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ABSTRACT THE MODEL 

In this paper, assuming a state- and time-dependent software 
failure rate and imperfect debuggings, we develop a simple 
binomial model for software error occurrences. Maximum 
likelihood estimates for the required parameters of this model 
are also derived. It is established that the Jelinski-Moranda, 
imperfect debugging and non-homogeneous Poisson process 
models are all special cases of ours. 

INTRODUCTION 

In recent years, several statistical appraoches have been devel­
oped to measure and predict software quality. One of such 
approaches is to postulate a stochastic model, use its results 
and the data on error occurrences to estimate the model 
parameters and forecast the future behavior using the model 
and the estimated parameters.1"22 In most of these models it is 
assumed that a software error once detected is perfectly de­
bugged. Recently, in an article6 in the proceedings of the 
National Computer Conference, Goel and Okumoto, how­
ever, considered a model in which imperfect debugging is 
allowed. Assuming a fixed number of initial error content and 
a constant failure rate for each error, they formulated a Semi-
Markovian model for the software error occurrences. Using 
this model they derived expressions for software performance 
measures. Since these expressions seem complex, they also 
suggest some approximation. 

In this paper, assuming a state- and time-dependent soft­
ware failure rate and imperfect debuggings, we develop a 
simple binomial model for software error occurrences. We 
establish that the Semi-Markovian model developed by Goel 
and Okumoto6 is a special case of our binomial model. It is 
also noted that the Jelinski-Moranda7 and the Non-homo­
geneous Poisson Process model5 are also special cases of our 
model. 

The basic model and the assumptions are presented in sec­
tion 2. System performance measures are derived in section 3. 
The parameter estimation is discussed in section 4 and the 
expressions for performance prediction are developed in sec­
tion 5. The generality of our model is demonstrated in the 
appendix. 

The software reliability model developed here is based on the 
following assumptions. 

1. The initial error content at the beginning of the observa­
tion phase, that is at time zero, is an unknown constant 
N. 

2. The probability that an error will cause a software failure 
in a small time interval (t, t + At) is equal to 

<|>(t)At + 0(At), where lim (-7-7)= 0. These proba-
At—>0 V A t / 

bilities for all errors are independent of one another and 
dependent of lime. That is, if there are r -errors in the 
software at time t, the probability of a software failure in 
(t,t + At) is r$(t)At + 0(At). Note that this assump­
tion, when restricted <$>(t) to be a constant X, is equiv­
alent to assumption (2) of Goel and Okumoto,6 page 
769. 

3. When an error occurs, it is corrected with probability p. 
That is, with probability q(q = 1 -p), the error is im­
perfectly debugged (not eliminated). 

4. No new errors are created, at most one error is removed 
at a correction time, and the time taken to correct an 
error is negligible. 

With this set of assumptions we will now formulate our 
model. We shall do this by considering each error separately. 
Let us consider an error (out of those N) present in the 
software at time zero. Let T be the time by which this error 
is removed from the software. Suppose F(-) is the cumulative 
distribution function of T. That is Vr{T^t}-=F(t), t>0. 
Since 

Pr{T>t+At} = 

Pr{r> t and error is not removed during (t,t + At)}, 

we get 

F(t + At) = F(t){l -p4>(t)At} + 0(AO, (1) 
where f(t) = 1 - F(t) = Pr{T> t} and p$(t)At + 0(A0 is 
the probability that the error is removed during (t, t + At). 
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Now dividing (1) by At and taking the limit as Af—»0, we get 

jfF(t)}=-pHt)Ht),t>0. (2) 

Since Pr{ r>0}=l , we have the boundary condition 
F(0) = 1. Solving (2) with this boundary condition we get 

F(0 = exp{-pG(0} , '>0 , (3) 

where 

G(t) = £Hx)dx,t^0. (4) 

Note that lim F(t) need not be zero since the limit lim G(t) 
/-»oo r-»oo 

need not be infinity. This means that an error in the software 
may never be removed. This would then represent the situ­
ations in which an error is resident in a part of the code which 
is never processed or very scarcely processed. In almost all the 
software reliability models previously considered, it is as­
sumed that all errors would be eventually eliminated. Our 
results thus represent a more realistic situation. From (3) we 
also have 

F(t) = l-exp{-pG(t)},t>0. (5) 

Now let X be the time at which this error causes a software 
failure for the first time. Then, if H(t) = ?r{X^t}, t>0, 
using an analysis similar to the above we can show that 

H(t) = l-H(t) = exp{-G(t)},t>0 (6) 

and 

H{t) = 1 - exp{ - G(t)}, t > 0, (7) 

where G(t) is as defined in (4). 
With these results (3), (5), and (7), we have binomial distri­

butions for the number of errors remaining at time t, for the 
number of errors perfectly debugged by time t, and for the 
number_of distinct errors detected by time t with parameter 
sets (N,F(t)), (N, Fit)), and (N,H(0), respectively. 

PERFORMANCE MEASURES 

In this section, using results (3)-(7), we will derive expressions 
for software performance measures that are of interest to us. 

Distribution of Number of Remaining Errors 

Let PN.nit) be the probability that there are n errors remain­
ing at time t. From (3) we know that the probability that an 
error is not perfectly debugged by_ time t is F{t). Then PN,n{t) 
is binomial with parameters (N,F(t)). That is, 

PNAO = (^)(F(t)nF(t)r-H,n = 0 ,1 , . . . ,N, (8) 

with mean 

E(R(t)) = NF(t), (9) 

where R(t) is the number of errors remaining at time t. A 
software model satisfying conditions given in section 2 with 
<|>(0 = X a constant, should be identical to the imperfect de­
bugging model of Goel and Okumoto.6 Even though the re­
sults for PAUO (0 given there seems different from (8), we 
establish their equivalence in the appendix. 

Distribution of Time to a Completely Debugged System 

Let T* be the time taken to completely debug the system. 
Define GN,0(t) = Pr{T' ^ t}, t>0. That is, by time T, the 
number of errors remaining should be zero. Then GN,0(t) 
should be equal to P/v,o(0- So, from (8) and (3), we get 

GN,0(t) = (1 - exp{ - pG (t)})N, t > 0. (10) 

It should be noted that, for reasons discussed earlier, GN,0(-) 
may be defective. That is, GN,o(°°) need not be 1. 

Distribution of Time to n Remaining Errors 

Let T'n be the time by which the number of remaining errors 
is n and define GN,„{t) = Pr{T*=Sf}, f>0. Noting that the 
events {R(t) = r, r<n}= {T'„^t} we have 

GsM = 2 P*r(0 = 2 (Nr)(F{t))r (Fit))"-, 
r=0 r=0 

n = 0 , l , . . . , N . (11) 

Distribution of Time to Next Software Failure 

Suppose there are r software errors remaining just after a 
recent software failure, say, at time t. Let Y(r,t) be the time 
to next software failure. Then Y{r,t) is the minimum of the r 
failure times, each of the r remaining errors. The uncon­
ditional cumulative distribution function of these failure times 
is given by equation (7). Now suppose Xh i = 1,2... ,r, are 
the failure times corresponding to these r errors. Then know­
ing that Xi >t, i = 1,2,... ,r, we have from (7) and the laws 
of conditional probabilities, 

Pr{*, > t + x% >t} = exp{ - (G it + x) - G (t))}, x > 0, 

/ = l ,2, . . . , r . (12) 

Then 

Vr{Yir,t)>x}=Pr{Xi>t+x,i = l,2,... ,r\Xt>t, 
i=l ,2, . . .,/-}=exp{-r(G(H-*)-G(0)}, *>0- (13) 

Clearly (13) is the reliability function of the software when 
there are r errors remaining at time t. Now to use all these 
expressions, we need the model parameters N, p, and the 
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function <j>(0- We shall attend to this problem in the next 
section. 

PARAMETER ESTIMATION 

Suppose we have observed the software failure times caused 
by each of n errors for the first time. That is, we have the 
observations of the random variables Xh i = 1,2,.. .,n (Xt as 
defined earlier). Let 5„ i = 1,2,.. .,n, be the values of Xiy 

i = 1,2,.. .,n in the increasing order. Then from (13) it is 
easily verified that, 

Pr{Sk^t + x\Sk-1 = t} 
= exp{-(N-k+ l)(G(t + x)-G(t))},x>0. (14) 

Now suppose that/($i, s2,.. .,s„) is the joint probability densi­
ty function of SiS2,.. .,S„. Then from (14), the properties of 
the model, and the laws of conditional probabilities, we can 
show that 

f(Sl,s2,...,sn) = Il{(N-k+ l)4>(sk)exp{-(N-k + l) 
k=l 

(G(sk) - G(sfe-0)}}, 5, >0, i = 1,2,...,«, (15) 

where s0 = 0. Then from (15), for a given sequence Si,s2,.. .,s„ 
of n software failure times caused by n distinct errors for the 
first time, the log likelihood function L is given by 

L = i ln(N- k + 1) + i /n<J>(̂ ) 

-i(N-k + l)(G(Sk) - G(5fc_,)). (16) 

To use (16) for parameter estimation, we need specific form 
of <}>(?). We choose 

<K0 = oib exp( - bt) , t s* 0 (17) 

following Goel and Okumoto.5 Note that several other forms 
may also be chosen for <j>(f). From (4) and (17), we have 

G(0 = ot(l-exp(-Z>0), t&0. (18) 

Using (16) and (18), it can be shown that (see Shanthi-
kumar20) the maximum likelihood estimates N, a, and BoiN, 
a, and b, respectively, are the solution of 

k N-\+i -a(i ~cxp("bsn))=° (i9) 

- - i(N-k + l)(exp( - bsk-i) - exp( - bsk)) = 0 (20) 

Ot k=l 

and 

n " " 
T - 2 sk- 2 (N - k + l)a(5*exp( - bsk) 
b k=i k=i 

-sk-iexp(-bsk-i)) = 0. (21) 

These equations (19), (20), and (21) can be numerically 
solved to obtain these estimates. Next we will look at an 
estimate for p. Let u,• = 1,2,... ,n, be the number of time 
error i (out of the n distinct errors observed) caused software 
failures during (0,f/). Then ut>\, i = 1,2,... ,n. Since the 
number of times an error causing software failures with imper­
fect debuggings can be represented by a Geometric random 
variable (see Shanthikumar18) with mean lip, we can approx­
imate p by 

PERFORMANCE PREDICTION 

Now that we have the estimates N, d, S, and p, we can use 
equations (8)—(13) for performance prediction. We should 
note, however, that we have made some observations to esti­
mate the parameters and therefore equations (8)—(13) have to 
be modified. This is because the current state of the software 
system has changed. This aspect has been ignored in an earlier 
paper.6 Suppose we have observed n distinct errors during the 
time period (0,*/). Also, suppose we have observed a total of 
/ software failures during this time period. Then / s n since 
some or all of these n errors may have been imperfectly de­
bugged. Hence if R, is the number of remaining errors at time 
ti, Ri is neither equal to N - nnor equal to N -1. In fact, the 
exact value of Rt is unknown because of imperfect debug­
gings. If R/ = r, then equations (8)-(13) may be used when the 
time origin shifted to U and N replaced by r. Specifically, from 
(8), 

PrAt\Rl = r) = (l)(F'(t))k(F\t)y-k, 

k = 0,1,..K,r,t>t,, (23) 

is the probability that there will be k errors remaining at time 
t given that there are r errors remaining at time //. In this 
equation (see (4), (6), and (7)) 

F\t) = 1 - exp{ -pG\t)},t > t, 

F\t) = \-F\t) 

and 

G'(t) = ^(x)dx = G(t) - G(t,), t>t, 

due to the shift in time origin. 
Similarly, from (10), 

Gr,0(t\R, = r) = (1 - exp{ -^(G^))}) ' , T > t, (24) 

from (11), 

GrMRi -r)=!k (r)(F\tMF\t)y-t, 

fc=0,l,...,r, t>t, (25) 
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and from (13), the reliability function 

Pr{Y(r,t,) >x} = exp{ - r(G(t, +x)- G(t,)}, x>0. (26) 

So, in order to use the above equations, we need an estimate 
for the number of errors remaining at time tt. As mentioned 
earlier, the exact value of/?, is unknown and therefore we may 
develop a probability distribution for it. 

Let z, be the last time an error i,i = 1,2,... ,n, caused a 
software failure before time tt. That is, this error did not 
reappear during (z,, tt). If the error is imperfectly debugged, 
the probability that it will not show up during (z,, tt) is from 
(7), equal to exp{-(G(f,)-G(z,))}, i = l ,2 , . . . ,n . This 
probability, when the error is perfectly debugged, is 1. Noting 
that the probability of perfect debugging is/?, and using Bayes 
rule, we get 

Pi =P/\P + (1 "P)exp{ - (G(t,) - G(z,))}}, / = 1,2,... ,n, 

where 0, is the probability that an error / (one of the n distinct 
errors) detected is perfectly debugged given that this error did 
not reappear during (z,-,f/). Then 

PT{R, = N -n+r} = 2 II, 8, II (1 - Bi), 
AtMr i*A' itA 

/ •=0 , l , . . . ,n , (27) 

where Mr is the set of all possible subsets of {1,2,...,«} with 
cardinality r, and A' is the complement of A. That is, 
A' = {1,2,... ,n} - A. It can be verified, after some algebra, 
that 

E(R,) = N-ify&f. (28) 

Now either f can be used as an estimate for the number of 
remaining errors or use (27) along with (23)-(26) to predict 
software performance. That is, from (23) and (27), 

PR,,*(0= 2 Pr{/?/=r}Fr,*(r|/?/=r>, k=N-n,... ,N, (29) 
r=k 

from (24) and (27), 

GRlfi(t)= 2 Pr{fl/=r}Gr,o(f|/?/=r), t>t,, (30) 
r=N—n 

from (25) and (27), 

GK,,*(0= 2 Pr{/?/=r}Gr,*(f|/?/=r), k=N-n,... ,N,(31) 
r=k 

and the reliability function from (26) and (27) is 

Pr{Y(R,,t,)>x}= 2 Pr{i?,=r}Pr{F(r,^)>^}. (32) 
r=N—n 

Note that the above expression for the reliability function 
corrects an error in equations (23), (24), and (25) of Goel and 
Okumoto (1979)6 (see Shanthikumar,17 page 71). Since evalu­
ation of equation (27) is of combinatorial nature, a simple 
binomial approximation is proposed based on E(Rt)=f. It is 

Pr{^=Ar-«+r}^(^)p"-Xl-pr , r=0, l , . . . ,« , (33) 

- 1 " — where S = - 2 B, so that E(Rt)=N-nQ=f is preserved. Now 
n i = i 

equations (23)-(26), (29)-(32), and (33) can be used for per­
formance prediction. 

CONCLUSION 

In this paper, assuming a state- and time-dependent software 
failure rate and imperfect debuggings, we developed a simple 
binomial model for software error occurrences. Maximum 
likelihood estimates for the required perameters of this model 
are also derived. For this we use <\>(t)=ab exp(-bt), t>0 for 
the time-dependent failure rate function. In the appendix it is 
established that the imperfect debugging model of Goel and 
Okumoto6 is a special case of this model (specifically when 
<J>(f)=\ is a constant. Then, obviously, when <f>(0=^ a n ^ the 
probability p of perfect debugging is equal to one, we will get 
the results for the Jelinski-Moranda model.7 It can also be 
shown (see Shanthikumar20) that when p = l, N-+°°, ot-»0, 
and Na-+a<<x>, the above model reduces to the non-
homogeneous Poisson process model discussed by Schneide-
wind16 and Goel and Okumoto.5 Because of this generality of 
this model, it is expected that this model will prove to be 
versatile. 

APPENDIX 

In this appendix we will systematically transfer Goel and 
Okumoto's results6 to match a special case of our results. The 
special case considered here is <f>(f)=k, f—0. Then G(t)=\t, 
t>0 and F(t)=exp(-\pt), t>0. 

Distribution of Time to a Completely Debugged 
Software System 

The distribution Giv,o(t) of time to a completely debugged 
system is given by equation (12) in Goel and Okumoto's "A 
Markovian Model for Reliability and Other Performance 
Measures of Software Systems.6 It is 

G„,0(0= 2 CNJ(l-e-JpKt), *>0 (Al) 
/ ' - i 

where 

Csj-tyi-iy-1 (A2) 

Substituting (A2) in (Al), we get 

GN4t)=^-(f)(-iy+(f)(-e-pxy 
= ( l - e _ p T , (A3) 

is obtained using the combinatorial identity 

2(*V=(i+/r 
/=o\;/ 
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Note that (A3) agrees with (10) when G(t)=\t. 

Distribution of Time to a Specified Number of 
Remaining Errors 

The distribution GN<no (t) of time to n0 number of remaining 
errors is given by equation (14) of "A Markovian Model." It 
is 

N-no 
GN,no(t)= 2 BN,j,no{l-e^no+J)pXt}, f>0 (A4) 

7 = 1 

where 

BN^=
no\JKN-no-j)\ (~irlniTj ( A 5 > 

Rewriting (A5) we get 

r =i \ r+n 0 A j-r / v ' 

= 'T (N)(.N~!1 )(-iy+"-"° (A6) 
n=„0+i\n/\j-n+n0/ ' ' 

Now substituting (A6) in (A4) and interchanging the order of 
summations, we get 

G„,no(t)= 2 V (^)(NJn){(-l)lH-e-n'e-nn 

= 1 - 2 (**) e ~npK' (1-e ->>xt)N~n 

= 2 (^ ( e - p K , ) n { \ - e - " " ) " -» (AT) 

Note that (A7) agrees with (11), when F(t)=exp (—\pt). 

Distribution of Number of Remaining Errors 

The distribution of P^,«0 ( 0 °f no remaining errors at time 
t is given by equation (17) of "A Markovian Model." It is 

PN.no ( 0 = GN,no(t) - G„,„o'-l ( 0 (A8) 

Substituting (A7) in (A8) we get 

tThis is obtained using the combinatorial identity (1.5) in page 1 of Gould, 
H.W., Combinatorial Identities, Morgantown Printing and Binding Co., 
(1972). 

P»,n0 (t) = {n)(e-pXt)no ( 1 - e " T ^ (A9) 

a binomial distribution. Equation (A9) agrees with equation 

(8), F ( 0 = exp( - Apr)-
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