
Writing less code—An approachable ideal 

by NAOMI LEE BLOOM 
American Management Systems, Inc. 
Arlington, Virginia 

ABSTRACT 

We are being inundated by a sea of unsatisfied user expectations. This growing, and 
sometimes frightening, backlog of application development requests has been much 
discussed but little reduced. One almost universal approach to reducing this backlog 
has been to try to improve the productivity of our scarce technical resources (pro­
grammers, systems analysts, etc.). A more promising approach to meeting user 
application needs may be to substantially reduce the amount of new code needed 
to satisfy these needs. It takes no great insight to become convinced that, other 
things being equal, the less code written to achieve a specific level of systems 
support, the less risk, cost, elapsed time, and frustration must be accepted by the 
organization. This paper presents a brief survey of some common, and some less 
obvious, applications-enabling techniques. Two of the most promising techniques, 
foundation software and adaptable application packages, are more fully described 
in separate papers. 

3 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1500676.1500678&domain=pdf&date_stamp=1983-05-16




Writing Less Code—An Approachable Ideal 5 

INTRODUCTION 

We are being inundated by a sea of unsatisfied user expecta­
tions. This growing, and sometimes frightening, backlog of 
application development requests has been much discussed 
but little reduced. And the invisible backlog, described by 
Martin1 as the unspoken (and perhaps not yet dreamed of) 
desires of our users, ensures that this problem is not likely to 
diminish. 

One almost universal approach to reducing this applications 
backlog has been to try to improve the productivity of our 
scarce technical resources (programmers, systems analysts, 
etc.). Productivity techniques, such as structured program­
ming, structured analysis, regression testing, and interactive 
programming, have been widely adopted, but still the backlog 
grows. Clearly, even quantum leaps in the productivity of 
scarce technical resources will not eliminate this backlog. 

A more promising approach to meeting user application 
needs may be to substantially reduce the amount of new code 
needed to satisfy these needs. Such application-enabling tech­
niques, to use a phrase that seems to have originated within 
IBM, are intended to reduce the amount of new code written 
rather than to merely expedite the production of new code. It 
takes no great insight to become convinced that, other things 
being equal, the less code written to achieve a specific level of 
systems support, the less risk, cost, elapsed time, and frus­
tration must be accepted by the organization. 

It is important to note, however, that other things are usu­
ally not equal. Many of the techniques described in this paper 
substitute increased consumption of computing resources for 
reductions in the personnel resources needed to achieve a 
certain level of user support. As hardware costs and the re­
sulting price performance ratios continue to improve while 
competent analysts, programmers, and related computer pro­
fessionals grow more scarce and more expensive, it is a rea­
sonable business judgment to explicitly trade off increased 
hardware resource consumption for man-hours of develop­
ment and user time. Such trade-offs must not compromise 
satisfying user needs and they must be carefully evaluated for 
each application so that the system overheads associated with 
various packages and tools do not catch the project team 
unawares. 

This paper presents a brief survey of some common and 
some less obvious applications-enabling techniques. Two of 
the most promising techniques, foundation software and 
adaptable application packages, are more fully described in 
separate papers by Curtis2 and Woodward and DiGiam-
marino.3 If properly used, the techniques presented here will 
reduce not only the amount of new code written by any one 
organization, but also the aggregate amount of new code. 

However, even if these applications-enabling techniques are 
fully applied, some new code will have to be written, and that 
should be done in a highly productive and orderly way. While 
this paper and those by Curtis and Woodward and DiGiam-
marino focus mainly on traditional business applications, 
applications-enabling techniques may be applied equally to 
the development of scientific, system-oriented or personal 
applications. 

THE SPECTRUM (OR HIERARCHY) OF 
APPLICATIONS-ENABLING TECHNIQUES 

There is nothing very mysterious about finding ways to write 
less code. You can do any of these things: 

1. Convince the user not to want (or to need) a new appli­
cation. 

2. Reuse old code—your own or someone else's. 
3. Use simple tools (remember how levers work?) to multi­

ply the work value of any code you do write. 
4. Get someone else, perhaps your users, to write the code 

for you. 

The key to successful applications enabling is to build these 
very simple maxims into your systems development life-cycle 
methodology. Applications development or even package in­
stallation projects should not be initiated, unless the new ap­
plication is really needed. And in every stage of the life cycle, 
you must ask yourself what alternatives exist to developing 
new code. Thus, applications-enabling techniques parallel, in 
some sense, the applications development life cycle. 

In the earliest stage, frequently called the business systems 
or strategic systems planning stage, you must ask the funda­
mental question of whether this application is worth doing at 
all. As the process goes forward, you should be asking the 
following types of questions: 

1. Has this application been developed before? If so, there 
may be some old code that you can reuse. 

2. Does this application lend itself to the use of simple 
tools? Either tools that someone else has developed, or 
that you yourself could develop? 

3. Does this application lend itself to the end user-written 
code that is characteristic of many data manipulation 
and analysis applications? 

By asking these types of questions at the appropriate points in 
the systems development life cycle, you can take advantage of 
the many techniques available to minimize the amount of new 
code written. The remainder of this paper explores these tech-



6 National Computer Conference, 1983 

niques in the order in which they tend to present themselves 
in the life cycle. 

DO NOT DEVELOP UNNECESSARY APPLICATIONS! 

The most obvious solution to our problem of how to write less 
code is to eliminate from the backlog all but the essential 
(translation: justified) applications. Strategic systems plan­
ning (also known as business systems planning) is the process 
by which an organization identifies and prioritizes its major 
systems development objectives. By explicitly aligning the 
applications development priorities with the organization's 
business strategy, we take a critical first step toward reducing 
the amount of new code to be written. 

Although there are many flavors of strategic systems plan­
ning described in the literature, the objectives identified by 
IBM4 in their business systems planning methodology are 
representative: 

1. To provide management with a formal, objective meth­
od for establishing priorities for corporate information 
systems without regard to local interests 

2. To ensure that scarce development resources are com­
mitted to those systems that have a long life, thereby 
protecting the systems investment, because these sys­
tems are based on the business processes that are gener­
ally unaffected by organizational changes 

3. To provide that the data processing resources are man­
aged for the most efficient and effective support of the 
business goals 

4. To increase executive confidence that high-return, major 
information systems will be produced 

5. To improve relationships between the information-sys­
tems department and users by providing for systems that 
are responsive to user requirements and priorities 

6. To identify data as a corporate resource that should be 
planned, managed, and controlled in order to be used 
effectively by everyone 

By ensuring that we develop only those applications whose 
relevance to the organization and benefits have been rigor­
ously examined, we have made the first breakthrough toward 
minimizing the backlog of unsupported application require­
ments. To repeat, if you develop no unnecessary applications, 
you will not be called upon to write (and maintain!) worthless 
code. 

REUSE OLD CODE—YOUR OWN OR 
SOMEONE ELSE'S! 

Where an application is justified, there are several possibili­
ties for developing it without writing any code or by writing 
only a small amount of (it is hoped) simple code. Application 
software packages have been available for nearly 30 years, and 
many routine business (and system, e.g., sorting) functions 
are very adequately supported by such packages. In addition, 
many of your business functions, such as edit routines for 
specific data elements, have probably been programmed 

many times within your own organization. Before deciding 
that an application is so unique as to obviate using any existing 
code—a common attitude among many in-house analysts and 
users—consider the many flavors of software packages and 
reusable in-house code. 

Currently available commercial applications software can 
be divided into three general categories: 

1. Traditional software packages, which perform a well-de­
fined set of functions with minimal installation options 

2. Contemporary software packages, which perform a well-
defined set of functions subject to many table-driven, 
user-defined, installation-specific options 

3. Adaptable software packages, which perform a flexible 
set of functions subject to many table-driven, user-de­
fined, installation-specific options 

Traditional Software Packages 

Initially, application packages were really custom software 
that the developer chose to share, albeit for compensation, 
with others. Early package vendors often sold their essentially 
custom systems with minimal documentation and installation 
support. Installing such a package required the buyer to mod­
ify code even to support the most obvious installation-specific 
requirements, for example, to change report headings to con­
tain the buyer's company name. 

The buyer of a traditional software package (and there are 
many currently being sold) gets some clear benefits: On short 
notice, he is able to obtain and install debugged code that 
performs some well-defined set of functions after minimal 
source code modification; and he pays a far lower purchase 
price than he would for equivalent custom development. 
Needless to say, the italicized adjectives are subject to the 
buyers' personal evaluation. But, in theory, the risks, cost, 
elapsed time (and, hopefully, frustration) of purchasing a tra­
ditional package are less than in doing the application from 
scratch. 

That's the theory, but the benefits are often not realized in 
practice. With a traditional package, every user-specific re­
quirement, from report headings and formats to variations on 
common algorithms, resulted in modifications to foreign (at 
best) or (more often) incomprehensible and undocumented 
source code. Although traditional packages remain an appro­
priate technique for writing less code, their inflexibility can be 
frustrating. 

Contemporary Software Packages 

Eventually, modern (that is, scientific) approaches to soft­
ware design, combined with the recognition that even the 
most flexible software buyer had some unique requirements, 
led to a new type of package. Written to be generalized, 
commercial software products, contemporary packages (my 
term) have the following: 

1, Well-documented source code constructed to provide 
low-risk user exits, that is, specific points at which user-



Writing Less Code—An Approachable Ideal 7 

written subroutines can be inserted without disrupting 
the program flow or voiding the vendor's warrantee 

2. Reference tables that remove from the source code such 
frequently customized functions as report headings and, 
in some cases, formats; message code literals and sever­
ity levels; data element names, field lengths, data types, 
and edit rules, including pointers to other reference 
tables of valid values and code translations; parameter 
values, for example, process scheduling dates, current 
withholding tax percentages, and airline overbooking 
percentages; calculation algorithms—sophisticated pack­
ages exist for which not only the parameter values but 
also the operators and calculation bases are table-driven; 
and coding structures, for example, the chart of accounts 
or organizational structure 

3. A formal installation process, including sample conver­
sion programs, job streams, and other code-reducing 
aids 

Like traditional packages, the purchase and use of contem­
porary application packages generally reduces the costs, risks, 
elapsed time, and personal frustrations of meeting system 
support needs. However, there is always a price for flexibility. 
Sophisticated reference tables can require considerable load­
ing and maintenance effort, although this approach is far less 
risky than modifying source code. Plus, users can often be 
roped into taking responsibility for loading and maintaining 
most of the tables. 

More important, from the perspective of containing cost, 
risk, and elapsed time, the availability of options means some­
one (usually a cast of thousands) must analyze, document, 
recommend, evaluate, and (it is hoped) decide on each de­
sired option. But contemporary applications packages go a 
long way toward meeting organization-specific requirements 
without developing new code. 

One further note before moving into a new area of pack­
aged software. As mentioned earlier, there is usually a hard­
ware resource consumption penalty for using generalized 
software. Contemporary packages which favor table-driven 
processes over hard-coded processing, exact a stiffer penalty 
in this regard than do the traditional packages. 

Adaptable Software Packages 

One of the most interesting recent developments in soft­
ware packages is the trend toward building groups of related 
modules that can be reconfigured to suit various application 
requirements. One such package was developed to support 
credit card collection activities (CACS). Recognizing that 
credit card collections are a specific example of a generic class 
of applications, that is, case tracking, scheduling, and state-
processing functions, the software was developed to automate 
these generic functions. With a combination of powerful refer­
ence tables, including process control tables, and program 
modules that can be combined in various ways, CACS can be 
used with minimal source code modifications to support a 
broad class of user requirements. The paper by Woodward 
and DiGiammarino3 describes CACS and the concept of 
adaptable software in more detail. 

Solve Part of the Problem With Old Code 

Access to mathematical and statistical subroutines was an 
early enhancement to many compilers. In contemporary sys­
tems, active data dictionaries often drive data element edits 
from a common or shared subroutine. Indeed, most data pro­
cessing shops have developed some standard source language 
components, perhaps as COPYLIB equivalents, that can be 
reproduced in various applications at minimal risk, cost, and 
so on. When we discuss using simple tools to leverage the 
value of any newly written code, one point that we'll develop 
further is the idea that the design effort must explicitly focus 
on identifying common processes that could be programmed 
once rather than needing to be redone in multiple programs 
or systems or installations. 

To take full advantage of existing code (or to identify com­
mon processes for initial development), the life-cycle meth­
odology must emphasize answering the following questions at 
each level of the design: 

1. Have we ever automated this function before? Even a 
relatively minor function, such as a date edit, can be 
programmed once, even as a generalized routine, at far 
less cost than having every programmer do his own 
thing. At a minimum, your effort for the year 2000 will 
be greatly simplified if you've been smart enough to 
incorporate a single date routine into all your systems. 
It's essential to evaluate each process in this way as a 
potential candidate for the organization's library of stan­
dard software. 

2. Will we ever need to automate this function again? Date 
edits, translations of organization codes into their cor­
rect names, report headings, and many other common 
functions appear in nearly every business application. 
Do them once in a generalized way, at somewhat greater 
cost initially, and use them forever. 

Unless the deliverables at each stage of the development life-
cycle explicitly address the issue of standard software (re­
usable code), many opportunities for writing less code will be 
missed—now and in the future. 

USE SIMPLE TOOLS 

There are two general approaches to multiplying the value of 
any code you do write: 

1. Extension software, which uses your (it is hoped) simple 
code written in the tool's own command language as the 
input from which it creates (by translation, compilation, 
assembly or one of several other extension techniques) 
very substantial functionality; and 

2. Conservation techniques, which are a formal set of de­
sign techniques that look for the common functional 
elements in an application in order to develop a single 
implementation of these common functions for use 
across the application. 



8 National Computer Conference, 1983 

Reusing date routines is a very simple case of conservation. In 
this section we'll explore more sophisticated examples of the 
two approaches just mentioned. 

Extension Software 

When you write JCL to unleash the power of IBM's various 
operating systems, you are using extension software to min­
imize the code you must write. My earliest programs in ma­
chine language on an IBM 1401 had no such extenders, and 
we wrote our own tape reads and printer writes. Now, every 
use of a system utility from within your application, that is, 
calling the COBOL internal SORT, leverages a few utility 
commands to perform considerable work. 

Thus, the universe of extension software ranges from the 
old and familiar to the new and still developing: 

1. Utility programs that provide system or housekeeping 
functions 

2. Report writers and inquiry languages, including graphics 
packages 

3. Database management systems with which you use sim­
ple commands in the application programs to invoke 
powerful data handling, edit, storage, and access 
capabilities 

4. Screen generators 
5. Data management and analysis tools, for example, SPSS 

and SAS 
6. Application generators 
7. Very high-level languages. 

The boundaries among these tools are not clear-cut, and 
many of them can be used by nontechnical persons to achieve 
the ultimate shifting of application development responsi­
bility. All of these tools hold the same promise of providing 
complex software to leverage simple commands into powerful 
functionality, and many deliver on this promise. 

However, there is a serious fly in the ointment regarding the 
use of extension techniques. We are now being inundated in 
a sea of command languages, specialized syntaxes, and easy-
to-learn, English-like, languages. There's not even agreement 
on how commands are delimited! Until considerable stan­
dardization occurs, taking advantage of even a small set of 
these tools will impose a serious training burden on any orga­
nization. And many professional programmers and users will 
resist using these tools because they quite reasonably perceive 
that the cost of mastering them is too high. 

Conservation Techniques 

Perceptive analysts and designers have always recognized 
common functions in their application specifications, but the 
process of doing so was largely informal. On many business 
applications, there are a rather large set of common functions 
that lend themselves to a common software approach. At 
American Management Systems, Inc., we have incorporated 
into our life-cycle methodology a quite formal process for 
searching for these common system elements. 

The decision to build an application around a base of com­
mon software modules must be made explicit quite early in the 
design process so that all further effort can be efficiently di­
rected. We call the resulting software, which provides com­
mon services to the rest of the application, foundation soft­
ware. The foundation software approach to developing large 
application systems is described in detail in the companion 
paper by Gary Curtis.2 

GET SOMEONE ELSE TO WRITE THE CODE! 

End-user computing is not a new idea. In the beginning of 
computer history, programming was the adjunct function of 
scientists, engineers, and mathematicians who were trying to 
use the great behemoths to calculate ballistic missile trajec­
tories and to develop software for other, equally forbidding 
problems. In my early days as a programmer, accountants 
were still developing the first automated payrolls, general led­
gers, and banking and insurance systems. Professional pro­
gramming is less than 20 years old, so why do we now treat 
end-user computing as a state-of-the-art development? 

One reason is that, until now, whoever approached the 
computer was forced to learn computer-speak—at great per­
sonal sacrifice. If we believe the advertisements for various 
end-user computing tools, the professional programmer may 
soon focus solely on core production systems and tool devel­
opment, leaving to the user development of most data extrac­
tion and analysis (MIS) systems. But the future has not yet 
arrived. 

Many of the simple tools described in this paper can be used 
by a nontechnical person after some training, and the growth 
of information centers attests to the availability of user-
friendly tools. Fourth generation languages, for example, 
RAMIS II or FOCUS, are advertised as powerful tools for 
developing whole applications from simple commands. The 
proliferation of personal computers attests to the user orienta­
tion of such tools as VisiCalc. Clearly, if the user can directly 
translate his unspoken (or never clearly spoken) information 
requirements into a working system, he won't have the DP 
staff to kick around any more. 

CONCLUSION 

Computers are worthless without programs, be they software, 
firmware, or part of the hardware itself. People still write 
programs, and people are expensive, unpredictable, and frag­
ile. If only to sell more computers, the hardware vendors 
would welcome (support and probably give birth to) any ap­
proach to program development that used more computer 
resources to free scarce personnel to develop new applications 
that used more computing resources. Since they develop many 
of the packages and tools and generally corner the market on 
really superb professional programmers, software vendors 
certainly favor the techniques described in this paper. Cor­
porate users and DP managements are also on board the 
write-less-code bandwagon. So why does the applications 
backlog continue to grow? 



Writing Less Code—An Approachable Ideal 9 

1. In-house programmers would rather write programs 
(not to mention design whole systems) than load tables 
for a contemporary package or do report writer setups. 
Perhaps we need a new category of DP aide or para-
professional who sees using tools as a desirable job 
description? 

2. Without standardization in grammar or syntax, cur­
rently available tools produce a Tower-of-Babel effect 
wherever they go. 

3. Many users have terminal block, not to mention various 
other phobia, that limit their ability to use any com­
puting tools. 

4. Computing resources, while obviously getting less ex­
pensive, are not free. Their acquisition, which always 
occurs in large increments, is a more visible expenditure 
to the organization than is the cost (opportunity cost) of 
unfulfilled application needs. 

Time is clearly on the side of the approaches described in 
this paper, but I wouldn't yet discharge my COBOL program­
mers nor declare that all user needs can be satisfied by their 
new Apples! As in all things, a balanced mix of these new 
techniques with more traditional application-development 
strategies will produce the best results. 

REFERENCES 

1. Martin, James. Applications Development Without Programmers. N.J.: 
Prentice-Hall, Inc., 1982. 

2. Curtis, Gary A. "Foundation Software: A Significant Improved Approach 
To The Development of Large Application Systems." AFIPS Proceedings of 
the National Computer Conference (Vol. 52), 1983. 

3. Woodward, Mary, and Peter DiGiammarino. "A Case For Adaptable Appli­
cations Software." AFIPS Proceedings of the National Computer Conference 
(Vol. 52), 1983. 

4. IBM. "Business Systems Planning—Information Systems Planning Guide," 
GE20-0527-3, 1981. 






