
What makes a reliable program—Few bugs, or a small
failure rate?*

by B. LITTLEWOOD
Mathematics Department
The City University
London EC IV OHB
England.

INTRODUCTION

It is instructive to look at some of the reasons advanced
by software developers for their reluctance to use software
reliability measurement tools. Here are a few common ones:

(A) "Software reliability models are statistical. Programs
are deterministic. If certain input conditions cause a mal
function today, then the same conditions are certain to cause
a malfunction if they occur tomorrow. Where is the random
ness?"

(B) "I am paid to write reliable programs. I use the best
programming methodology to achieve this. Software relia
bility estimation procedures would not help me to improve
the reliability of my programs."

(C) "We verify our software. When it leaves us it is cor
rect."

(D) ' 'I ran your software reliability measurement program
on some data from a current project of ours. It said there
was an infinite number of bugs left in the program. Who are
you trying to kid?"

(E) (same manager as in D, but one week later) "We cor
rected a couple of bugs and ran the reliability measurement
program again. This time it said that there were 200 bugs
left. Infinity minus two equals two hundred? Is this the new
math?"

(F) "We put a lot of effort into testing. The selection of
test data is a systematic process designed to seek out bugs.
Reliability estimation based on such test data would be no
guide to the performance of the program in a use environ
ment."

(G) "We are writing an air traffic control program. Total
system crash would be catastrophic. Other failures range
from serious to trivial. Reliability models dornot distinguish
between failures of differing severity."

Although I have been involved in software reliability mod
elling for the past decade, and have myself perpetrated a
few models, I have a great deal of sympathy with some of

* This research was supported in part by the US Army, European Research
Office, under Grant No. DAERO-79-G-0038.

the sentiments expressed above. I have a feeling that some
of the early models have been oversold, that not enough
emphasis has been placed on the underlying modelling as
sumptions, and that by concentrating on a simple reliability
analysis we might be ignoring wider concerns. In this paper
I shall be looking at one common deficiency of early models
and suggesting a way in which it can be overcome. I hope
that, in passing, some new insight into the wider issues will
be gained.

THE PROBLEM AND ITS EARLY SOLUTION

In its simplest form the problem is this. We have available
some data t,, t2, . . . , tn, representing successive (execu
tion) times between failures of a program. What can we say
about the current reliability of the program, and how this
will change in the future?

This bald description needs some amplification. In the first
place, are we sure what we mean by "reliability" in this
context? In A, above, we see one of the difficulties. There
is a sense in which software failures are completely pre
dictable: if we know that an input caused a failure in the
past, then the same input will cause a failure now (assuming
the program is unchanged). Equally, if a program can cor
rectly process an input once, the same program can correctly
process the same input forever. Contrast this situation to
that of hardware, from which conventional reliability ter
minology arises. Hardware devices exhibit wear-out and it
is not possible to guarantee that the response of a device to
a particular input will remain constant. More strongly, we
can say that a hardware device is certain to fail ultimately,
whereas a program, if perfect, is certain to remain failure-
free. Of course, it is questionable whether there is much
chance of writing a real-life program in such a way that it
is perfect. The principle, however, remains: it is possible to
conceive of a program which is never going to fail. This
concept of the "perfect" program immediately suggests a
way to define software reliability which would not have a
hardware parallel. A program which will never fail is one

707

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1500518.1500639&domain=pdf&date_stamp=1980-05-19

708 National Computer Conference, 1980

containing no "defects": no errors (or bugs). The "reliability"
of a program is its relative freedom from bugs. Such a con
cept of reliability, then, is essentially static: it describes the
state of the program rather than how the program performs
(its failure rate, mean time to failure, etc.). My own view
is that we are almost always more concerned with the dy
namic reliability of a program than the number of bugs it
contains. There are, though, some situations where the num
ber of bugs remaining in a program is of practical interest:
the commonest such situation being that where we wish to
be assured that none are left. It seems sensible, therefore,
that we should have reliability models which enable both of
the following interpretations of reliability to be used: relative
freedom from bugs, relative freedom from failures in oper
ation. It is the relationship between these two concepts of
reliability—how the number of bugs remaining in a program
affects the performance of the program—which will form the
main theme of this paper.

This seems a convenient place to comment on C. When
I talk of a perfect program I mean something more than cor
rectness. There seem to be two basic objections to formal
verification of programs. Most important is the logical ob
jection: the most that can be achieved is a proof that the
program is consistent with its specification, not with the in
formal requirements [1]. Those advocates of program veri
fication who maintain that a program can be "correct," and
yet fail to fulfill the requirements demanded by the customer,
are just passing the buck. A problem does not disappear by
declaring it to be someone else's responsibility. Another
objection, which may ultimately be overcome, is that of cost:
the sheer effort required to verify programs of realistic size
is often completely prohibitive. This seems likely to remain
true for a long time. I do not mean to imply that these ideas
are not valuable, though. On the contrary, it is clear that
they have already had a quite far-reaching and valuable im
pact on programming methodology.

Notice, by the way, that a program could perform "per
fectly" and yet fail a proof of "correctness." Although we
would be right to reject the program if we knew the result
of the proof, it is clear that in the absence of such knowledge
it may be possible to describe the program as highly reliable.

When we look at large real-life programs, written under
time and cost constraints, discussions about perfectibility
seem merely theological. We shall be almost certain that
such programs do contain bugs, that they will eventually
produce unacceptable output, and that proofs of correctness
(if they were feasible) would fail. Our purpose, then, is to
quantify this imperfection: this is why we need reliability
studies.

Returning now the basic problem, it is important to be
aware of the source of the inter-failure times ? , , . . . , tn. In
most cases this data is collected during the test and integra
tion phase of the project, whilst debugging is in process. We
would expect, then, that the reliability of the program is
increasing: i.e., there will be a tendency for the f's to be
increasing. At any particular stage of this process it is the
intention to use the model to measure the current reliability
and predict future reliability. This brings us to F. These

models can predict future performance of a program only on
the assumption that there is continuity in the behaviour of the
programming team and in the behaviour of the process se
lecting inputs. This assumption is commonly violated, and
in such cases model predictions cannot be trusted. Possibly
the commonest situation of this kind is when there is a dis
continuity between the test and use environments. In many
cases it is simply impractical, or prohibitively slow and ex
pensive, to use an actual (or simulated) use environment to
produce inputs for the test phase. Instead, inputs are gen
erated with the specific intention of testing most rigorously
those parts of the program which are known a priori to be
likely to contain errors: a similar process is often used for
hardware, called stress testing. It may sometimes be possible
to use data from other projects to estimate the relationship
between the severities of the test and use environments—
what Musa [2] calls the testing compression factor. My own
view is that this will rarely be justified, since every program
is essentially unique. We would need to know not merely
that the inputs for test and use environments were related
similarly between the current program and its predecessors,
but that responses of the programs to these inputs had the
same relationship.

The other source of discontinuities of behaviour which
prevent direct use of these models is system integration. If
new modules are being integrated into the system during the
collection of the fs, then new sources of failure are being
introduced and it is unreasonable to expect the estimates
based upon an earlier stage of system integration to be valid.
It does seem likely in this case, though, that estimation of
the magnitude of the reliability discontinuities will some
times be possible. There is likely to be greater commonality
of behaviour between modules of the same system than be
tween different projects. This is an area where further re
search is needed; at present we shall have to assume that
the models are used only after integration, or for the periods
of homogeneous behaviour between module integrations.

It may seem, after these areas have been eliminated, that
there is very little that software reliability models can be
used for. However, if we have a system which has been
totally integrated, and we are sure that the test environment
(simulated or real) is representative of the use environment,
we can use the models to estimate current reliability and
predict future reliability during debugging. In those cases
where it is possible to test modules under these conditions,
then of course the same reliability estimation can be per
formed on them. It may even be possible to combine knowl
edge of the reliability of the modules with structural infor
mation about their roles in the system and calculate overall
system reliability [3,4].

Let us now return to the general problem and look at the
early solutions. I shall use the notation of Jelinski and Mor-
anda [5], but the models of Shooman [6] and Musa [2] are
essentially the same (although it should be noted that Musa
introduces many extra refinements over the basic model).
It is assumed that the random variables Tt, representing the
times between (z-l)th and ith failures of the program are
independent and have the exponential distributions:

What Makes a Reliable Program 709

pdM) = ^ie-Ki,i, tt>0 (1)

where {X,: X,>0} is the sequence of failure rates of the pro
gram. Note that Musa argues cogently for "time" in this
context to represent execution time, rather than calendar
time.

The reasoning behind assumption (1) is that the input
space contains a subset of inputs which will induce failure
and that this subset is encountered randomly. The process
can thus be viewed as a Poisson process with a rate which
changes at each event. The assumption seems to be a rea
sonable one so long as we define "failure" fairly carefully.
We would, for example, have to treat a cascade of failures,
caused by a single error in the program being encountered
once, as a single failure. This accords with usual practice.

The important remaining question concerns the structure
of the sequence {A.,}. It is clearly impossible to estimate each
X, separately, since there will generally only be a single ob
servation, ti. More importantly, we wish to be able to project
X, for future i. Jelinski and Moranda make the following as
sumption (similar assumptions can be found in [2,6]:

"The failure rate at any time is assumed proportional to the
current error content of the program . . . the proportionality
constant is denoted by <|>. . . ." ([5], p. 473).

This is equivalent to assuming

\ , = (N-i+l)<|> (2)

where N is the number of bugs (errors) in the program before
debugging starts. Each remaining bug contributes an amount
<|> to the overall failure rate of the program, so that when
(/-1) bugs have been eliminated there remain (N—i+1). Of
course, this assumes that each failure of the program results
in the immediate removal of one bug. In fact it is relatively
easy to relax this assumption in order to represent imperfect
debugging; this is an issue which I shall not examine here.

The model is now completely specified by the two un
known parameters N and <|>. These can be estimated from
the data f,, t2, . . . , tn by, say Maximum Likelihood, and
estimates of current and future reliability calculated.

A NEW SOLUTION

Consider the quotation from [5] which results in (2). What
is being assumed is that each bug in the program contributes
equally to the overall failure rate of the program. Thus when
a failure occurs (and a bug is fixed) the overall failure rate
drops by a fixed constant amount, c|>. Between bug-fixes the
failure rate remains constant. A plot of failure-rate against
execution time is shown in Figure 1: all steps are of equal
size.

It seems to me wrong to assume all bugs have the same
effect on the overall failure rate. In fact it seems likely that
the contributions from different bugs to the failure rate of
the program will vary quite widely. There is, for example,
evidence that the frequencies with which different portions

of code are exercised vary enormously. A bug in frequently
exercised code will cause failures more frequently than a bug
in infrequently exercised code (other factors being equal),
i.e., it will contribute more to the failure rate of the program.

A more plausible scenario, then, is that at the beginning
of debugging the program contains a pool of N bugs with
differing failure rates. Early failures of the program are more
likely to be caused by those bugs with the greatest failure
rates. Thus early bug-fixes, corresponding to the removal
of bugs with larger failure rates, will have greater effect on
the overall failure rate. Instead of a plot such as Figure 1,
the steps will be of different sizes with larger steps occurring
early in the debugging.

Before suggesting in detail how this effect can be mod
elled, it is instructive to examine the source of the random
variation in software failure times as suggested by earlier
authors [2,5,6]. All these models assume that the sole source
of randomness (or uncertainty) lies in the nature of the input
stream. Thus in (1), X, is treated as a constant (given by (2)
if N, <j) known) and the only random variable is Tt. This
seems to me to ignore the uncertain nature of program writ
ing and debugging itself. Since we shall be uncertain of the
amount any bug contributes to the overall failure rate, we
are uncertain of the relationship between X,_, and A,. Thus
instead of a sequence {X,} with a deterministic relationship
between successive terms, as in (2), we should be dealing
with a sequence {A,} of random variable failure rates. An
other way of looking at this is as follows. Instead of treating
the debugging process as a series of deterministic operations
on "a program," it can be viewed as the creation of a series
of programs, Px, P2, . . . , Pn. Program P, may differ from
program Pt_x in only a small way—the result of fixing the
(/- l)th bug—but it is a different program, and the difference
is unpredictable. Just as it is not possible to predict what the
sequence of debugging changes will be which produce the
sequence {Pt} of programs, so the sequence of failures rates
is not predictable. It must be treated as a sequence of random
variables {A,}.

The two sources of uncertainty can be modelled in the
following way. Assume, as do earlier authors [2,5,6], that
the uncertainty in the input stream causes the execution time
to next failure to be conditionally exponentially distributed.
That is,

pdf{t\A = \) = ke x', (>(). (3)

We shall assume perfect debugging, for simplicity. So that
when i failures have occurred we have removed i bugs. Let
total execution time be /<0) at this stage (see Figure 3). Then

A = <J> ,+$. , + •••+ $„_,. (4)

where N is the initial number of bugs (unknown) and <£,.
represents the (random variable) contribution to the overall
failure rate of the rth bug among the remaining (N-i) bugs.
It solely remains to find the distribution of <$>r for all t(0), r.
Clearly

pdf($r)=pdf(<$>s) for all r,s.

710 National Computer Conference, 1980

failure
rate

N<fr

(N-l)*

(N-2)*

(N-3)d,

(N-4)<fr

* * « • ^

Execution time

Figure 1.

This merely states that at each stage our uncertainty (our
ignorance) about the bugs which remain is the same for each:
we cannot distinguish between them.

Let us represent our initial uncertainty about the <I>'s by
a Gamma (a,(3) distribution:

pdm= r<i>c

T(a)
• (* > 0) . (5)

Then the distribution of each of the <E>'s in (4), by Bayes
Theorem, is

pdf{§ | bug has survived detection for a time t<0)) (6)

= Pr^no f a i l u r e o f t n i s b u § in (°>?(0>) I $ = $}-pdf(<$>)
fPr{no failure of this bug in (0/O)) 10> = $}.pdf($)d$ '

Substituting (5) into (6) and simplifying we find that the dis
tribution of a $ in (4) is

Gamma(a,p + f(0)). (7)

Since the sum of independent, identically distributed Gamma
random variables is itself Gamma distributed, we find from
(4) that the distribution of A is

Gamma((iV-/)a,p + /(0)) (8)

Finally, from (3) and (8) we find that the distribution of the
time to next failure, T, when / bugs have been detected and
execution time t(0) has elapsed (Figure 3) is

(9)
pdf(t)= I pdf(t\A = \)pdf(\)d\

{N-i)a(p + tm)(

($ + tw + tyN-i)a + > '

which is a Pareto distribution. This result should be com
pared with the exponential distribution of the Jelinski-Mor-
anda model, (1) and (2). Full details of this new model can
be found in [7], including examples of how it can be used
to predict future reliability.

Consider the failure rate at the arrowed epoch in Figure
3. This is

(N-i)a
0 + f (0) (10)

Notice how this changes as debugging proceeds. When a
failure occurs and a bug is fixed, the failure rate drops by
an amount a/(P + f(0)); early bug-fixes, with small f(0), cause
greater reductions in the program's failure rate than later

What Makes a Reliable Program 711

failure
rate

execution time

Figure 2.

ones. During periods of failure-free operation, between bug-
fixes, the failure rate decreases continuously as tm increases.
We thus get a plot of failure rate against time of the kind
shown in Figure 2.

As a justification of the decreasing failure rate (DFR)
property of the Pareto distributions, consider the two epochs
A and B in Figures 1, 2. Assume that a judgment of the
reliability of the program has been made at A. How would
you expect the reliability to have changed at B, after a further
period of failure-free operation? It seems to me more plau
sible that we should be reassured by the extra evidence
(Figure 2), since this is evidence of good performance, than

*(•> - * < -

0 i 1 failures detected, and thus 1 bugs fixed,
1n (0, t ' *))

Figure 3.

t
next
failure

execution time

that we should believe the reliability unchanged (Figure 1).
What is in fact happening, in this model, between A and B
is that we are gathering new information about the distri
bution of the failure rates of remaining bugs—specifically
we are increasing ti0) in (7).

IMPLICATIONS OF THE NEW MODEL

The intention behind all models of this kind is the same.
We wish to be able to estimate both static reliability (number
of remaining bugs) and dynamic reliability (frequency of fail
ures) of a program. I have argued in the previous section
that early models make a false assumption about the rela
tionship between these two measures. Let us now look at
the implications of the new model for reliability estimation
and, in particular, what consequences would follow from
using one of the naive models.

It should be acknowledged, first, that the new model is
a little more complicated. It is necessary to estimate three
parameters (TV, a, P) from the available data, rather than the

712 National Computer Conference, 1980

two parameters (N, (j>) of the earlier models. This should not
present any unusual difficulties.

An important observation is that the Jelinski-Moranda
model is a special case of the new model. If we let a—»oo,
0—»°° in such a way that a/p = 4> in (5), we find that the
Gamma (a,p) distribution becomes concentrated at c|>. Thus,
if a particular data set produces values of a and (3 which are
very large, the Jelinski-Moranda model will provide a good
approximation with <}> = a/0. Of course, this operates in re
verse: if the best-fitting values of a and (3 are not large, this
implies that the Jelinski-Moranda model would be a poor
approximation to the underlying process. In summary, then,
nothing can be lost by using the new model instead of the
old ones; and something important may be gained.

Assuming that the model does not reduce to the Jelinski-
Moranda one, in what ways will it give a different picture
of the reliability growth taking place during debugging?

In the first place, it suggests that there is a law of di
minishing returns operating in debugging. The reliability im
provements gained from successive bug-fixes gradually be
come smaller and smaller. This implies that estimates of N
may be larger than for the Jelinski-Moranda model without
necessarily implying equivalently large estimates of dynamic
reliability (e.g. failure-rate). This law of diminishing returns
suggests that it will often be appropriate to end debugging
before the program is judged bug-free, without implying that
such a program is unreliable. In other words, if we are solely
interested in the performance of the program (failure rate,
mean time to failure, etc.) we can accept a program known
to contain many bugs, as long as we are assured that these
bugs cause failures infrequently. This seems to me to accord
better with intuition and real-life practice than the Jelinski-
Moranda assumption, which deems all bugs to have the same
contribution to overall reliability. We have all, I think, en
countered programs containing bugs which we were pre
pared to live with.

My own view, then is that almost always the appropriate
criterion to adopt is dynamic reliability rather than number
of remaining bugs. There are, though, situations where we
might wish to have a very high assurance that no bugs re
mained. Examples would be an air traffic control system or
nuclear power station safety system. It would not be suffi
cient to know that the program was very reliable, whilst
containing bugs, if these bugs included ones with cata
strophic consequences. This observation reveals the weak
ness of an analysis purely in terms of the counting of failures
and bugs (see quotation G). What we ought to have are
models which enable us to predict the process of conse
quences of failures. There is, unfortunately, little data or
research in this area—no doubt partly due to a natural re
luctance to accept a quantification of the unthinkable. We
demand, instead, a high assurance that the system is "per
fect."

If we wish to stop debugging only when we have a high
assurance that the last bug has been removed, the new model
gives some disturbing answers. Since the model will often
tend to suggest that many bugs remain (albeit ones with small
failure rates), and the successive times between their re

movals are Pareto distributed (the Pareto distribution has
a long tail, i.e. large values occur with greater frequency
than in the exponential case), we find that estimates of the
time required to end debugging are very large. Often, with
large systems, they will be prohibitively large. It is, effec
tively, impossible to make a large system bug-free.

Again, this is not surprising: it seems to accord with ex
perience. But it is worrying. Contrast this with the hardware
case: one of the important results of hardware reliability is
that it is possible to make a system with any given reliability
using components of any given unreliability. We cannot do
this for software. Does this mean that we cannot use soft
ware for such critical applications? In practice we seem to
have little choice.

SUMMARY AND CONCLUSIONS

The new model that I have described does, I think, rep
resent the relationship between static and dynamic measures
of software reliability more naturally than earlier models. I
would not, however, suggest that this or any other model
is definitive. Indeed, I suspect that it will be a long time
before we are able to apply these techniques with confidence
to every software development project. In the meantime, we
have some techniques which are useful when treated with
care: in particular, it is necessary to be sure that the un
derlying modelling assumptions do apply to the project under
examination. So my reply to speaker B would be that, whilst
agreeing that software reliability techniques do not of them
selves help to improve reliability, it is a brave manager who
asserts that his programs are reliable without in some way
measuring this reliability.

On the debit side, there is still a great deal of work re
maining. In my view, the single biggest gap in our knowledge
lies in the area of costs/consequences of failures. We have
little in the way of theory, and very little data; yet we all
recognise that a reliability theory is only one step on the
road to a more comprehensive cost theory. This is an area
which urgently requires study.

Another area where progress has been disappointing is
that of structural models. It seems intuitively clear that the
structure of a program will affect its reliability, but so far
there is no effective way of incorporating into a reliability
model the wealth of information available about program
structure.

Finally, a comment on quotations D and E. It is true that
"difficulties" have been experienced with parameter esti
mation of the early models, and this has tended to alienate
some potential users. It should be said that these problems
generally only occur with small data sets (i.e. at the very
beginning of the debugging period), when the evidence for
growth in reliability is slight. Since all the models depend
upon an assumption of reliability growth, it is not surprising
that things can go wrong when such growth is not clearly
evident in the data. It must always be borne in mind that
these techniques are not a magical panacea: they are simply
systematic methods of estimating what is actually present
in data.

What Makes a Reliable Program 713

REFERENCES

1. DeMillo, R. A., Lipton, R. J. and Perlis, A. J., "Social processes and
proofs of theorems and programs," Comm. ACM May 1979, Vol. 22, No.
5, pp. 271-280.

2. Musa, J. D., "A theory of software reliability and its application," IEEE
Trans, on Software Engineering, Vol. SE-1, Sept. 1975, pp. 312-327.

3. Littlewood, B., "A reliability model for systems with Markov structure,"
Applied Statistics (J. Royal Statist. Soc, Series C), Vol. 24, No. 2, 1975,
pp. 172-177.

4. Littlewood, B., "A software reliability model for modular program struc

ture," IEEE Trans, on Reliability (Special Issue on Software Reliability),
Vol. R-28, No. 3, August 1979, pp. 241-246.

5. Jelinski, Z. and Moranda, P. B., "Software reliability research," in Sta
tistical Computer Performance Evaluation, Ed.: W. Freiberger. New
York: Academic, pp. 465-484.

6. Shooman, M., "Operational testing and software reliability during program
development," Record 1973 IEEE Symposium on Computer Software Re
liability, New York, NY, April 30-May 2, 1973, pp. 51-57. .

7. Littlewood, B., "A Bayesian differential debugging model for software
reliability,'' in Proceedings of Workshop on Quantitative Software Models,
Kiamesha Lake, NY, Oct. 9-11, 1979 (to appear).

