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INTRODUCTION 

It is instructive to look at some of the reasons advanced 
by software developers for their reluctance to use software 
reliability measurement tools. Here are a few common ones: 

(A) "Software reliability models are statistical. Programs 
are deterministic. If certain input conditions cause a mal
function today, then the same conditions are certain to cause 
a malfunction if they occur tomorrow. Where is the random
ness?" 

(B) "I am paid to write reliable programs. I use the best 
programming methodology to achieve this. Software relia
bility estimation procedures would not help me to improve 
the reliability of my programs." 

(C) "We verify our software. When it leaves us it is cor
rect." 

(D) ' 'I ran your software reliability measurement program 
on some data from a current project of ours. It said there 
was an infinite number of bugs left in the program. Who are 
you trying to kid?" 

(E) (same manager as in D, but one week later) "We cor
rected a couple of bugs and ran the reliability measurement 
program again. This time it said that there were 200 bugs 
left. Infinity minus two equals two hundred? Is this the new 
math?" 

(F) "We put a lot of effort into testing. The selection of 
test data is a systematic process designed to seek out bugs. 
Reliability estimation based on such test data would be no 
guide to the performance of the program in a use environ
ment." 

(G) "We are writing an air traffic control program. Total 
system crash would be catastrophic. Other failures range 
from serious to trivial. Reliability models dornot distinguish 
between failures of differing severity." 

Although I have been involved in software reliability mod
elling for the past decade, and have myself perpetrated a 
few models, I have a great deal of sympathy with some of 
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the sentiments expressed above. I have a feeling that some 
of the early models have been oversold, that not enough 
emphasis has been placed on the underlying modelling as
sumptions, and that by concentrating on a simple reliability 
analysis we might be ignoring wider concerns. In this paper 
I shall be looking at one common deficiency of early models 
and suggesting a way in which it can be overcome. I hope 
that, in passing, some new insight into the wider issues will 
be gained. 

THE PROBLEM AND ITS EARLY SOLUTION 

In its simplest form the problem is this. We have available 
some data t,, t2, . . . , tn, representing successive (execu
tion) times between failures of a program. What can we say 
about the current reliability of the program, and how this 
will change in the future? 

This bald description needs some amplification. In the first 
place, are we sure what we mean by "reliability" in this 
context? In A, above, we see one of the difficulties. There 
is a sense in which software failures are completely pre
dictable: if we know that an input caused a failure in the 
past, then the same input will cause a failure now (assuming 
the program is unchanged). Equally, if a program can cor
rectly process an input once, the same program can correctly 
process the same input forever. Contrast this situation to 
that of hardware, from which conventional reliability ter
minology arises. Hardware devices exhibit wear-out and it 
is not possible to guarantee that the response of a device to 
a particular input will remain constant. More strongly, we 
can say that a hardware device is certain to fail ultimately, 
whereas a program, if perfect, is certain to remain failure-
free. Of course, it is questionable whether there is much 
chance of writing a real-life program in such a way that it 
is perfect. The principle, however, remains: it is possible to 
conceive of a program which is never going to fail. This 
concept of the "perfect" program immediately suggests a 
way to define software reliability which would not have a 
hardware parallel. A program which will never fail is one 

707 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1500518.1500639&domain=pdf&date_stamp=1980-05-19


708 National Computer Conference, 1980 

containing no "defects": no errors (or bugs). The "reliability" 
of a program is its relative freedom from bugs. Such a con
cept of reliability, then, is essentially static: it describes the 
state of the program rather than how the program performs 
(its failure rate, mean time to failure, etc.). My own view 
is that we are almost always more concerned with the dy
namic reliability of a program than the number of bugs it 
contains. There are, though, some situations where the num
ber of bugs remaining in a program is of practical interest: 
the commonest such situation being that where we wish to 
be assured that none are left. It seems sensible, therefore, 
that we should have reliability models which enable both of 
the following interpretations of reliability to be used: relative 
freedom from bugs, relative freedom from failures in oper
ation. It is the relationship between these two concepts of 
reliability—how the number of bugs remaining in a program 
affects the performance of the program—which will form the 
main theme of this paper. 

This seems a convenient place to comment on C. When 
I talk of a perfect program I mean something more than cor
rectness. There seem to be two basic objections to formal 
verification of programs. Most important is the logical ob
jection: the most that can be achieved is a proof that the 
program is consistent with its specification, not with the in
formal requirements [1]. Those advocates of program veri
fication who maintain that a program can be "correct," and 
yet fail to fulfill the requirements demanded by the customer, 
are just passing the buck. A problem does not disappear by 
declaring it to be someone else's responsibility. Another 
objection, which may ultimately be overcome, is that of cost: 
the sheer effort required to verify programs of realistic size 
is often completely prohibitive. This seems likely to remain 
true for a long time. I do not mean to imply that these ideas 
are not valuable, though. On the contrary, it is clear that 
they have already had a quite far-reaching and valuable im
pact on programming methodology. 

Notice, by the way, that a program could perform "per
fectly" and yet fail a proof of "correctness." Although we 
would be right to reject the program if we knew the result 
of the proof, it is clear that in the absence of such knowledge 
it may be possible to describe the program as highly reliable. 

When we look at large real-life programs, written under 
time and cost constraints, discussions about perfectibility 
seem merely theological. We shall be almost certain that 
such programs do contain bugs, that they will eventually 
produce unacceptable output, and that proofs of correctness 
(if they were feasible) would fail. Our purpose, then, is to 
quantify this imperfection: this is why we need reliability 
studies. 

Returning now the basic problem, it is important to be 
aware of the source of the inter-failure times ? , , . . . , tn. In 
most cases this data is collected during the test and integra
tion phase of the project, whilst debugging is in process. We 
would expect, then, that the reliability of the program is 
increasing: i.e., there will be a tendency for the f's to be 
increasing. At any particular stage of this process it is the 
intention to use the model to measure the current reliability 
and predict future reliability. This brings us to F. These 

models can predict future performance of a program only on 
the assumption that there is continuity in the behaviour of the 
programming team and in the behaviour of the process se
lecting inputs. This assumption is commonly violated, and 
in such cases model predictions cannot be trusted. Possibly 
the commonest situation of this kind is when there is a dis
continuity between the test and use environments. In many 
cases it is simply impractical, or prohibitively slow and ex
pensive, to use an actual (or simulated) use environment to 
produce inputs for the test phase. Instead, inputs are gen
erated with the specific intention of testing most rigorously 
those parts of the program which are known a priori to be 
likely to contain errors: a similar process is often used for 
hardware, called stress testing. It may sometimes be possible 
to use data from other projects to estimate the relationship 
between the severities of the test and use environments— 
what Musa [2] calls the testing compression factor. My own 
view is that this will rarely be justified, since every program 
is essentially unique. We would need to know not merely 
that the inputs for test and use environments were related 
similarly between the current program and its predecessors, 
but that responses of the programs to these inputs had the 
same relationship. 

The other source of discontinuities of behaviour which 
prevent direct use of these models is system integration. If 
new modules are being integrated into the system during the 
collection of the fs, then new sources of failure are being 
introduced and it is unreasonable to expect the estimates 
based upon an earlier stage of system integration to be valid. 
It does seem likely in this case, though, that estimation of 
the magnitude of the reliability discontinuities will some
times be possible. There is likely to be greater commonality 
of behaviour between modules of the same system than be
tween different projects. This is an area where further re
search is needed; at present we shall have to assume that 
the models are used only after integration, or for the periods 
of homogeneous behaviour between module integrations. 

It may seem, after these areas have been eliminated, that 
there is very little that software reliability models can be 
used for. However, if we have a system which has been 
totally integrated, and we are sure that the test environment 
(simulated or real) is representative of the use environment, 
we can use the models to estimate current reliability and 
predict future reliability during debugging. In those cases 
where it is possible to test modules under these conditions, 
then of course the same reliability estimation can be per
formed on them. It may even be possible to combine knowl
edge of the reliability of the modules with structural infor
mation about their roles in the system and calculate overall 
system reliability [3,4]. 

Let us now return to the general problem and look at the 
early solutions. I shall use the notation of Jelinski and Mor-
anda [5], but the models of Shooman [6] and Musa [2] are 
essentially the same (although it should be noted that Musa 
introduces many extra refinements over the basic model). 
It is assumed that the random variables Tt, representing the 
times between (z-l)th and ith failures of the program are 
independent and have the exponential distributions: 
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pdM) = ^ie-Ki,i, tt>0 (1) 

where {X,: X,>0} is the sequence of failure rates of the pro
gram. Note that Musa argues cogently for "time" in this 
context to represent execution time, rather than calendar 
time. 

The reasoning behind assumption (1) is that the input 
space contains a subset of inputs which will induce failure 
and that this subset is encountered randomly. The process 
can thus be viewed as a Poisson process with a rate which 
changes at each event. The assumption seems to be a rea
sonable one so long as we define "failure" fairly carefully. 
We would, for example, have to treat a cascade of failures, 
caused by a single error in the program being encountered 
once, as a single failure. This accords with usual practice. 

The important remaining question concerns the structure 
of the sequence {A.,}. It is clearly impossible to estimate each 
X, separately, since there will generally only be a single ob
servation, ti. More importantly, we wish to be able to project 
X, for future i. Jelinski and Moranda make the following as
sumption (similar assumptions can be found in [2,6]: 

"The failure rate at any time is assumed proportional to the 
current error content of the program . . . the proportionality 
constant is denoted by <|>. . . ." ([5], p. 473). 

This is equivalent to assuming 

\ , = (N-i+l)<|> (2) 

where N is the number of bugs (errors) in the program before 
debugging starts. Each remaining bug contributes an amount 
<|> to the overall failure rate of the program, so that when 
(/-1) bugs have been eliminated there remain (N—i+1). Of 
course, this assumes that each failure of the program results 
in the immediate removal of one bug. In fact it is relatively 
easy to relax this assumption in order to represent imperfect 
debugging; this is an issue which I shall not examine here. 

The model is now completely specified by the two un
known parameters N and <|>. These can be estimated from 
the data f,, t2, . . . , tn by, say Maximum Likelihood, and 
estimates of current and future reliability calculated. 

A NEW SOLUTION 

Consider the quotation from [5] which results in (2). What 
is being assumed is that each bug in the program contributes 
equally to the overall failure rate of the program. Thus when 
a failure occurs (and a bug is fixed) the overall failure rate 
drops by a fixed constant amount, c|>. Between bug-fixes the 
failure rate remains constant. A plot of failure-rate against 
execution time is shown in Figure 1: all steps are of equal 
size. 

It seems to me wrong to assume all bugs have the same 
effect on the overall failure rate. In fact it seems likely that 
the contributions from different bugs to the failure rate of 
the program will vary quite widely. There is, for example, 
evidence that the frequencies with which different portions 

of code are exercised vary enormously. A bug in frequently 
exercised code will cause failures more frequently than a bug 
in infrequently exercised code (other factors being equal), 
i.e., it will contribute more to the failure rate of the program. 

A more plausible scenario, then, is that at the beginning 
of debugging the program contains a pool of N bugs with 
differing failure rates. Early failures of the program are more 
likely to be caused by those bugs with the greatest failure 
rates. Thus early bug-fixes, corresponding to the removal 
of bugs with larger failure rates, will have greater effect on 
the overall failure rate. Instead of a plot such as Figure 1, 
the steps will be of different sizes with larger steps occurring 
early in the debugging. 

Before suggesting in detail how this effect can be mod
elled, it is instructive to examine the source of the random 
variation in software failure times as suggested by earlier 
authors [2,5,6]. All these models assume that the sole source 
of randomness (or uncertainty) lies in the nature of the input 
stream. Thus in (1), X, is treated as a constant (given by (2) 
if N, <j) known) and the only random variable is Tt. This 
seems to me to ignore the uncertain nature of program writ
ing and debugging itself. Since we shall be uncertain of the 
amount any bug contributes to the overall failure rate, we 
are uncertain of the relationship between X,_, and A,. Thus 
instead of a sequence {X,} with a deterministic relationship 
between successive terms, as in (2), we should be dealing 
with a sequence {A,} of random variable failure rates. An
other way of looking at this is as follows. Instead of treating 
the debugging process as a series of deterministic operations 
on "a program," it can be viewed as the creation of a series 
of programs, Px, P2, . . . , Pn. Program P, may differ from 
program Pt_x in only a small way—the result of fixing the 
(/- l)th bug—but it is a different program, and the difference 
is unpredictable. Just as it is not possible to predict what the 
sequence of debugging changes will be which produce the 
sequence {Pt} of programs, so the sequence of failures rates 
is not predictable. It must be treated as a sequence of random 
variables {A,}. 

The two sources of uncertainty can be modelled in the 
following way. Assume, as do earlier authors [2,5,6], that 
the uncertainty in the input stream causes the execution time 
to next failure to be conditionally exponentially distributed. 
That is, 

pdf{t\A = \) = ke x', (>(). (3) 

We shall assume perfect debugging, for simplicity. So that 
when i failures have occurred we have removed i bugs. Let 
total execution time be /<0) at this stage (see Figure 3). Then 

A = <J> ,+$. , + •••+ $„_,. (4) 

where N is the initial number of bugs (unknown) and <£,. 
represents the (random variable) contribution to the overall 
failure rate of the rth bug among the remaining (N-i) bugs. 
It solely remains to find the distribution of <$>r for all t(0), r. 
Clearly 

pdf($r)=pdf(<$>s) for all r,s. 
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Figure 1. 

This merely states that at each stage our uncertainty (our 
ignorance) about the bugs which remain is the same for each: 
we cannot distinguish between them. 

Let us represent our initial uncertainty about the <I>'s by 
a Gamma (a,(3) distribution: 

pdm= r<i>c 

T(a) 
• ( * > 0 ) . (5) 

Then the distribution of each of the <E>'s in (4), by Bayes 
Theorem, is 

pdf{§ | bug has survived detection for a time t<0)) (6) 

= Pr^no f a i l u r e o f t n i s b u § in (°>?(0>) I $ = $}-pdf(<$>) 
fPr{no failure of this bug in (0/O)) 10> = $}.pdf($)d$ ' 

Substituting (5) into (6) and simplifying we find that the dis
tribution of a $ in (4) is 

Gamma(a,p + f(0)). (7) 

Since the sum of independent, identically distributed Gamma 
random variables is itself Gamma distributed, we find from 
(4) that the distribution of A is 

Gamma((iV-/)a,p + /(0)) (8) 

Finally, from (3) and (8) we find that the distribution of the 
time to next failure, T, when / bugs have been detected and 
execution time t(0) has elapsed (Figure 3) is 

(9) 
pdf(t)= I pdf(t\A = \)pdf(\)d\ 

{N-i)a(p + tm)( 

($ + tw + tyN-i)a + > ' 

which is a Pareto distribution. This result should be com
pared with the exponential distribution of the Jelinski-Mor-
anda model, (1) and (2). Full details of this new model can 
be found in [7], including examples of how it can be used 
to predict future reliability. 

Consider the failure rate at the arrowed epoch in Figure 
3. This is 

(N-i)a 
0 + f (0) (10) 

Notice how this changes as debugging proceeds. When a 
failure occurs and a bug is fixed, the failure rate drops by 
an amount a/(P + f(0)); early bug-fixes, with small f(0), cause 
greater reductions in the program's failure rate than later 
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Figure 2. 

ones. During periods of failure-free operation, between bug-
fixes, the failure rate decreases continuously as tm increases. 
We thus get a plot of failure rate against time of the kind 
shown in Figure 2. 

As a justification of the decreasing failure rate (DFR) 
property of the Pareto distributions, consider the two epochs 
A and B in Figures 1, 2. Assume that a judgment of the 
reliability of the program has been made at A. How would 
you expect the reliability to have changed at B, after a further 
period of failure-free operation? It seems to me more plau
sible that we should be reassured by the extra evidence 
(Figure 2), since this is evidence of good performance, than 

*(•> - * < -

0 i 1 failures detected, and thus 1 bugs fixed, 
1n (0, t ' * ) ) 

Figure 3. 

t 
next 
failure 

execution time 

that we should believe the reliability unchanged (Figure 1). 
What is in fact happening, in this model, between A and B 
is that we are gathering new information about the distri
bution of the failure rates of remaining bugs—specifically 
we are increasing ti0) in (7). 

IMPLICATIONS OF THE NEW MODEL 

The intention behind all models of this kind is the same. 
We wish to be able to estimate both static reliability (number 
of remaining bugs) and dynamic reliability (frequency of fail
ures) of a program. I have argued in the previous section 
that early models make a false assumption about the rela
tionship between these two measures. Let us now look at 
the implications of the new model for reliability estimation 
and, in particular, what consequences would follow from 
using one of the naive models. 

It should be acknowledged, first, that the new model is 
a little more complicated. It is necessary to estimate three 
parameters (TV, a, P) from the available data, rather than the 
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two parameters (N, (j>) of the earlier models. This should not 
present any unusual difficulties. 

An important observation is that the Jelinski-Moranda 
model is a special case of the new model. If we let a—»oo, 
0—»°° in such a way that a/p = 4> in (5), we find that the 
Gamma (a,p) distribution becomes concentrated at c|>. Thus, 
if a particular data set produces values of a and (3 which are 
very large, the Jelinski-Moranda model will provide a good 
approximation with <}> = a/0. Of course, this operates in re
verse: if the best-fitting values of a and (3 are not large, this 
implies that the Jelinski-Moranda model would be a poor 
approximation to the underlying process. In summary, then, 
nothing can be lost by using the new model instead of the 
old ones; and something important may be gained. 

Assuming that the model does not reduce to the Jelinski-
Moranda one, in what ways will it give a different picture 
of the reliability growth taking place during debugging? 

In the first place, it suggests that there is a law of di
minishing returns operating in debugging. The reliability im
provements gained from successive bug-fixes gradually be
come smaller and smaller. This implies that estimates of N 
may be larger than for the Jelinski-Moranda model without 
necessarily implying equivalently large estimates of dynamic 
reliability (e.g. failure-rate). This law of diminishing returns 
suggests that it will often be appropriate to end debugging 
before the program is judged bug-free, without implying that 
such a program is unreliable. In other words, if we are solely 
interested in the performance of the program (failure rate, 
mean time to failure, etc.) we can accept a program known 
to contain many bugs, as long as we are assured that these 
bugs cause failures infrequently. This seems to me to accord 
better with intuition and real-life practice than the Jelinski-
Moranda assumption, which deems all bugs to have the same 
contribution to overall reliability. We have all, I think, en
countered programs containing bugs which we were pre
pared to live with. 

My own view, then is that almost always the appropriate 
criterion to adopt is dynamic reliability rather than number 
of remaining bugs. There are, though, situations where we 
might wish to have a very high assurance that no bugs re
mained. Examples would be an air traffic control system or 
nuclear power station safety system. It would not be suffi
cient to know that the program was very reliable, whilst 
containing bugs, if these bugs included ones with cata
strophic consequences. This observation reveals the weak
ness of an analysis purely in terms of the counting of failures 
and bugs (see quotation G). What we ought to have are 
models which enable us to predict the process of conse
quences of failures. There is, unfortunately, little data or 
research in this area—no doubt partly due to a natural re
luctance to accept a quantification of the unthinkable. We 
demand, instead, a high assurance that the system is "per
fect." 

If we wish to stop debugging only when we have a high 
assurance that the last bug has been removed, the new model 
gives some disturbing answers. Since the model will often 
tend to suggest that many bugs remain (albeit ones with small 
failure rates), and the successive times between their re

movals are Pareto distributed (the Pareto distribution has 
a long tail, i.e. large values occur with greater frequency 
than in the exponential case), we find that estimates of the 
time required to end debugging are very large. Often, with 
large systems, they will be prohibitively large. It is, effec
tively, impossible to make a large system bug-free. 

Again, this is not surprising: it seems to accord with ex
perience. But it is worrying. Contrast this with the hardware 
case: one of the important results of hardware reliability is 
that it is possible to make a system with any given reliability 
using components of any given unreliability. We cannot do 
this for software. Does this mean that we cannot use soft
ware for such critical applications? In practice we seem to 
have little choice. 

SUMMARY AND CONCLUSIONS 

The new model that I have described does, I think, rep
resent the relationship between static and dynamic measures 
of software reliability more naturally than earlier models. I 
would not, however, suggest that this or any other model 
is definitive. Indeed, I suspect that it will be a long time 
before we are able to apply these techniques with confidence 
to every software development project. In the meantime, we 
have some techniques which are useful when treated with 
care: in particular, it is necessary to be sure that the un
derlying modelling assumptions do apply to the project under 
examination. So my reply to speaker B would be that, whilst 
agreeing that software reliability techniques do not of them
selves help to improve reliability, it is a brave manager who 
asserts that his programs are reliable without in some way 
measuring this reliability. 

On the debit side, there is still a great deal of work re
maining. In my view, the single biggest gap in our knowledge 
lies in the area of costs/consequences of failures. We have 
little in the way of theory, and very little data; yet we all 
recognise that a reliability theory is only one step on the 
road to a more comprehensive cost theory. This is an area 
which urgently requires study. 

Another area where progress has been disappointing is 
that of structural models. It seems intuitively clear that the 
structure of a program will affect its reliability, but so far 
there is no effective way of incorporating into a reliability 
model the wealth of information available about program 
structure. 

Finally, a comment on quotations D and E. It is true that 
"difficulties" have been experienced with parameter esti
mation of the early models, and this has tended to alienate 
some potential users. It should be said that these problems 
generally only occur with small data sets (i.e. at the very 
beginning of the debugging period), when the evidence for 
growth in reliability is slight. Since all the models depend 
upon an assumption of reliability growth, it is not surprising 
that things can go wrong when such growth is not clearly 
evident in the data. It must always be borne in mind that 
these techniques are not a magical panacea: they are simply 
systematic methods of estimating what is actually present 
in data. 
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