful
suggestions and constructive review of the material.

REFERENCES

1. Balas, E. An additive algorithm for solving linear programs with zero-one
variables. Oper. Res. 13, 4 (July-August 1965), 517-546.

2. Balinski, M. L., and Gomory, R. E. A primal method for the assignment
and transportation problems. Management Science 10, 3 (April 1964),
578-593.

3. Bellman, R. E. Dynamic Programming, Princeton U. Press, Princeton,
N.J., 1957.

4. Bokhari, S. H. Dual processor scheduling with dynamic reassignment.
IEEE Trans. Software Eng. SE-5, 4 (July 1979), 341-349.

5. Bokhari, S. H. Multiprocessor scheduling with shortest path algorithms.
Tech. Rep. ECE-CS-77-11, Dept. of Elec. and Computer Eng., University
of Massachusetts, Amherst, Dec, 1977.

6. Coffman, E. G., Jr. et al. Computer and Job-Shop Scheduling Theory, John
Wiley and Sons, New York, 1976.

7. Conway, R. W., Maxwell, W. L., and Miller, L. W. Theory of Scheduling,
Addison-Wesley, Reading, Mass., 1967.

8. Dantzig, G. B. Linear Programming and Extensions, Princeton U. Press,
Princeton, N.J., 1963.

9. Deo, N. Graph Theory with Applications to Engineering and Computer
Science, Prentice-Hall, Englewood Cliffs, N.J., 1974.

10. Dijkstra, E. W. A note on two problems in connexion with graphs. Numer.
Math. 1 (1959), 269-271.

11. Ford, L. R., Jr., and Fulkerson, D. R. Flows in Networks, Princeton U.
Press, Princeton, N.J., 1962.

12. Glover, F., and Woolsey, E. Converting a 0-1 polynomial programming
problem to a 0-1 linear program. Oper. Res. 22, 1 (Jan.-Feb. 1974),
180-182.

13. Gomory, R. E., and Hu, T.C. Multiterminal network flows. J. SIAM 9,
(Dec. 1961), 551-570.

14. Greene, W. H., and Pooch, U. W. A review of classification schemes for
computer communication networks. Computer 10, 11 (Nov. 1977), 12-21.

15. Hart, P. E., Nilsson, N. J., and Raphael, B. A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans, of Systems Science and
Cybernetics, SSC-4, (July 1968), 100-107.

16. Hu, T. C. Integer Programming and Network Flows. Addison-Wesley,
Reading, Mass., 1969.

17. Klein, M. A primal method for minimal cost flows with applications to the
assignment and transportation problems. Management Science 14, 3 (Nov.
1967), 205-220.

18. Kruskal, J. B. Jr. On the shortest spanning subtree of a graph and the
travelling salesman problem. Proc. Am. Math. Soc. 7, (1956), 48-50.

19. Lawler, E. L. The quadratic assignment problem. Management Science 9,
4 (July 1963), 586-599.

20. Martelli, A., and Montanari, U. Optimizing decision trees through heuris-
tically guided search. Comm. ACM 21, 12 (Dec. 1978), 1025-1039.

21. McMillan, C. Mathematical Programming, Wiley, New York, 1970.
22. Nilsson, N. J. Problem-Solving Methods in Artificial Intelligence, McGraw-

Hill, New York, 1971.
23. Ousterhout, J. K., Scelza, D. A., and Sindhu, P. S. Medusa: an experiment

in distributed operating system structure. Comm. ACM 23, 2 (February
1980), 92-105.

24. Phillips, D. T., Ravindran, A., and Solberg, J. J. Operations Research:
Principles and Practice, John Wiley and Sons, New York, 1976.

296 National Computer Conference, 1981

25. Price, C. C. A Nonlinear Multiprocessor Scheduling Problem. Ph.D. Th.,
Texas A&M University, College Station, Texas, May 1979.

26. Price, C. C. Scheduling algorithms for a distributed computer system. Uni­
versity of Texas at Dallas Technical Report No. 65, September, 1979.

27. Rao, G. S., Stone, H. S., and Hu, T. C. Assignment of tasks in a distributed
processor system with limited memory. IEEE Trans. Computers C-28, 4
(April 1979), 291-299.

28. Stone, H. S. Critical load factors in two-processor distributed systems.
IEEE Trans. Software Eng. SE-4, 3 (May 1978), 254-258.

29. Stone, H. S. Multiprocessor scheduling with the aid of network flow algo­
rithms. IEEE Trans. Software Eng. SE-3, 1 (Jan. 1977), 85-93.

30. Stone, H. S. Private communication, Jan. 1979.
31. Stone, H. S., and Bokhari, S. H. Control of distributed processes. Com­

puter 11, 7 (July 1978), 97-106.
32. Taha, H. A. A Balasian-based algorithm for zero-one polynomial pro­

gramming. Management Science 18, 6 (Feb. 1972), B328-B343.
33. Zahn, C. T. Graph-theoretical methods for detecting and describing gestalt

clusters. IEEE Trans. Comp. C-20, (Jan. 1971), 68-86.

