
Definition of database transactions by the casual user
by FRED J. MARYANSKI* and C. STEVEN ROUSH**
Computer Science Department
Kansas State University
Manhattan, Kansas

INTRODUCTION

Database management systems have been in general use
for more than a decade. However, only recently have ad
vances in technology and reduction in cost made such sys
tems feasible for the small enterprise. Experience with da
tabase systems over the years indicates that the definition
of a schema, design and implementation of a set of appli
cation programs, and maintenance of the system are far from
trivial tasks. Consequently, the ability to perform effectively
any of the above three tasks has become a highly marketable
skill.

The need to make database systems accessible to the cas
ual, or nonprogramming, user was first addressed by Codd
[9] and has been the subject of considerable recent work
[6, 7, 10-13, 15-17, 19-21, 23-26]. Much of the effort in this
area has centered upon the development of interactive query
languages for the specification of ad hoc database transac
tions. In this document, we report the results of an effort
to permit the casual user to specify a complete set of trans
actions for an enterprise. This transaction definition sub
system produces a set of "canned" transactions to which
the user supplies any runtime parameters.

The transaction definition subsystem is one unit in an ap
plication development system designed to facilitate database
utilization by the nonprogramming users. The goal of the
project is to create a database system that can be compre
hended and effectively utilized by a user whose enterprise
cannot support a data processing professional. It is assumed
that the user of the application development system is un
familiar with the concepts of database management but
highly knowledgeable concerning the data of the enterprise.
The system is highly interactive and relies upon the user to
supply all information on the data items, relationships among
data items, and operations on the database.

In a prior effort a subsystem that permits a casual user to
interactively create a third normal form schema has been
developed [3,14, 22]. The outputs of this subsystem are used
in the transaction definition process. Figure 1 depicts the
present status of the application development system.

The remainder of this paper concentrates upon the trans-

* Address: Digital Equipment Corp., Maynard, MA 01754
** NCR Corp., Witchita, Kansas 57226

overview of the methodology employed to define the trans
action definition subsystem. The next section contains an
actions. The structure of the subsystem is elaborated upon
in the third section by describing the processing and inter
action that take place. The concluding section describes pos
sible future efforts in this area. A sample transaction defi
nition session is included in the appendix.

OVERVIEW

The function of the transaction definition subsystem is to
receive a description of a document and through interaction
with the user, create a transaction which generates the doc
ument. The definition of a transaction is dependent upon the
presence of a hierarchical description of the document that
the transaction is to produce and a third normal formal
schema which embodies all noncomputed data items on the
document. The hierarchical description and schema are out
puts of the data definition subsystem which must be com
pleted prior to the execution of the transaction definition
subsystem.

The document descriptor indicates all data items on the
document and the hierarchical structure of the document.
The hierarchical structure is a tree representing the logical
organization of the document. The nodes of the tree are the
unique lines of the document. Figure 2 illustrates the struc
ture of the document descriptor. Detailed information on the
construction of the document descriptor can be found in
Reference [14].

The feature that distinguishes this approach to transaction
definition from other methods is that the user need not be
aware of the structure of the database when the transactions
are defined. However, we must emphasize that the user is
required to be thoroughly familiar with the meaning and or
ganization of the data on the documents of the enterprise.

The transaction definition subsystem is highly interactive.
The user is questioned in order to obtain information on the
semantic nature of the transactions. Figure 3 depicts the
structure of the transaction definition subsystem. The func
tion of each of the modules is explained in the succeeding
section.

The output of the transaction definition subsystem is a
modified form of SEQUEL2 [5] code intended for execution
by a relational database management system.

293

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1500518.1500563&domain=pdf&date_stamp=1980-05-19

294 National Computer Conference, 1980

DATA DEFINITION

SUBSYSTEM

TRANSACTION

DEFINITION

SUBSYSTEM

TRANSACTIONS

Figure 1—Application development system

DIVISION LOCATION GENERAL MANAGER
DEPARTMENT MANAGER BUDGET

EMPLOYEE SALARY

DEPARTMENT MANAGER BUDGET

A. SAMPLE DOCUMENT

DIVISION LOCATION GENERAL MANAGER

DEPARTMENT MANAGER BUDGET

EMPLOYEE i SALARY

B. HIERARCHICAL STRUCTURE

NAME

DIVISION
LOCATION
GENERAL MANAGER
DEPARTMENT
MANAGER
BUDGET
EMPLOYEE
SALARY

LEVEL

1
1
1
2
2
2
3
3

GROUP

110
110
110
210
210
210
310
310

FLAG

1 (KEY)
0 (NON-KEY)

0
1
0
0
1
0

STRUCTURE

c DOCUMENT DESCRIPTOR

Figure 2—Document descriptor example

In this section we explain the workings of the transaction
definition subsystem by detailing the functions of the mod
ules pictured in Figure 3. For purposes of the presentation,
the operation of the subsystem is explained initially for a
retrieval transaction. The last portion of the section indicates
the differences involved in the definition of an update trans
action. A complete description of the transaction definition
subsystem is available in Reference [18].

Initialization

The schema and document descriptor are read as input,
and various internal tables are contructed using this infor
mation. The HANDLE-TRANSACTIONS module calls the
PROCESS-LINE module in an iterative manner in order to
generate the code for each document in the user's application
system.

Identification of primary relation

A key concept of the transaction definition subsystem is
the identification of the relation closest in terms of domains
to the content of each line of the document to be produced.
This relation is termed the primary relation for the line. The
primary relation is used as the starting point for the navi-

INITIALIZATION

HANDLE TRANSACTION

PROCESS LINE

IDENTIFICATION OF PRIMARY RELATION

DETERMINATION OF NAVIGATION PATHS

SPECIFICATION OF THE DERIVATION OF

COMPUTED DATA ITEMS

COLLECTION OF SORT INFORMATION

CAPTURE OF DATA SELECTION CONDITIONS

SPECIFICATION OF UNIQUENESS

Figure 3—Structure of transaction definition facility

Definition of Database Transactions by the Casual Usdr 295

gation paths that link all data on the line. The determination
of the primary relation is made without interaction using in
formation in the schema and document descriptor. Figure
4 is a high level description of the primary relation identi
fication algorithm. The primary relation is the starting point
for all further processing by the transaction definition sub
system.

As indicated in the high level description, the algorithm
compares the contents of the lines and the relations. It is
possible that two or more relations may be equally close,
according to the metric of the algorithm, to a given line. In
this situation the program maintains multiple primary rela
tions and begins navigation from all primary relations in
order to cover all elements in a line of a document.

Determination of navigation paths

In order to produce a transaction without requiring that
the user have a knowledge of the schema, the system must
be able to determine navigation paths from the primary re
lation to relations containing all data items in the line being
processed. The algorithm for the determination of a navi
gation path for retrieval operations is portrayed in Figure 5.
The algorithm involves searching through relations begin-

DETERMINE A REASONABLE SET OF CANDIDATE

DETERMINANTS OF THE LINE

1. ELIMINATE ELEMENTS NOT MARKED AS

POSSIBLE DETERMINANTS BY THE USER

2. ELIMINATE ELEMENTS NOT KEY TO ANY

RELATION

3. IDENTIFY ELEMENTS WHICH ONLY APPEAR

IN RELATIONS AS KEYS

4. ELIMINATE ELEMENTS WHICH NEVER APPEAR

IN A CONCATENATED KEY WITH THE ABOVE

ELEMENTS

DETERMINE A SET OF CANDIDATE RELATIONS

1. START WITH EVERY RELATION WITH ANY

CANDIDATE DETERMINANT IN ITS KEY

2. ELIMINATE THOSE RELATIONS WITHOUT

FULLY COVERED KEYS

3. ELIMINATE ANY CANDIDATE RELATION

WHICH CAN BE COVERED BY ANOTHER

REMAINING RELATION IS THE PRIMARY RELATION

Figure 4—Primary relation algorithm

NAVIGATION

FOR EACH ELEMENT INVOLVED

IF FOUND IN PRIMARY RELATION

STOP—THAT'S IT

ELSE

IF IT APPEARS IN ONLY ONE RELATION AS NONKEY

STOP—THAT'S IT

ELSE '

FOR EACH RELATION IN WHICH IT APPEARS AS NON-KEY

IF ALL THE KEYS OF THAT RELATION ARE NOT

IN THE LINE

ELIMINATE THAT RELATION FROM CANDIDACY

ENDIF

ENDLOOP

IF ONLY ONE CANDIDATE LEFT

STOP—USE IT

ELSE

CAN'T BE DETERMINED

Figure 5—Algorithm for navigation paths

ning at the primary relations until all data items for the line
have been reached. Although the implementation is differ
ent, the algorithm for the determination of the navigation
paths is conceptually similar to Bernstein's membership al
gorithm [1,2].

Specification of the derivation of computed data items

During the execution of the data definition subsystem, the
user has identified all data items which are computed and
consequently not included in the schema. This information
is preserved in the document descriptor which is an input
to the transaction definition subsystem. The user is re
quested to indicate the data items used in the derivation of
the value of each computed data item. In the current version
of the prototype only the operands, but not the operators,
of the expression for the computed data item's value need
be specified. Alternatives for the capture of the complete
expression for a computed data item are being investigated.

Collection of sort information

The user is asked to supply any sort keys in major to minor
order and the sorting sequence for each key.

Capture of data selection conditions

The user is requested to indicate if he wishes all instances
of the data items on the line or jf he wishes to apply selection
criteria to the data. Again, a reasonably straightforward in
teraction, as illustrated in Figure 6, is utilized to capture the
data selection conditions.

Another limitation of the prototype affects the operands

296 National Computer Conference, 1980

DO YOU WANT THIS TRANSLATION TO INVOLVE EVERY

OCCURRENCE OF THE DATA FOR THIS LINE? (Y/N)

CN' IF THERE IS ADDITIONAL SELECTION CRITERIA)

(ACCEPT ANSWER)

OF THESE ELEMENTS IN THE LINE

(DISPLAY LINE)

WHICH IS INVOLVED IN THIS CONDITION?

(ACCEPT ITEM USED IN SELECTION)

PLEASE ENTER CONDITIONAL OPERATOR (=, <, >, ETC.)

(ACCEPT OPERATOR)

FOR NOW, THE 'RIGHT-HAND SIDE' WILL COME FROM THE

CRT

Figure 6—Capture of data selection conditions

of the selection expressions. In the case of selection criteria,
one operand must be a data item on the line being processed.
In the prototype, the other operand is restricted to being a
value accepted from the keyboard. Many possibilities exist
for the source and format of the second operand. The most
difficult situation arises when the second operand must be
retrieved from the database. The main difficulty here is the
specification of the source of the operand by the user. This
problem is currently under study.

Specification of uniqueness

Depending upon the selection criteria, an operation may
retrieve tuples containing duplicate values. In some situa
tions, the user may desire to observe only unique tuples sat
isfying the selection criteria. This option is provided inter
actively to the user. Based upon the response to the
uniqueness question, a command that will retrieve either
unique or duplicate tuples is generated.

Update transactions

As shown in Figure 7, the overall structure of the algo
rithms for the production of transactions that write to the
database is similar to that of the algorithm for read-only
transactions. In a retrieval transaction, it is necessary to
establish the existence of navigation paths that reach at least
one occurrence of each data item to be retrieved. When a
data item is to be written (stored, updated, or deleted), all
occurrences of that data item must be located.

In a third normal form database, the problem of multiple
occurrences exists only for keyed data items. The existence

of a third normal form schema implies that for a given set
of keys, the tuple containing that data item must be uniquely
determined [4, 8]. However, keyed items may exist in mul
tiple relations. Therefore, the navigation path routines in
clude the ability to locate all instances of keyed data items.
Stored and deletion transactions will always operate upon
keyed data items. At the present time, the ability to update
a keyed data item is not provided.

Example

The appendix contains a comprehensive example of the
input, user interaction, and output of the transaction defi
nition subsystem. The information in the appendix should
be self-explanatory. The only non-SEQUEL2 statements
produced as output are the SELECT(NEXT) and SE-
LECT(ALL) which are iterative retrieval statements. A SE-
LECT(NEXT) statement in effect defines a loop in which
one tuple is retrieved and then, in this example, the following
ACCEPT and SELECT statements are executed. A SE-
LECT(ALL) statement causes all tuples that satisfy the se
lection criteria to be retrieved. In this example, all grades
will be listed on a student-by-student basis.

CONCLUSION

Summary

The application development system described here is
oriented toward the casual user or the small businessman
with the need for a computer but not a programming staff.
The system captures the data from the user and then inter
actively synthesizes a third normal form schema and the
transactions which operate upon the schema. A distinguish
ing feature of this system is that the user is not required to
reference the schema in the definition of the transactions.

INITIALIZATION

HANDLE TRANSACTION

PROCESS LINE

IDENTIFICATION OF PRIMARY RELATIONS

IDENTIFICATION OF UPDATED ITEMS

DETERMINATION OF NAVIGATION PATHS

SPECIFICATION OF THE DERIVATION OF

COMPUTED DATA ITEMS

Figure 7—General organization of write transactions

Definition of Database Transactions by the Casual User 297

Further work

At present the system's final output is a set of transactions
in a modified form of SEQUEL2. Extensions are planned
to incorporate maintenance utilities into the system. The
addition of these features would permit the user to construct
an entire application system.

As mentioned in the body of this paper, certain limitations
presently exist in terms of the operations available within
the transactions that may be defined. These restrictions are
a reflection of the prototype status of the system and are
expected to disappear as further work on the system tran
spires.

An important feature of any system with a high degree of
interactivity is the understandability of the questions by the
user. An effort has been made to involve representative users
in the design of the interactive phases of the system. It is
hoped that the effect of this involvement will be easy un
derstanding of the system by the casual user. If the user can
interact easily with the system, then the database and trans
actions can be designed without requiring special training.

REFERENCES

1. Beeri, C. and Bernstein, P. A., "Computational Problems Related to the
Design of Normal Form Relational Schemas," ACM TODS (4, 1), Mar.
1979, pp. 30-59.

2. Bernstein, P. A., "Synthesizing Third Normal Form Relations from Func
tional Dependencies," ACM TODS (1, 4), Dec. 1976, pp. 277-298.

3. Buser, R. H. and Kusnyer, S. K., "Automatic Synthesis of Third Normal
Form Relations," M.S. Report, Comp. Sci. Dept., Kansas State U., Dec.
1977.

4. Chamberlin, D. D., "Relational Data-Base Management Systems," Com
puting Surveys, (8, 1), Mar. 1976, pp. 43-66.

5. Chamberlin, D. D. et al., "SEQUEL2: A Unified Approach to Data Def
inition, Manipulation, and Control," IBM Journal R&D (20, 6), Nov.
1976.

6. Chang, S. K. and Ke, J. S., "Translation of Fuzzy Queries for a Relational
Database System," Knowledge Systems Lab., U. of Illinois at Chicago
Circle, Mar. 1978.

7. Christensen, M. A. and Herndon, M. A., "QUEASY: The Design and

10

11

12

13

14

Implementation of a Management Information System for Casual Users,"
ACM Annual Conf., Dec. 1978, pp. 230-233.
Codd, E. F., "A Relational Model of Datafor Large Shared Data Banks,"
CACM (13, 6), June 1970, pp. 377-387.
Codd, E. F., "Seven Steps to Rendezvous with the Casual User," in
Data Base Management, (J. W. Klimbie and K. L. Koffeman, eds.),
North-Holland, Apr. 1974, pp. 179-200.
Codd, E. F., "How About Recently," in Databases: Improving Usability
and Responsiveness (B. Shneiderman, ed.), Academic Press, 1978, pp.
3-28.
Greenblatt, D. and Waxman, J., "A Study of Three Database Query
Languages," in Databases: Improving Usability and Responsiveness (B.
Shneiderman, ed.), Academic Press, 1978, pp. 77-97.
Harris, L. R., "The ROBOT System: Natural Language Processing Ap
plied to Data Base Query," ACM Annual Conf., Dec. 1978, pp. 165-172.
Hendrix, G. G. et al., "Developing a Natural Language Interface to Com
plex Data," ACM TODS (3, 2), June 1978, pp. 105-147.
Hunt, W. O., "Interactive Generation of Functional Dependencies," M.
S. Report, Comp. Sci. Dept., Kansas State U., Dec. 1977.

15. Lozinskii, E. L., "Performance Considerations in Relational Data Base
Design," in Databases: Improving Usability and Responsiveness (B.
Shneiderman, ed.), Academic Press, 1978, pp. 273-294.

16. Powell, P. B. and Thompson, P., "Natural Language and Voice Output
for Relational Data Base Systems, ACM Annual Conf., Dec. 1978, pp.
585-595.
Reisner, P., "Use of Psychological Experimentation as an Aid to De
velopment of a Query Language," IEEE Trans, on Soft. Eng. (SE-3, 3),
May 1977, pp. 218-229.
Roush, C. S., "A User-oriented Transaction Definition Facility For a
Relational Database System," M. S. Report, Comp. Sci. Dept., Kansas
State U., Aug. 1979.

19. Shen, S. N. T., "A Semantic Approach in Designing Relational Data
Base," ACM Annual Conf, Dec. 1978, pp. 596-601.

20. Shneiderman, B., "Improving the Human Factors Aspect of Database
Interactions," ACM TODS (3, 4)> Dec. 1978, pp. 417-439.

21. Sorenson, D. G. and Wald, J. A., "PICASSO-An Aid to an End-User
Facility," ACM SIGMOD Conf, Aug. 1977, pp. 30-39.

22. Stevens, T. J., "Implementation of a Text Editor for the Third Normal
Formal Synthesis System," M. S. Report, Comp. Sci. Dept., Kansas
State U., Dec. 1977.

23. Waltz, D. L., "An English Language Question Answering System for a
Large Relational Database," CACM (21, 7), July 1978, pp. 526-539.

24. Weiner, J. L., "Deriving Data Base Specifications from User Queries,"
Berkeley Workshop on Distributed Data Management and Computer
Networks, May 1977, pp. 182-195/

25. Zloof, M. M., "Query-By-Example," National Computer Conf., Vol. 44,
May 1975, pp. 431-437.

26. Zloof, M. M. and de Jong, S. P., "The System for Business Automation
(SBA): Programming Language," CACM (20, 6), June 1977, pp. 385-396.

17

18

APPENDIX

1. Document Descriptor to STUDRECD Document

Name

STUD#
STUDNAME
GRADDATE
GPA
STUD#
COURSWORK
COURSGRADE

Level

1
1
1
1
2
2
2

Group

110

no
no
no
210
210
210

Flag

1
0
0
0
1
1
0

298 National Computer Conference, 1980

2. Relations

R01 STUD# STUDNAME GRADDATE GPA
R02 STUD# COURSWORK COURSGRADE

3. User Dialog with Transaction Definition Subsystem

STARTING NEW TRANSACTION (REPORT)
TRANSACTION-NAME: STUDRECD

STUD# STUDNAME GRADDATE GPA
WHICH DO YOU WANT TO DISPLAY

Y—YES, THIS ITEM
N—NOT, THIS ITEM
A—ALL OF THE REST OF THE ITEMS
S—STOP, NONE OF THE REST OF THE ITEMS

STUD#
Y

STUDNAME
Y

GRADDATE
Y

GPA
Y

DO YOU WANT THIS TRANSACTION TO INVOLVE EVERY
OCCURRENCE OF THE DATA FOR THIS LINE? (Y/N)
ON' IF THERE IS ADDITIONAL SELECTION CRITERIA)

N
OF THESE ELEMENTS IN THE LINE:

STUD# STUDNAME GRADDATE GPA
WHICH IS INVOLVED IN THIS CONDITION?

STUD#
PLEASE ENTER CONDITION OPERATOR (= , < , > , ETC.)

FOR NOW, THE 'RIGHT-HAND SIDE' WILL COME FROM
THE CRT
OF THESE ELEMENTS IN THE LINE:

STUD# STUDNAME GRADDATE
WHICH IS INVOLVED IN THIS CONDITION?

GPA

STUD# STUDNAME GRADDATE GPA
DO YOU WANT THIS LINE SORTED? (Y/N)

Y
ENTER SORT KEYS MAJOR TO MINOR
STUD#

Y
ASCENDING OR DESCENDING? (A/D)

A
ARE THERE ANY MORE SORT KEYS? (Y/N)

N
STUD# COURSWORK COURSGRADE

WHICH DO YOU WANT TO DISPLAY
Y—YES, THIS ITEM
N—NOT, THIS ITEM
A—ALL OF THE REST OF THE ITEMS
S—STOP, NONE OF THE REST OF THE ITEMS

STUD#
N

COURSWORK

Definition of Database Transactions by the Casual User 299

DO YOU WANT THIS TRANSACTION TO INVOLVE EVERY
OCCURRENCE OF THE DATA FOR THIS LINE? (Y/N)
('N' IF THERE ARE ADDITIONAL SELECTION CRITERIA)

N
OF THESE ELEMENTS IN THE LINE:

STUD# COURSWORK COURSGRADE
WHICH IS INVOLVED IN THIS CONDITION?

STUD#
PLEASE ENTER CONDITION OPERATOR (= , < , > , ETC)

FOR NOW, THE 'RIGHT HAND SIDE' WILL COME FROM
THE CRT
OF THESE ELEMENTS IN THE LINE:

STUD# COURSWORK COURSGRADE
WHICH IS INVOLVED IN THIS CONDITION?

COURSWORK
PLEASE ENTER CONDITION OPERATOR (= , < , > , ETC)

FOR NOW, THE 'RIGHT HAND SIDE' WILL COME FROM
THE CRT
OF THESE ELEMENTS IN THE LINE:

STUD# COURSWORK COURSGRADE
WHICH IS INVOLVED IN THIS CONDITION?

COURSWORK COURSGRADE
DO YOU WANT THIS LINE SORTED? (Y/N)

Y
ENTER SORT KEYS MAJOR TO MINOR
COURSWORK

Y
ASCENDING OR DESCENDING? (A/D)

A
ARE THERE ANY MORE SORT KEYS? (Y/N)

N
DO YOU WANT TO DISPLAY ALL VALID RECORDS,

OR JUST THOSE THAT ARE UNIQUE? (A/U)
A

4. Output

TRANSACTION-NAME STUD-RECD
ACCEPT PARAMETER-01 FROM CRT
SELECT (NEXT)

R01.STUD
R01.STUDNAME
R01.GRADDATE
R01.GPA

FROM
R01

WHERE
R01.STUD# = PARAMETER-01

ORDERED BY
R01.STUD# ASCENDING

ACCEPT PARAMETER-01 FROM CRT
ACCEPT PARAMETER-02 FROM CRT

300 National Computer Conference, 1980

SELECT (ALL)
R02.COURSWORK
R02.COURSGRADE

FROM
R02

WHERE
R02.STUD# = PARAMETER-01

AND R02.COURSWORK = PARAMETER-02
ORDERED BY

R02.COURSWORK ASCENDING

