
GRASS3, a language for interactive graphics

by NOLA DONATO

Wizard Software
Chicago, Illinois

ABSTRACT

With the advance of technology, graphics devices are be
coming more powerful and less expensive, making interactive
graphics increasingly popular as a method of man-machine
communication. Often nonprogrammers play a principal role
in the design and implementation of graphics applications.
Interactive graphics requires a high level of feedback both
with the user and with the hardware. For these reasons, con
ventional programming languages are not well suited for such
applications.

This paper describes GRASS3, an interpretive language
designed as a base for interactive graphics systems. The work
derives from the author's thesis at the University of Illinois at
Chicago Circle (UICC)1 and similar work done by the author
for the Bally Manufacturing Corp.2 Design rationale for the
language is given, followed by an overview including examples
and a description of a specific real-time graphics system based
on GRASS3.

DESIGN PHILOSOPHY

The GRASS3 language (GRASS3 stands for GRAphics Sym
biosis System version 3) was designed as a base language for
development of interactive graphics systems. Although
GRASS3 bears very little resemblance to its predecessor,
GRASS2,3 much of the interactivity and simplicity which
made old GRASS so powerful have been preserved in
GRASS3. The language also borrows heavily from C and
SNOBOL4,5 for language design and internal structure.

One of the most serious drawbacks of conventional pro
gramming languages in the graphics environment is the diffi
culty of tailoring them to a particular device. In most of the
higher level languages, subroutines are the only feasible way
to add new features. Consequently, it is almost impossible to
achieve the communication between hardware and software
needed to support a real-time application. Even the recent
efforts at graphics standardization such as the Core System
are aimed primarily at static devices such as plotters.

So far, the standard way of solving this problem has been to
design a special purpose language revolving around a particu
lar device or hardware system. This approach was taken by the
designers of SMALLTALK (which depends heavily on the

Interim Dynabook6). GRASS2, a language used by artists at
UICC,3 revolves around the Vector General refresh CRT.

GRASS3 is designed to interface easily with specialized
hardware and software. Depending on what devices it must
talk to, GRASS3 may require a set of special commands,
device-dependent variables or even new datatypes. A refresh
Cathode Ray Tube, for example, needs a "picture" datatype.
Creation and manipulation of display lists require a special set
of functions. Device variables are also needed if the system
has dials or joysticks.

The GRASS3 language is designed to make such internal
rearrangements simple and straightforward. To a large extent
the language is table driven. Because of this, it is not difficult
to add commands, datatypes, or even new operators. One can
define new conversions rules or redefine old ones. Many exist
ing features (such as floating point support, interactive de
bugging, etc.) can be eliminated simply by recompiling the
source. Almost all of the system commands can be made to
dynamically swap in and out when needed. (One can also do
this with user functions). Thus, GRASS3 can be easily config
ured to meet user specifications.

Another important feature of GRASS3 is that it is inter
active. Almost anything allowed in a program may also be
typed directly on the terminal. A user may "try out" a state
ment, display a picture or inspect her variables all without
having to write a program.

This kind of interaction is necessary for interactive graph
ics. The feedback provided by such a system speeds up pro
gram development and the evolution of a graphics applica
tion. One should not have to go through^ the whole cycle of
updating a source file, compiling, loading, initializing and
then setting up the proper environment in order to determine
the implications of a trivial change.

Interactivity is also essential when a human must be in the
loop to supply decisions about how the animation is to pro
ceed. Much of computer graphics is visual—-tUeTnachine can
not predict whether one will be excited or bored by a particu
lar effect and it is not capable of making artistic judgements.
Conversational graphics systems are structured to permit just
this sort of thing. Thomas Standish comes to the same conclu
sion in his paper on computer animation.7

Recent trends in home computing show that interactive
systems are better for beginning programmers. Most commer
cially available home computers use some derivative of BA-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1500412.1500512&domain=pdf&date_stamp=1981-05-04

666 National Computer Conference, 1981

SIC.8 Even experimental home computers, such as the Inter
im Dynabook, rely heavily on interactive feedback.6

Interactivity can help overcome the qualities of computer
languages that are unnatural to the novice user. The immedi
ate response available in an interactive system can surmount
barriers that make a system difficult to program. For instance,
both LISP and APL910 are cryptic languages, yet they are very
popular in interactive environments. LOGO, a derivative of
LISP designed especially for naive programmers, was used as
the base language for a graphics system developed by Abel-
son.1112

The GRASS3 language is high level, but easy to learn and
understand as well. Novices do not have to become super
programmers to try out their ideas and experiment with the
system. But as they gain experience they are able to expand
their use of the more general features. GRASS3 can be useful
to the naive user with minimal learning and, as she demands
more powerful capabilities, they can be easily absorbed in
small increments. This is important because problems in com
puter graphics are often tackled by nonprogrammers like edu
cators and engineers. The designers of GLIDE, a language
developed for CAD applications, discuss this in their book.13

If the graphics language is easy to learn and use, small
projects can be done without hiring a professional pro
grammer. For large projects, a readable language can allow a
greater level of understanding and communication between
designers and programmers. By reducing the gap between
these two classes, systems can be tailored closely to the re
quirements of individual designers.

Much of learning involves making generalizations upon
what one already knows. In learning a new programming
language, one will often look at examples already known to
work and modify them to suit a new purpose. If the semantics
of a language are consistent (that is, operators in expressions
always behave the same way, expressions are allowed when
ever constants of the same type can be used, etc.) the learning
process will be faster because the user's generalizations will be
correct more often.

Consider, for example, the calculation of a subscript in
FORTRAN. There are explicit rules governing the form such
an expression may take, which may be found in any FOR
TRAN manual. Yet many FORTRAN programs are full of
statements such as

K = I - 5
B = ARRAY(K)

when it is perfectly legal to combine the two (B -
ARRAY(I - 5)). One may argue that, since the restrictions
on subscripts are documented and consistent, cases like those
above are programming errors and not limitations in the
FORTRAN language. But constructions such as the above are
rarely seen in C programs. Because there are no restrictions
at all on subscripts in C, it does not occur to programmers to
worry about whether a particular expression is permitted or
not. Similar views are expressed by Weinberg in his book on
the psychology of computer programming.14

In addition to being interactive, a graphics language must
do a certain amount of housekeeping for the user. Most spe
cial purpose languages have a set of high level, nonprocedural

primitives that free the user from the burden of managing
details and allow her to concentrate on the real problem.
ORACLE,15 a relational database system, can do very com
plex queries in one or two statements." SIMULA,16 an
ALGOL17 derivative designed for simulation, supports so
phisticated multi-tasking capabilities. This "behind-the-
scenes" management is especially important in graphics
where data must be displayed as well as generated.

Part of system housekeeping includes maintaining data
types. High-level datatypes such as strings, arrays, pictures,
and list structures can be very useful for managing and or
ganizing information. Consider the task of comparing two
strings, something done often in programming. The C lan
guage does not have a string datatype.4 A string is considered
as a collection of characters. The following C program will
return TRUE if the two given strings are the same:

index = 0;
while (string 1 [index] = = string2[index])

{if(stringl[index] = =END) return(TRUE);
index = index +1;}

return(FALSE);

GRASS3 allows the user to directly compare strings. Since
strings are datatypes, the routine can be reduced to a single
statement.

The same idea can be applied to computer graphics. A
graphics programmer is often faced with displaying a series of
pictures consecutively on the screen. If she can manipulate a
picture as a single entity and group it with other pictures in an
array or list she can trivially solve this problem. But if she
must first create her own mechanism for dealing with pictures
as whole objects, the simple display problem becomes a time-
consuming programming task.

Another job the system can take over is memory manage
ment. All languages do this to some degree. Many, like FOR
TRAN and BASIC, have only static allocation. A program
cannot reclaim memory used by arrays for other purposes (not
even for different arrays). Others, like PL/1 and C, have prim
itives that will parcel out chunks of a dynamic memory area
and reclaim them again. The programmer is responsible for
maintaining the integrity of this area. Finally, there are lan
guages like ALGOL and SNOBOL4 that manage all memory
automatically. The user thinks only in terms of the logical
datatypes. To delete a list of items in PL/1, a subroutine is
needed:

PTR = LIST;
WHILE PTR ! = NULL;

DO
TEMP = PTR - > LINK;
FREE PTR;
PTR = TEMP;
END;

LIST = NULL;
RETURN;

In GRASS3 a single statement suffices:

list = null;

GRASS3, a Language for Interactive Graphics 667

There are other housekeeping burdens the system assumes.
Conversions between datatypes are done automatically when
ever possible. The system provides simple mechanisms to in
put datatypes from the terminal or disk. User functions can be
easily designed to accept arguments if supplied and prompt
for them if omitted. Such things allow a programmer to de
scribe her problem in terms which are closer to her logical
conception of it.

GRASS3 is extensible and allows the user to program her
own commands and configure environments easily and quick
ly. She can create independent subroutines and pass informa
tion between them. A logically clear method of passing pa
rameters and returning values permits her to make extensions
to the system. Local variables ensure that these extensions
will be independent of one another.

User-extensible datatypes like structures and arrays help
the user build complex constructions from simpler ones. Con
sider the implementation of an animation system. An artist
typically creates a number of separate frames and displays
them in a fixed order. The individual animation sequence
determines how many frames there are and how long each one
is displayed. If the programmer can associate a display time
and duration with each frame and then group the frames
together in a list, implementing a simple animation system
becomes much easier.

String manipulation facilities also help the user configure
environments. String manipulation is especially important for
communication with the user on a terminal. If capabilities
exist in the language to facilitate parsing, a programmer can
develop a tailored sub-language whose syntax need not be a
derivative of the syntax of the base system.

GRASS3 also has many easy-to-use debugging aids. De
bugging tools include the ability to set breakpoints, examine
variables, patch code, and trace a program's flow. Clear and
plentiful error messages are part of this, too. Most pro
grammers, especially novices, spend the majority of their time
debugging. GRASS3 debugging features make programming
less painful and can significantly decrease the time spent de
veloping an application.

LANGUAGE OVERVIEW

The main way of communicating with GRASS3 is to type to
it on the terminal. You can ask it to print information, create
and run programs, or read files off the disk. Many statements
are commands requesting the system to do something. For
example, to print something on the terminal, you can type

print "The print command prints"
print "things on the terminal."
print 1,2,3

Other statements ask GRASS3 to evaluate an expression and
perhaps save its value.

a = 2 + 3

And, of course, GRASS3 can evaluate expressions and use
their results with a command.

print "The sum of 2 and 3 is",2 + 3
print "The value of a is",a
print "The average of 1 thru 5 is",(l + 2 + 3 + 4 + 5)/5

Expressions need not involve only numbers. There are
several other datatypes which can also be used in expressions.

integer
float
string
array
node
picture
process

16 bit integers
32 bit floating point
variable length strings
TV -dimensional arrays
programmer-defined datatypes
device dependent
program which is scheduled

Most of the operators (like " + " and " - ") operate on num
bers. A few, like "$" (concatenation) or "@" (indirection),
need one of the other datatypes to operate on. In general,
GRASS3 will attempt to convert whatever it is given to the
type it wants.

print 1 + 2, T + 2, '1 + 2'

The statement above prints "3 3 1 + 2" on the terminal. In the
first case, 1 and 2 are added and the result (integer 3) is
converted to a string and printed. The second case requires
the string '1 ' to be converted to integer 1 before the addition.
The last case is already a string and is printed as is.

Most of the commands need their arguments to be of a
certain type, too. For example, the print command will only
print strings. Since numbers (integer and floating) can be
converted to strings, it can print numbers or the results of
expressions involving numbers, too. But the print command
cannot print arrays, nodes or pictures.

To do complicated things you have to write a program.
Programs are really the same as strings. To create a program,
you just define a string containing the commands GRASS3
must execute. To run it, simply type its name.

hello = [print "howdy"]
hello

The example above creates a program called hello with a
single print command in it. When executed (by the second
statement above) "howdy" is printed on the terminal. There
are four sets of string delimiters—single quotes, double
quotes, square brackets and curly brackets. The quotes
(" and ') may not be nested. The brackets ([] and {}) may be
nested so long as they are paired.

You pass arguments to programs the same way you do to
system commands. A program gets its arguments by using the
input command.

max = [;return the maximum of 2 arguments
input int,A,B
if A > B , return A
return B]

In the example above, the input command fetches the next
two arguments to the program, converts them both to type
integer and stores them in the variables A and B. The return

668 National Computer Conference, 1981

command returns a single value (A or B) depending on their
relative magnitudes.

The prompt command can be used in conjunction with
input to provide the program with a means of prompting for
arguments which were not supplied.

max = [;return the maximum of 2 arguments
prompt "enter first value"
input int,A
prompt "enter second value"
input int,B
return A * (A > B) + B * (A < = B)]

The alternate version of max above will prompt the user for
any argument that is not supplied. She may then enter it on
the terminal and the program will proceed. Note that the
relational operators (< > < = > = = = !=) can be used
in expressions with other operators. Any line starting with a
semicolon is considered a comment and ignored.

There are two types of names in GRASS3—dynamic and
fixed. Fixed names are one or two characters long and may
only have one kind of datatype associated with them. For
example, fixed names a,b,.. .,z can only have integer values.
Fixed names fa,fb,...,fz can only be floating point. De
pending on your system there may be names dO,dl,. . .for dials
and jx,jy,jz for joysticks as well.

Dynamic names can be up to seven characters long and can
be assigned any kind of data. No declarations are needed in
GRASS3. One simply assigns a value or expression to a name
as needed. When a new value is assigned, the old value is
deleted.

Dynamic names that begin with a lower case letter are
known throughout the system to all programs. Those that
begin with an upper case letter are local. If a local name is
used in a program, it is deleted when that program exits. This
allows programs to use the same names without confusion.

Transfer of control in GRASS3 can be done with the goto
command and labels, or by the more elegant structured con
structs like while and do. The following program prints the
values of an array.

prompt "Which array"
input array,ARRAY
1= - 1
S = size(ARRAY)
while + + I < S , print I,ARRAY(I)

Statements may also be grouped within brackets, as illustrated
in the following loop, which prints the types of its arguments.

dofprompt "enter argument"
input value,ARG
if ARG= = ",break
TYPE = type(ARG)
if TYPE = = "array" ,TYPE = $" of " $ type(ARG(0))
print "Type is",TYPE

]

Some explanation is in order here. The do command is like
while except that the test (if any) is done at the end of the
loop. Using value in the input command allows any type of

argument to be fetched. The type command returns a string
giving the type of its argument. Note that array arguments are
further inspected as to the type of their elements. When a null
argument is gotten, break is used to exit the current loop.

For beginning programmers, GRASS3 has some nice fea
tures to make programming easier (and more enjoyable).
First, there are interactive helps. If a user forgets the syntax
or arguments of a command, she simply types help followed
by the command name and GRASS3 responds with a descrip
tion of the command and examples of how to use it. You don't
have to look in the manual if you forget what a command does
or how to call it.

Second comes interactive debugging. When GRASS3 finds
something wrong, (it is requested, say, to do something it
can't do or the system runs out of some resource), an error
message is printed on the terminal. If this error occurred
inside a program, GRASS3 puts that program into debug
mode. When in debug mode, the normal "*" prompt is re
placed by " # " to let the user know she can issue debugging
commands. With the debugger, the user can set breakpoints,
single step, trace program execution, and even make simple
patches. The edit command (which invokes the GRASS3 text
editor) can also be used in debug mode. In addition to debug
directives, the user can still issue any other GRASS3 com
mands, too. If one is not absolutely sure a program is correct,
the debug command can be used to place the program in
debug mode before an error actually occurs.

GRASS3 can be configured for small systems where memo
ry is tight using the automatic swap feature. Some of the
GRASS3 commands are not resident—they live on the disk.
When a nonresident command is requested, GRASS3 will
automatically read it off the disk and then delete it when it has
finished execution. The user can request some of her own
programs to automatically swap off the disk, too. The keep
command allows a nonresident module to remain in memory
after it has finished execution. Keep can speed up programs
where a swapping command is used repeatedly or in a loop.

One of the most powerful features of the GRASS3 language
is that the user can run two or more independent programs at
the same time. For example, suppose we have already written
a program called walk, which makes a little person walk
across the screen. It accepts arguments telling it where to start
the person and which way she is to walk. On most systems the
program would have to be completely rewritten if you wanted
to have two people walking at the same time. In GRASS3 you
would use the schedule command as follows:

sched walk,100,10,left
sched walk,10,10,right

The walk program can be scheduled twice with different argu
ments to show two people walking. GRASS3 will execute one
line from the first scheduled program, one line from the next,
etc. to give the illusion that all scheduled programs are run
ning at the same time.

THE VISION II INTERFACE

Although the GRASS3 language definition does not include
graphics primitives, the system is designed to make the addi-

GRASS3, a Language for Interactive Graphics 669

tion of new commands and datatypes as easy as possible. The
VISION II raster graphics system18 is the most recent device
to be interfaced to GRASS3. The screen is a 256 x 256 array
of pixels, directly addressable by their X, Y coordinates. Com
mands exist in GRASS3 to draw lines, boxes, and points,
display text, save areas of the screen on the disk or in memory
and display them again, etc. A picture datatype and utilities to
create and manipulate pictures are also part of the system.

Suppose we have some function describing a particular se
quence of X,Y coordinates. It could be algorithmic and coded
as a program or it could describe some inputs from the outside
world (joysticks, perhaps). Let us assume the GRASS3 vari
ables x and y are being updated (in real time) according to
this function.

If we have a previously created picture, CAR, and we want
it to move around on the screen according to the path speci
fied by x and y we would code

sched [plot CAR,x,y,erase
repeat]

This would schedule a program to continuously move CAR as
directed by the variables x and y. Using this method, any
number of pictures may be moved simultaneously on the
screen.

CONCLUSIONS

Experiments with VISION II and other systems have shown
GRASS3 to be very powerful in putting together complex
graphics applications quickly. (The VISION II picture editor
described by Rocchetti18 was implemented by the author in a
single evening). The language has proven to be easy to learn
by a variety of nonprogrammers (several of them children). A
subset of GRASS3, called ZGRASS, was used by Bally in
their FUN 'N BRAINS home computer system.2 About half
of the programs used to demonstrate the above unit were
written by nonprogrammers (advertising executives) over a
period of several weeks. The other half were written by the
developers within the span of a few days. Had the same appli
cations been implemented the conventional way (in assembly
language), the combined effort would have exceeded many
man-months.

Isolation of operating system interface code made it trivial
to port GRASS3 from UNIX19 to the DEC operating systems.
This was particularly desirable, since at the time GRASS3 was
developed UNIX had no real-time primitives. An experienced
assembly language programmer coded and debugged the RT-
11 operating system interface in under a week. It was running
under RSX-11M several days after that. Note that the above
times represent only coding of language features (like file I/O,
panic traps, etc.). The author does not mean to imply that
device- or hardware-dependent applications can be ported to
a new operating system nontrivially. (It would be impossible,

for example, to fully support a refresh CRT under UNIX
without making operating system modifications).

When GRASS3 was born (1976), the only implementation
language that spanned all PDP-11 operating systems was
MACRO-11 (PDP-11 assembler). Since then, the C language
has grown in popularity and has been implemented on many
different machines and operating systems. A portable version
of GRASS3 (coded in C) is currently being written. The new
version will have more powerful string manipulation prim
itives and enhanced multitasking capabilities (similar to those
in the ADA language20).We hope that these efforts will also
yield a GRASS3 compiler, which will produce C or some sort
of portable macroassembler source.

Another feature in the works is a picture compiler, which
will compile a subset of GRASS3 into a form that can be
loaded and executed by the VISION II graphics processor.
Thus, picture programs could be created and debugged inter
actively with GRASS3 and finally executed by one or more
VISION II processors.

REFERENCES

1. Donato, Nola, "GRASS3—A Base System For Interactive Graphics,"
Masters Thesis. University of Illinois, 1978.

2. DeFanti, T. A.; Jay Fenton; and Nola Donato, "Basic Zgrass—A Sophis
ticated Graphics Language for the Bally Home Library Computer," Com
puter Graphics, Vol. 12, No. 3 (August 1978), pp. 33-37.

3. DeFanti, T. A. Dissertation. Ohio State University, 1973.
4. Ritchie, D. M. C Reference Manual. Bell Telephone Laboratories, Murray

Hill, 1974.
5. Griswold, R. E.; J. F. Poage; and I. P. Polonsky. The SNOBOL4 Pro

gramming Language. Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1968.
6. Kay, Alan and Adele Goldberg. SMALLTALK-72 Instruction Manual.

Xerox Corporation, March 1976.
7. Standish, Thomas A., "Remarks on Interactive Computer Mediated Ani

mation," Proceedings of the Ninth Annual UAIDE Meeting, 1970.
8. Kemeny, John G. and Thomas E. Kurtz. BASIC Programming. New York:

John Wiley & Sons, Inc., 1971.
9. Howard, Forrest William. LISP Programmer's Manual. HRSTS Science

Center, September 1975.
10. Freeman, Peter. Software Systems Principles. Chicago: Science Research

Associates, Inc. 1975.
11. Abelson, Hal.; Nat Goodman; and Lee Rudolph. Logo Manual. Massa

chusetts Institute of Technology, 1974.
12. Goldstein, Iran, and others. LLOGO: An Implementation of LOGO in

LISP. Massachusetts Institute of Technology, June 1974.
13. Eastman, Charles and Max Henrion. "GLIDE: A Language for Design

Information Systems," Computer Graphics. Vol. 11, No. 2, Summer 1977.
14. Weinberg, Gerald M. The Psychology of Computer Programming. New

York: Van Nostrand Reinhold Company, 1971.
15. Preger, R.L. "ORACLE User's Guide." Relational Software Inc., Menlo

Park, California, 1980.
16. Birtwistle, G.M., et al. SIMULA begin. Auerbach Publishing Co., 1973.
17. Tanenbaum, A. S., "A Tutorial on ALGOL 68," ACM Computing Surveys.

Vol. 8, No. 2, June 1976.
18. Rocchetti, R. J., "VISION II—A Small Scale Expandable Graphics Sys

tem," Masters Thesis. University of Illinois, 1978.
19. Ritchie, D. M. and K. Thompson, "The UNIX Time-Sharing System," The

Bell System Technical Journal. Vol. 57, No. 6, July-August 1978.
20. Ichbiah, J. D. et al., "Rationale for the Design of the ADA Programming

Language," SIGPLAN Notices. Vol. 14, No. 6, June 1979.

