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ABSTRACT 

The flexibility afforded by multiprocessor systems opens the 
question of how to assign computer program modules among 
functionally similar processors in a distributed computer net­
work. In the model under consideration, the modules of a 
program are to be assigned among processors in such a way as 
to minimize interprocessor communication while taking ad­
vantage of affinities of certain modules to particular pro­
cessors. The problem is formalized as a zero-one quadratic 
programming problem, and a solution is sought through an 
iterative technique that performs a series of transformations 
on an assignment matrix. Convergence to a locally optimum 
assignment is guaranteed, and an easily testable condition is 
given for which this local optimum is also a global optimum. 
An illustration of this algorithm is provided, results of per­
formance experiments are reported, and suggestions are 
made for further study. 

INTRODUCTION 

A distributed computer network is considered to be a set of 
programmable processors interconnected to some extent by 
communication links.14 Recent technological advances, such 
as the economical fabrication of processors and the devel­
opment of broadband communication facilities, have con­
tributed to the feasibility of distributed computing systems; 
and the trend toward large shared database systems promises 
an increased popularity for the use of distributed networks. It 
is important that cost-effective methods be developed for 
these systems to control the allocation of computing resources 
among the jobs introduced into the network. 

Scheduling theory deals with the general problem of allo­
cating limited resources among multiple tasks when choices 
exist in the allocation process.7 The policies governing the 
apportionment of the resources are called scheduling rules or 
scheduling algorithms. Scheduling problems have demanded a 
great deal of attention since the development of digital com­
puter systems, because scheduling algorithms are needed to 
assign a set of jobs to computer resources which are used in 
executing or servicing the jobs.6 

The nature of job scheduling in a computer system depends 
on the functional similarity of the processing nodes and on the 
degree of communication available between processors. If the 
network consists of functionally different processors, then job 
scheduling is simple since each job would be designed for, and 
therefore assigned to, one particular specialized processor. 

In a network of functionally similar processing nodes, it 
may be possible to assign the parts of a program freely among 
the processors; but in a practical sense, the communication 
links in a distributed network constitute inherent bottlenecks 
and therefore constrain -the assignment of computational 
tasks. When high penalties are imposed for communication, 
the practical solution is to minimize the amount of commu­
nication between processors by assigning related tasks to the 
same processor. However, if the processors in the network 
were fully connected by high capacity data links, many fea­
sible alternative assignments of computational tasks to proces­
sors would exist and should be evaluated by the job scheduler. 
In such cases, interprocessor communication would no longer 
be regarded as a serious constraint, but rather as a means of 
improving the overall efficiency of the system. The Cm* 
multimicroprocessor system23 provides an example of pre­
cisely the kind of distributed system that will be considered in 
this paper. In the Cm* system, computational tasks, called 
utilities, may in general be executed by any microprocessor in 
the system. 

The problem to be examined here is that of assigning com­
putational tasks among processors in a distributed computer 
network having functionally similar nodes, but in which cer­
tain nodes have an advantage over others for particular jobs. 
The assignment is to be made in such a way as to take advan­
tage of particular efficiencies of some processors for certain 
jobs while minimizing the costs of communication between 
jobs that are assigned to different processors. 

In the next section, the problem is stated formally and 
formulated as a zero-one quadratic programming problem. 
The following section contains a description of an algorithm 
that can be applied to this scheduling problem. Conditions are 
given under which the local optimum achieved by this algo­
rithm is also a global optimum. Results of performance ex­
periments are reported. The final section contains a brief 
summary of work that has been done on this problem and 
gives suggestions for further study. 
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BASIC ASSUMPTIONS AND 
FORMULATION OF THE PROBLEM 

The programs being executed within the distributed computer 
system are assumed to be partitioned into functional modules 
(containing executable code and/or data) which, in general, 
may reside on any processor in the system. There is no paral­
lelism or multitasking of module execution within a program. 
Each processor may be multiprogrammed, and divide its time 
among several programs, but concurrent execution of the 
modules in one program is not considered. Thus the programs 
to be discussed here are serial programs, for which execution 
can shift from one processor to another. 

Although the processors in the distributed system under 
discussion are functionally similar, they need not be identical. 
In fact, certain processors may have particular efficiencies for 
executing particular program modules. For example, some 
processors may have high speed arithmetic capabilities, access 
to a needed database, a large high-speed memory, access to 
certain peripheral devices, or other facilities associated with 
them that make them particularly well-suited for executing 
specific program modules. 

The network is considered to be a fully-connected one, i.e., 
there is a direct communication link between every pair of 
processing nodes. It is also assumed that the communication 
paths between all processors are similar, that is, that the cost 
of sending a unit of data between any two processors is the 
same. 

The modules of a modular program must be assigned 
among the processors in such a way as to minimize inter-
processor communication while taking advantage of affinities 
of certain modules to particular processors. Therefore, there 
are two kinds of costs that must be considered in the search for 
a good assignment. 

1. Each module has an execution cost that depends on the 
processor to which it is assigned. Let eit represent the 
cost of executing module i on processor /'. 

2. Any two modules that communicate during program ex­
ecution incur a penalty if they are assigned to different 
processors. (It is assumed that the cost of such commu­
nication is zero when the reference is made between 
modules residing on the same processor.) Let the cost of 
communication between program modules i and k be 
denoted by c(*. 

An optimal assignment is one which minimizes the sum of 
the execution costs of the modules on the processors and the 
intermodule reference costs incurred when communicating 
modules reside on different processors. 

It should be noted that the costs eti and cik must be mea­
sured in the same units of money or time. If these costs are 
measured in time, then the assignment minimizes the actual 
utilization of system resources. 

Since the distributed program is to be executed in a serial 
fashion, and therefore all execution costs and communication 
costs are incurred in disjoint time intervals, the cost of the 
assignment is actually the minimal completion time of the 
program. 

The problem can be formulated as a zero-one quadratic 
programming problem as follows: 

minimize 
m n m m m n m 

2 2 eijXij + 2 2 cik— 2 2 2 cikXijXkj 
i= l y=l i=l * = i + l /'=1 j=\ k=i+\ 

subject to the constraints 

xtj = 0, 1 for all i, j (cl) 

ixu = 1 for all i (c2) 

where m is the number of program modules and n is the 
number of processors. 

Zero-one polynomial programs can be converted to linear 
programs with nonlinear secondary constraints,12 but this 
problem is approached here with techniques which take ad­
vantage of the special structure of the problem. 

The problem has been solved for n =2 by Stone.29 A model 
is developed that can be interpreted as a commodity flow 
network, and an assignment is made by applying a maximum 
flow algorithm.11 Efforts to extend this method to the general 
n -processor case have not been completely successful.30 

For n -processor problems in which the intermodule refer­
ence pattern is constrained to be a tree, an optimal assignment 
can be obtained by using a shortest path algorithm.510'31 The 
graph model developed for this restricted problem has been 
extended to allow an arbitrary module intercommunication 
pattern, but a modified shortest path algorithm that has been 
developed is guaranteed to yield an optimal assignment only 
when the graph model exhibits certain identifiable structural 
properties.25 

Assignment algorithms, such as the ones mentioned above 
and the one to be described in the following section, may be 
used to find a static assignment of modules to processors, but 
may also be applied repeatedly during the life of a program to 
reassign modules dynamically as the program's working set 
changes. (Models have been developed for special cases and 
an algorithm has been given to handle dynamic reassignment 
of modules.4) 

THE ASSIGNMENT ALGORITHM 

Solutions to scheduling problems, assignment problems, 
and transportation problems have frequently been sought 
through iterative techniques. Examples are the simplex 
method for linear programming problems,8 the "Hungarian" 
method21617 for assignment problems, and the "modified dis­
tribution" method24 for transportation problems. Such tech­
niques begin with an initial solution which is then augmented 
at each step of the procedure until an optimal feasible solution 
is obtained. 

An iterative procedure is defined here, for the multi­
processor scheduling problem under consideration, that be­
gins with an initial feasible assignment and repeatedly reas­
signs modules to processors until no further improvement is 
achievable by continuing the process. This reassignment of 



The Assignment of Computational Tasks 293 

modules is accomplished by performing a transformation on 
the assignment matrix X. 

An assignment X is an m x n matrix such that 

Xtj = 0, 1 for all i, j and 

2 Xtj = 1 for all i. 

The element x(i = 1 if and only if module i is assigned to 
processor/. The set of all assignments X is called A. The cost 
of an assignment X is defined to be 

m n m m m n m 

c(X)= 2 2 eijXij + 2 2 c,*—2 2 2 cikXipckj 
1=1 j=X 1 = 1 fc=»+l (=1 y=l /fc=i+l 

A transformation is described below that maps the set of all 
assignments into itself. The procedure determines whether 
reassignment is advisable and, if so, performs the most advan­
tageous reassignment. The transformation T: A-*A is de­
fined as follows. 

Transformation 

1. For each element (i,j) in X, compute a "penalty" which 
is the cost of executing module / on processor j plus all com­
munication costs for module /, given that all other modules 
(other than /) are assigned as indicated in matrix X. Thus the 
penalty matrix P is defined as 

m 

pij = eil + 2 cik (l-xkj) 

as 

2. For each row / in X, compute the minimum penalty 0 , 

Gi = greatest possible improvement in cost achievable in 
one step on row /; that is, by reassigning module i 
and leaving all other modules unchanged 

= penalty for current assignment of module i minus 
least penalty for any assignment of module i 

n 

= 2 pijXij - min \p£ 
/=1 l s / s n 

and let t be the value of / giving this minimum. Note all 
0 , ^ 0 . 

3. Select the row that permits the most profitable reas­
signment by finding 

max {0,} 
l s /sm 

and let s be the value of i giving this maximum. 
4. Change the assignment matrix X by setting 

and 

X st 1 

xsj = 0 for / £ t. 

The transformation T is applied repeatedly until all 0 , = 0. 
The transformation is illustrated by the following example. 

Let m = 3 and n = 3. The matrices E, C, and X represent 

execution costs, communication costs, and the assignment, 
respectively, and are initially defined as 

E = 

where X is obtained by assigning each module to the pro­
cessor for which the execution cost is least (ignoring commu­
nication costs). The cost c(X) is 12. In the first iteration, the 
penalty matrix P is computed as 

4 2 5 
1 8 8 
4 6 3. 

C = 
0 1 2 
0 0 3 
0 0 0. 

X = 
0 1 0 
1 0 0 

.0 0 1 

p = 

'6 5 6' 
5 11 9 
6 9 8. 

The theta values are 

0 i = 5 - 5 = O, 0 2 = 5 - 5 = O, 03 = 8 - 6 = 2 

and of these the maximum is 0 3 . Therefore s = 3 and t = 1 and 
the third row of X is changed to ( 1 0 0). The cost c(X) now 
is 10. In the second iteration, 

P = 
4 5 8' 
2 11 12 
.6 9 8. 

The theta values are 

0 i = 5 - 4 = l , 0 2 = 2 - 2 = O, 03 = 6 - 6 = 0 

and 0 i = 1 is selected as the maximum. Therefore 5 = 1 and 
t = 1 and the first row of X is changed to ( 1 0 0 ). The cost 
c(X) is now 9. In the third iteration, 

[4 
1 

L4 

5 
12 
11 

8] 
12 
8_l 

p = 

and all 0 , are zero: 

0 ! = 4 *- 4 = o, 02 = 1 - 1 = 0, 03 = 4 - 4 = 0. 

Therefore the procedure terminates and the assignment ma­
trix X is 

X = 

1 0 0" 
1 0 0 
1 0 0. 

The cost c(X) = 9, which happens to be the optimum cost for 
this problem. 

It is important to ascertain that the iterative procedure de­
scribed above does not "cycle" indefinitely, thereby gener­
ating assignments that have been previously generated. The 
following theorem states that the iterative procedure does 
converge, after finitely many applications of the transforma­
tion T, to a local optimum. 
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Theorem. Let A be the set of all feasible assignments for a 
particular assignment problem. Then the transformation T 
has a fixed point, that is, T(X) = X for some X in A. 
Proof: There are only finitely many assignment matrices X 
in A (in fact, K = NM of them, where M is the number of 
modules and N is the number of processors). The trans­
formation T is monotone with respect to cost, that is, 

c(X)^c(T(X)) for all X. 

Therefore c{Xt) 5* c(Xj) for i <j. 
Let X0 be the starting feasible solution. Then 

Xx = T(X0) 
X2=T(Xt) 

Xk=T(Xk-x)andk *£ K - 1. 

It is always true that T(Xt) = X,, i { X, \ I = 0,.. . , / - 1 }. 
Since the procedure continues only as long as an improvement 
can be made in one step, the transformation can be applied 
only finitely many times. 

Optimal assignments are frequently obtained by assigning 
each module to the least expensive processor and using this as 
a starting feasible solution, but the following example pro­
vides a counter-example to guaranteed optimality. 

Let m = 4 and n = 2. The matrices E, C, and X are initially 
as follows: 

6 10 
8 6 
8 6 

l_8 10J 
C = 

0 10 0 0 
0 0 30 0 
0 0 0 10 

Lo o o oj 
x = 

1 0 
0 1 
0 1 

Li o 

ro 
0 
0 

Lo 

1 
1 
1 
l j 

At the first iteration, 5 = 4 and t = 2, and row 4 of A' becomes 
(0 1). At the second iteration, s = 1 and t = 2, and row 1 of 
X becomes (0 1). At the third iteration, all 6, =0, therefore 
the procedure terminates with the assignment 

X = 

and c(X) = 32, whereas the optimal assignment is 

X = 

for which c(*) = 30. 
The procedure terminates because no improvement is 

achievable in one step. In this example, the communication 
cost c23 = 30 is so high, relative to the difference in execution 
costs for modules 2 and 3, that no improvement is possible by 
temporarily assigning modules 2 and 3 to separate processors. 

A slight modification may be made to the iterative pro­
cedure that would guarantee convergence to a global opti-

1 
1 
1 

Li 

ol 
0 
0 
oj 

mum, but at considerable computational expense. The mod­
ification consists of the following extensions. If 0, = 0 for all 
/, then the procedure continues by considering all two step 
transformations, that is, all simultaneous reassignments of 

two modules. This requires that for each of the ( 9 j possible 

two-module reassignments, the penalty matrix P be com­
puted. Values of 0 are then generated, the maximum is 
selected (unless all 0 are zero), and the appropriate two rows 
in the assignment matrix X are adjusted. If all 0 values are 
again zero, then no improvement is possible by reassigning 

only two modules. The procedure then considers all ( ., ) 

three-module reassignments, all G) four-module reas­

signments, and ultimately the simultaneous reassignment of 
all M modules. Clearly, generalization of the iterative pro­
cedure approaches an exhaustive search that requires a com­
plete enumeration and evaluation of all reassignments in or­
der to achieve a guaranteed global optimum. 

Recall that, in the example shown just above, the difficulty 
arose because the communication costs were high relative to 
the differences in execution costs. By contrast, an optimal 
assignment can be achieved easily when communication costs 
satisfy the following condition 

2 c,*<min (%-e,/) 
k all j*l 

(c) 

for all /. If condition (c) is satisfied then the optimal assign­
ment is that which assigns each module to the processor with 
least execution time. Intuitively, under condition (c), commu­
nication costs are sufficiently small that they can be ignored 
and the assignment can be made solely on the basis of exe­
cution costs (i.e., no significant communication cost penalty is 
paid for distributing the program modules to the processors 
best suited for them). 

It is worth noting that the standard form for the objective 
function to be minimized in a quadratic programming prob­
lem with continuous decision variables is 

Q (x) = 2 bjXj + \ 2 £ dijXiXj 

When this quadratic function has the property that its qua­
dratic part is non-negative for all x( and xh then Q{x) is a 
convex function. And in cases where the objective function is 
convex, a local optimum is a global optimum. In the problem 
under consideration in this paper, condition (c) guarantees 
that the quadratic terms in the objective function are negli­
gible and thus provides a discrete approximation to the 
convexity condition in the general problem. Thus, under con­
dition (c), a local optimum produced by the iterative trans­
formation algorithm is also a global optimum. 

A FORTRAN language implementation of the iterative 
algorithm has been developed for performance testing. Ran­
dom test data for experimentation were systematically gener­
ated for hypothetical networks of 5,10,15, and 20 processors, 
and 5, 10, 15, and 20 program modules. Nine different net­
works were generated for each problem size (m,n). 

Average computation times for the algorithm are reported 
in Table I. The computation time exhibited on these sample 
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TABLE I—Computation times 

m = 5 
m = 10 
m = 15 
m = 20 

n=5 

.0107 

.077 

.260 

.587 

n = 10 

.023 

.163 

.557 
1.407 

n = 15 

.034 

.283 

.883 
2.114 

n =20 

.043 

.359 
1.203 
2.820 

M = number of program modules. 
N = number of processors. 
Computation times in seconds. 

test cases is 0(nm3). As expected (based on the discussion 
just above), the algorithm's performance varied depending on 
the nature of the network. In networks having high execution 
costs and relatively low communication costs, the algorithm 
runs in approximately one-third the time required for net­
works having relatively high communication costs. 

SUMMARY 

The scheduling problem considered here has an efficient solu­
tion for n = 2. It has been shown that the problem is NP-hard 
for n 2=4.30 This property has not been established for the 
3-processor case. 

There are nm possible assignments to be considered in this 
scheduling problem and, indeed, actual computational experi­
ments using an enumerative algorithm require time that is 
0(nm). An optimal search procedure described in Price26 re­
quires 0(nm) computation time in the worst case, but typi­
cally runs in polynomial time.15' 20' 22 The shortest path and 
non-backtracking branch-and-bound algorithms25 and the it­
erative algorithm (see above) are of low polynomial complex­
ity but generally produce suboptimal solutions. 

A variety of techniques have been applied to scheduling 
problems. For this particular scheduling problem, there re­
main several interesting alternative approaches, which to date 
have been explored with only limited success, but which 
probably deserve further study. 

Stone's two-processor network flow approach27 might be 
extended by using the multiterminal cut techniques of 
Gomory and Hu.13 (The problem of processor load balancing 
in a two-processor system has also been studied28 and it, too, 
may be extendable with multiterminal techniques.) 

Spanning trees are of interest in various problems which can 
be studied through graph models.9, 18 It may be possible to 
devise a graph model of a modular computer program in such 
a way that a minimal spanning tree can be interpreted as an 
optimal assignment of modules to processors. 

This scheduling problem is formulated above as a quadratic 
programming problem. Perhaps algorithms, such as that of 
Balas, can be tailored to solve particular problems very effi­
ciently.1' 19'32 

Clustering algorithms33 might be applied to this problem to 
cluster program modules having high intercommunication 
costs together on the same processor. 

It is clear that reasonable approaches to scheduling prob­
lems include (but are not limited to) techniques from the areas 
of mathematical programming, network analysis, and graph 

theory.3' 9' n-21 Future practical developments will likely con­
sist of heuristic methods and combinations of algorithms con­
tributed from diverse fields. 
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