
A state- and time-dependent error occurrence-rate
software reliability model with imperfect debugging

by J. G. SHANTHIKUMAR
Syracuse University
Syracuse, New York

ABSTRACT THE MODEL

In this paper, assuming a state- and time-dependent software
failure rate and imperfect debuggings, we develop a simple
binomial model for software error occurrences. Maximum
likelihood estimates for the required parameters of this model
are also derived. It is established that the Jelinski-Moranda,
imperfect debugging and non-homogeneous Poisson process
models are all special cases of ours.

INTRODUCTION

In recent years, several statistical appraoches have been devel­
oped to measure and predict software quality. One of such
approaches is to postulate a stochastic model, use its results
and the data on error occurrences to estimate the model
parameters and forecast the future behavior using the model
and the estimated parameters.1"22 In most of these models it is
assumed that a software error once detected is perfectly de­
bugged. Recently, in an article6 in the proceedings of the
National Computer Conference, Goel and Okumoto, how­
ever, considered a model in which imperfect debugging is
allowed. Assuming a fixed number of initial error content and
a constant failure rate for each error, they formulated a Semi-
Markovian model for the software error occurrences. Using
this model they derived expressions for software performance
measures. Since these expressions seem complex, they also
suggest some approximation.

In this paper, assuming a state- and time-dependent soft­
ware failure rate and imperfect debuggings, we develop a
simple binomial model for software error occurrences. We
establish that the Semi-Markovian model developed by Goel
and Okumoto6 is a special case of our binomial model. It is
also noted that the Jelinski-Moranda7 and the Non-homo­
geneous Poisson Process model5 are also special cases of our
model.

The basic model and the assumptions are presented in sec­
tion 2. System performance measures are derived in section 3.
The parameter estimation is discussed in section 4 and the
expressions for performance prediction are developed in sec­
tion 5. The generality of our model is demonstrated in the
appendix.

The software reliability model developed here is based on the
following assumptions.

1. The initial error content at the beginning of the observa­
tion phase, that is at time zero, is an unknown constant
N.

2. The probability that an error will cause a software failure
in a small time interval (t, t + At) is equal to

<|>(t)At + 0(At), where lim (-7-7)= 0. These proba-
At—>0 V A t /

bilities for all errors are independent of one another and
dependent of lime. That is, if there are r -errors in the
software at time t, the probability of a software failure in
(t,t + At) is r$(t)At + 0(At). Note that this assump­
tion, when restricted <$>(t) to be a constant X, is equiv­
alent to assumption (2) of Goel and Okumoto,6 page
769.

3. When an error occurs, it is corrected with probability p.
That is, with probability q(q = 1 -p), the error is im­
perfectly debugged (not eliminated).

4. No new errors are created, at most one error is removed
at a correction time, and the time taken to correct an
error is negligible.

With this set of assumptions we will now formulate our
model. We shall do this by considering each error separately.
Let us consider an error (out of those N) present in the
software at time zero. Let T be the time by which this error
is removed from the software. Suppose F(-) is the cumulative
distribution function of T. That is Vr{T^t}-=F(t), t>0.
Since

Pr{T>t+At} =

Pr{r> t and error is not removed during (t,t + At)},

we get

F(t + At) = F(t){l -p4>(t)At} + 0(AO, (1)
where f(t) = 1 - F(t) = Pr{T> t} and p$(t)At + 0(A0 is
the probability that the error is removed during (t, t + At).

311

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1500412.1500455&domain=pdf&date_stamp=1981-05-04

312 National Computer Conference, 1981

Now dividing (1) by At and taking the limit as Af—»0, we get

jfF(t)}=-pHt)Ht),t>0. (2)

Since Pr{ r>0}=l , we have the boundary condition
F(0) = 1. Solving (2) with this boundary condition we get

F(0 = exp{-pG(0} , '>0 , (3)

where

G(t) = £Hx)dx,t^0. (4)

Note that lim F(t) need not be zero since the limit lim G(t)
/-»oo r-»oo

need not be infinity. This means that an error in the software
may never be removed. This would then represent the situ­
ations in which an error is resident in a part of the code which
is never processed or very scarcely processed. In almost all the
software reliability models previously considered, it is as­
sumed that all errors would be eventually eliminated. Our
results thus represent a more realistic situation. From (3) we
also have

F(t) = l-exp{-pG(t)},t>0. (5)

Now let X be the time at which this error causes a software
failure for the first time. Then, if H(t) = ?r{X^t}, t>0,
using an analysis similar to the above we can show that

H(t) = l-H(t) = exp{-G(t)},t>0 (6)

and

H{t) = 1 - exp{ - G(t)}, t > 0, (7)

where G(t) is as defined in (4).
With these results (3), (5), and (7), we have binomial distri­

butions for the number of errors remaining at time t, for the
number of errors perfectly debugged by time t, and for the
number_of distinct errors detected by time t with parameter
sets (N,F(t)), (N, Fit)), and (N,H(0), respectively.

PERFORMANCE MEASURES

In this section, using results (3)-(7), we will derive expressions
for software performance measures that are of interest to us.

Distribution of Number of Remaining Errors

Let PN.nit) be the probability that there are n errors remain­
ing at time t. From (3) we know that the probability that an
error is not perfectly debugged by_ time t is F{t). Then PN,n{t)
is binomial with parameters (N,F(t)). That is,

PNAO = (^)(F(t)nF(t)r-H,n = 0 ,1 , . . . ,N, (8)

with mean

E(R(t)) = NF(t), (9)

where R(t) is the number of errors remaining at time t. A
software model satisfying conditions given in section 2 with
<|>(0 = X a constant, should be identical to the imperfect de­
bugging model of Goel and Okumoto.6 Even though the re­
sults for PAUO (0 given there seems different from (8), we
establish their equivalence in the appendix.

Distribution of Time to a Completely Debugged System

Let T* be the time taken to completely debug the system.
Define GN,0(t) = Pr{T' ^ t}, t>0. That is, by time T, the
number of errors remaining should be zero. Then GN,0(t)
should be equal to P/v,o(0- So, from (8) and (3), we get

GN,0(t) = (1 - exp{ - pG (t)})N, t > 0. (10)

It should be noted that, for reasons discussed earlier, GN,0(-)
may be defective. That is, GN,o(°°) need not be 1.

Distribution of Time to n Remaining Errors

Let T'n be the time by which the number of remaining errors
is n and define GN,„{t) = Pr{T*=Sf}, f>0. Noting that the
events {R(t) = r, r<n}= {T'„^t} we have

GsM = 2 P*r(0 = 2 (Nr)(F{t))r (Fit))"-,
r=0 r=0

n = 0 , l , . . . , N . (11)

Distribution of Time to Next Software Failure

Suppose there are r software errors remaining just after a
recent software failure, say, at time t. Let Y(r,t) be the time
to next software failure. Then Y{r,t) is the minimum of the r
failure times, each of the r remaining errors. The uncon­
ditional cumulative distribution function of these failure times
is given by equation (7). Now suppose Xh i = 1,2... ,r, are
the failure times corresponding to these r errors. Then know­
ing that Xi >t, i = 1,2,... ,r, we have from (7) and the laws
of conditional probabilities,

Pr{*, > t + x% >t} = exp{ - (G it + x) - G (t))}, x > 0,

/ = l ,2, . . . , r . (12)

Then

Vr{Yir,t)>x}=Pr{Xi>t+x,i = l,2,... ,r\Xt>t,
i=l ,2, . . .,/-}=exp{-r(G(H-*)-G(0)}, *>0- (13)

Clearly (13) is the reliability function of the software when
there are r errors remaining at time t. Now to use all these
expressions, we need the model parameters N, p, and the

A Software Reliability Model 313

function <j>(0- We shall attend to this problem in the next
section.

PARAMETER ESTIMATION

Suppose we have observed the software failure times caused
by each of n errors for the first time. That is, we have the
observations of the random variables Xh i = 1,2,.. .,n (Xt as
defined earlier). Let 5„ i = 1,2,.. .,n, be the values of Xiy

i = 1,2,.. .,n in the increasing order. Then from (13) it is
easily verified that,

Pr{Sk^t + x\Sk-1 = t}
= exp{-(N-k+ l)(G(t + x)-G(t))},x>0. (14)

Now suppose that/($i, s2,.. .,s„) is the joint probability densi­
ty function of SiS2,.. .,S„. Then from (14), the properties of
the model, and the laws of conditional probabilities, we can
show that

f(Sl,s2,...,sn) = Il{(N-k+ l)4>(sk)exp{-(N-k + l)
k=l

(G(sk) - G(sfe-0)}}, 5, >0, i = 1,2,...,«, (15)

where s0 = 0. Then from (15), for a given sequence Si,s2,.. .,s„
of n software failure times caused by n distinct errors for the
first time, the log likelihood function L is given by

L = i ln(N- k + 1) + i /n<J>(̂)

-i(N-k + l)(G(Sk) - G(5fc_,)). (16)

To use (16) for parameter estimation, we need specific form
of <}>(?). We choose

<K0 = oib exp(- bt) , t s* 0 (17)

following Goel and Okumoto.5 Note that several other forms
may also be chosen for <j>(f). From (4) and (17), we have

G(0 = ot(l-exp(-Z>0), t&0. (18)

Using (16) and (18), it can be shown that (see Shanthi-
kumar20) the maximum likelihood estimates N, a, and BoiN,
a, and b, respectively, are the solution of

k N-\+i -a(i ~cxp("bsn))=° (i9)

- - i(N-k + l)(exp(- bsk-i) - exp(- bsk)) = 0 (20)

Ot k=l

and

n " "
T - 2 sk- 2 (N - k + l)a(5*exp(- bsk)
b k=i k=i

-sk-iexp(-bsk-i)) = 0. (21)

These equations (19), (20), and (21) can be numerically
solved to obtain these estimates. Next we will look at an
estimate for p. Let u,• = 1,2,... ,n, be the number of time
error i (out of the n distinct errors observed) caused software
failures during (0,f/). Then ut>\, i = 1,2,... ,n. Since the
number of times an error causing software failures with imper­
fect debuggings can be represented by a Geometric random
variable (see Shanthikumar18) with mean lip, we can approx­
imate p by

PERFORMANCE PREDICTION

Now that we have the estimates N, d, S, and p, we can use
equations (8)—(13) for performance prediction. We should
note, however, that we have made some observations to esti­
mate the parameters and therefore equations (8)—(13) have to
be modified. This is because the current state of the software
system has changed. This aspect has been ignored in an earlier
paper.6 Suppose we have observed n distinct errors during the
time period (0,*/). Also, suppose we have observed a total of
/ software failures during this time period. Then / s n since
some or all of these n errors may have been imperfectly de­
bugged. Hence if R, is the number of remaining errors at time
ti, Ri is neither equal to N - nnor equal to N -1. In fact, the
exact value of Rt is unknown because of imperfect debug­
gings. If R/ = r, then equations (8)-(13) may be used when the
time origin shifted to U and N replaced by r. Specifically, from
(8),

PrAt\Rl = r) = (l)(F'(t))k(F\t)y-k,

k = 0,1,..K,r,t>t,, (23)

is the probability that there will be k errors remaining at time
t given that there are r errors remaining at time //. In this
equation (see (4), (6), and (7))

F\t) = 1 - exp{ -pG\t)},t > t,

F\t) = \-F\t)

and

G'(t) = ^(x)dx = G(t) - G(t,), t>t,

due to the shift in time origin.
Similarly, from (10),

Gr,0(t\R, = r) = (1 - exp{ -^(G^))}) ' , T > t, (24)

from (11),

GrMRi -r)=!k (r)(F\tMF\t)y-t,

fc=0,l,...,r, t>t, (25)

314 National Computer Conference, 1981

and from (13), the reliability function

Pr{Y(r,t,) >x} = exp{ - r(G(t, +x)- G(t,)}, x>0. (26)

So, in order to use the above equations, we need an estimate
for the number of errors remaining at time tt. As mentioned
earlier, the exact value of/?, is unknown and therefore we may
develop a probability distribution for it.

Let z, be the last time an error i,i = 1,2,... ,n, caused a
software failure before time tt. That is, this error did not
reappear during (z,, tt). If the error is imperfectly debugged,
the probability that it will not show up during (z,, tt) is from
(7), equal to exp{-(G(f,)-G(z,))}, i = l ,2 , . . . ,n . This
probability, when the error is perfectly debugged, is 1. Noting
that the probability of perfect debugging is/?, and using Bayes
rule, we get

Pi =P/\P + (1 "P)exp{ - (G(t,) - G(z,))}}, / = 1,2,... ,n,

where 0, is the probability that an error / (one of the n distinct
errors) detected is perfectly debugged given that this error did
not reappear during (z,-,f/). Then

PT{R, = N -n+r} = 2 II, 8, II (1 - Bi),
AtMr i*A' itA

/ •=0 , l , . . . ,n , (27)

where Mr is the set of all possible subsets of {1,2,...,«} with
cardinality r, and A' is the complement of A. That is,
A' = {1,2,... ,n} - A. It can be verified, after some algebra,
that

E(R,) = N-ify&f. (28)

Now either f can be used as an estimate for the number of
remaining errors or use (27) along with (23)-(26) to predict
software performance. That is, from (23) and (27),

PR,,*(0= 2 Pr{/?/=r}Fr,*(r|/?/=r>, k=N-n,... ,N, (29)
r=k

from (24) and (27),

GRlfi(t)= 2 Pr{fl/=r}Gr,o(f|/?/=r), t>t,, (30)
r=N—n

from (25) and (27),

GK,,*(0= 2 Pr{/?/=r}Gr,*(f|/?/=r), k=N-n,... ,N,(31)
r=k

and the reliability function from (26) and (27) is

Pr{Y(R,,t,)>x}= 2 Pr{i?,=r}Pr{F(r,^)>^}. (32)
r=N—n

Note that the above expression for the reliability function
corrects an error in equations (23), (24), and (25) of Goel and
Okumoto (1979)6 (see Shanthikumar,17 page 71). Since evalu­
ation of equation (27) is of combinatorial nature, a simple
binomial approximation is proposed based on E(Rt)=f. It is

Pr{^=Ar-«+r}^(^)p"-Xl-pr , r=0, l , . . . ,« , (33)

- 1 " — where S = - 2 B, so that E(Rt)=N-nQ=f is preserved. Now
n i = i

equations (23)-(26), (29)-(32), and (33) can be used for per­
formance prediction.

CONCLUSION

In this paper, assuming a state- and time-dependent software
failure rate and imperfect debuggings, we developed a simple
binomial model for software error occurrences. Maximum
likelihood estimates for the required perameters of this model
are also derived. For this we use <\>(t)=ab exp(-bt), t>0 for
the time-dependent failure rate function. In the appendix it is
established that the imperfect debugging model of Goel and
Okumoto6 is a special case of this model (specifically when
<J>(f)=\ is a constant. Then, obviously, when <f>(0=^ a n ^ the
probability p of perfect debugging is equal to one, we will get
the results for the Jelinski-Moranda model.7 It can also be
shown (see Shanthikumar20) that when p = l, N-+°°, ot-»0,
and Na-+a<<x>, the above model reduces to the non-
homogeneous Poisson process model discussed by Schneide-
wind16 and Goel and Okumoto.5 Because of this generality of
this model, it is expected that this model will prove to be
versatile.

APPENDIX

In this appendix we will systematically transfer Goel and
Okumoto's results6 to match a special case of our results. The
special case considered here is <f>(f)=k, f—0. Then G(t)=\t,
t>0 and F(t)=exp(-\pt), t>0.

Distribution of Time to a Completely Debugged
Software System

The distribution Giv,o(t) of time to a completely debugged
system is given by equation (12) in Goel and Okumoto's "A
Markovian Model for Reliability and Other Performance
Measures of Software Systems.6 It is

G„,0(0= 2 CNJ(l-e-JpKt), *>0 (Al)
/ ' - i

where

Csj-tyi-iy-1 (A2)

Substituting (A2) in (Al), we get

GN4t)=^-(f)(-iy+(f)(-e-pxy
= (l - e _ p T , (A3)

is obtained using the combinatorial identity

2(*V=(i+/r
/=o\;/

A Software Reliability Model 315

Note that (A3) agrees with (10) when G(t)=\t.

Distribution of Time to a Specified Number of
Remaining Errors

The distribution GN<no (t) of time to n0 number of remaining
errors is given by equation (14) of "A Markovian Model." It
is

N-no
GN,no(t)= 2 BN,j,no{l-e^no+J)pXt}, f>0 (A4)

7 = 1

where

BN^=
no\JKN-no-j)\ (~irlniTj (A 5 >

Rewriting (A5) we get

r =i \ r+n 0 A j-r / v '

= 'T (N)(.N~!1)(-iy+"-"° (A6)
n=„0+i\n/\j-n+n0/ ' '

Now substituting (A6) in (A4) and interchanging the order of
summations, we get

G„,no(t)= 2 V (^)(NJn){(-l)lH-e-n'e-nn

= 1 - 2 (**) e ~npK' (1-e ->>xt)N~n

= 2 (^ (e - p K ,) n { \ - e - " ") " -» (AT)

Note that (A7) agrees with (11), when F(t)=exp (—\pt).

Distribution of Number of Remaining Errors

The distribution of P^,«0 (0 °f no remaining errors at time
t is given by equation (17) of "A Markovian Model." It is

PN.no (0 = GN,no(t) - G„,„o'-l (0 (A8)

Substituting (A7) in (A8) we get

tThis is obtained using the combinatorial identity (1.5) in page 1 of Gould,
H.W., Combinatorial Identities, Morgantown Printing and Binding Co.,
(1972).

P»,n0 (t) = {n)(e-pXt)no (1 - e " T ^ (A9)

a binomial distribution. Equation (A9) agrees with equation

(8), F (0 = exp(- Apr)-

REFERENCES

1. Angus, J.E., R.E. Schafer, and A. Sukert, "Software Reliability Model
Validation," Proc. of Annual Reliability and Maintainability Symposium
(1980), pp. 191-193.

2. Basin, S.L., Estimation of Software Error Rate Via Capture-Recapture Sam­
pling, Science Applications, Inc., Palo Alto, California (1974).

3. Endres, A., "An Analysis of Errors and Their Causes in System Pro­
grams," Proc. of the 1975 International Conference on Reliable Software
(1975), pp. 327-336.

4. Forman, E.H. and N.D. Singpurwalla, "An Empirical Stopping Rule for
Debugging and Testing Computer Software," J. of American Statistical
Association, Vol. 72 (1977), pp. 750-757.

5. Goel, A.L. and K. Okumoto, "Time-Dependent Error-Detection Rate
Model for Software Reliability and Other Performance Measures," IEEE
Transactions on Reliability, Vol. 28 (1979), pp. 206-211.

6. Goel, A.L. and K. Okumoto, "A Markovian Model for Reliability and
Other Performance Measures of Software Systems," Proc. of the National
Computer Conference (1979), pp. 769-774.

7. Jelinski, Z. and P. Moranda, "Software Reliability Research," Statistical
Computer Performance Evaluation, W. Freiberger (Ed.), Academic Press
(1972), pp. 465-484.

8. Littlewood, B. and J.L. Verrall, "A Bayesian Reliability Growth Model for
Computer Software, Applied Statistics, Vol. 22, (1973), pp. 332-246.

9. Littlewood, B., "A Reliability Model for Systems With Markov Structure,"
Applied Statistics, Vol. 24 (1975), pp. 172-177.

10. Miyamoto, I., "Software Reliability in On-Line Real Time Environment,"
Proc. of the 1975 International Conference on Reliable Software (1975), pp.
194-203.

11. Moranda, P., "Prediction of Software Reliability During Debugging,"
Proc. of the Annual Reliability and Maintainability Symposium (1975), pp.
327-332.

12. Moranda, P., "Error Detection Models for Application During Program
Development," Proc. of the Nineteenth Annual Technical Symposium—
Pathways of System Integrity (1980), pp. 75-78.

13. Musa, J.D. "A Theory of Software Reliability and Its Application," IEEE
Transactions on Software Engineering (1975), pp. 312-327.

14. Schick, G.J. and R.W. Wolverton, "Assessment of Software Reliability,"
Proc. Operations Research, Physica-Verlag, Wurzburg-Wien (1973), pp.
395-422.

15. Schick, G.J. and R.W. Wolverton, "An Analysis of Competing Software
Reliability Models," IEEE Transactions on Software Engineering (1978),
pp. 104-120.

16. Schneidewind, N.J., "Analysis of Error Process in Computer Software,"
Proc. of the 1975 International Conference on Reliable Software (1975), pp.
337-346.

17. Shanthikumar, J.G., "Software Performance Prediction Using a State-
Department Error Occurrence-Rate Model," Proc. of the Nineteenth An­
nual Technical Symposium—Pathways to System Integrity (1980), pp. 67-72.

18. Shanthikumar, J.G., "A Binomial Model for Software Performance Predic­
tion," Proc. of the Eighteenth Annual Allerton Conference on Commu­
nication, Control, and Computing, (1980), to appeatv

19. Shanthikumar, J.G. and S. Tufekci, "Optimal Software Release Time Us­
ing Generalized Decision Trees," Proc. of the Fourteenth Annual Hawaii
International Conference on System Sciences (1981), to appear.

20. Shanthikumar, J.G., "A General Software Reliability Model for Per­
formance Prediction," Technical Report, Dept. of Ind. Eng. & Opns. Res.,
Syracuse University (1980), p. 18.

21. Shooman, M.L., "Software Reliability: Measurement and Models," Proc.
of the Annual Reliability and Maintainability Symposium (1975), pp.
485-491.

22. Trivedi, A.K. and M.L. Shooman, "A Many-State Markov Model for the
Estimation and Prediction of Computer Software Performance Parame­
ters," Proc. of the 1975 International Conference on Reliable Software
(1975), pp. 208-220.

http://PN.no

