
Distributed processing with the Z8000 family 

by RICHARD MATEOSIAN and JANAK PATHAK 

Zilog 
Campbell, California 

ABSTRACT 

The Z8000 Family plan philosophy envisions a distributed processing approach to 
many Z8000 applications. The Z8000 Family consists of CPUs, CPU support cir
cuits, and a full complement of VLSI peripherals. These components are all inte
grated by the Z-BUS, which defines the interconnections and transactions among 
them. The basic philosophy of the family plan is that of distribution of intelligence 
and function among complementary VLSI components. Of the several possible 
realizations of this philosophy, the one chosen has the following major aspects: 

1. Synchronization primitives in bus and component architectures 
2. Extensively programmable VLSI peripherals and CPU support circuits 
3. Bus support for cooperative transactions 
4. Built-in support for interprocess message passing 

53 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1500774.1500781&domain=pdf&date_stamp=1982-06-07




Distributed Processing with the Z8000 Family 55 

SYNCHRONIZATION PRIMITIVES 

The Z-BUS has two features specifically designed for inter-
component synchronization in a distributed processing envi
ronment: 

1. The "bus lock" status code 
2. The resource request lines 

Each of these bus features is designed to work with specific 
CPU instructions. 

The "Bus Lock" Status Code 

The "bus lock" status code is one of the 16 possible codes 
representable on the status lines ST3-ST0 of the Z-BUS. This 
status occurs during the fetch cycle of the Test and Set (TSET) 
instruction, which is available on all Z8000 CPUs. The TSET 
instruction is used to implement semaphores. Its job is to test 
a specified memory location for a predefined "available" code 
and to set the contents of the memory location to "not avail
able." The inclusion of these two actions in a single instruction 
prevents any access to the specified location between the test
ing and the setting. That is, it prevents access by any other 
process running on the same CPU, which might happen if an 
interrupt occurred between separate testing and setting in
structions. When other devices, such as another CPU or a 
DMA controller, have access to the same memory as the CPU 
executing the TSET instruction, the testing and setting oper
ations must be inseparable at the bus transaction level. This 
inseparability is implemented through use of the "bus lock" 
status code. 

The Resource Request Lines 

In some distributed systems, several CPUs that do not share 
a common memory may need to share a common resource. In 
this case, the TSET instruction cannot be used. For such 
situations, the resource request lines of the Z-BUS have been 
provided. Figure 1 shows a prosaic example of their use: three 
CPUs sharing a line printer. When a CPU needs to use the 
line printer, it executes the MREQ instruction, which con
ducts a transaction on the four resource request lines; condi
tion code settings indicate to the program whether or not the 
CPU gained control of the line printer through this trans
action. If not, the MREQ instruction is executed again; if so, 
the line printer is used, then released through execution of the 
MRES instruction. If another CPU executes an MREQ in
struction while the line printer is being held, the resource 
request transaction results in a "not available" indication. 

PROGRAMMABLE VLSI COMPONENTS 

The use of extensively programmable VLSI peripherals and 
CPU support circuits brings aspects of distributed processing 
into most Z8000 applications, even those with only a single 
CPU. The principal programmable VLSI components of the 
Z8000 Family are summarized below. 

Memory Management Unit (MMU) 

The MMU provides address translation and access protec
tion, using internal tables transmitted from the CPU. Because 
of the Z8000's segmented addressing, which allows segment 

+5v 

PRINTER 

CPU 
i 

CPU 
2 

CPU 
3 

MI 

MO 

MI 

MO 

Ml 

MO 

RESOURCE 
CONTROL 
LOGIC 

1 1 
MMAI 

^MMST 
" 

MMRQ 

MMAO 

RESOURCE 
CONTROL 
LOGIC 

MMAI 

^MMST 
MMRQ 

MMAD 

RESOURCE 
CONTROL 
LOGIC 

MMAI 
,MMST 
MMRQ 

MMAO 

MI 

MO 

1 ^ 
<H Q = 

IV, 

1 V^A 

MMAI 

rnsT 

MMRQ 

MMAO 
»-

Figure 1—Resource lines provide non-memory-based synchronization 



56 National Computer Conference, 1982 

identity to be output by the CPU before completion of the 
indexing portion of address computations, the segment-re
lated address processing done by the MMU occurs in parallel 
with the CPU's indexing. This parallel processing approach 
minimizes the overhead of external address translation and 
access protection. 

DMA Transfer Controller (DTC) 

The DTC can carry out high-speed block data transfers and 
searches independently of the CPU's operation. Control of 
the DTC by linked lists of command blocks in memory allows 
the DTC and CPU to carry out joint functions asynchro
nously. When an MMU is in the configuration, the DTC can 
work with logical or physical addresses. A special control line 
and a bit in the MMU access control registers allow the MMU 
to protect certain blocks of memory from DMA transfers and 
to prevent CPU access to blocks of memory while they are 
being changed by a DMA transfer. 

FIFO Input/Output Interface Unit (FIO) 

The FIO allows asynchronous parallel data transfers be
tween processors, making it a key element in distributed 
multi-processor systems (see Figure 2). 

The FIO is simply a 128-byte, first-in-first-out buffer, ex
pandable in width and depth, equipped with bidirectional 
parallel interfaces at each "end" of the buffer and a set of 
message registers for interprocessor communications that by
pass the buffer. The FIO is designed to cooperate with the 
DTC in "flyby" transfers (described below) to initiate DMA 
transfers without CPU involvement and to terminate DMA 
transfers on the basis of patterns recognized in the transferred 
data. 

The Counter/Timer and Parallel I/O Unit (CIO) 

The CIO has many functions related to real-time I/O pro
cessing. It is not a separate I/O processing CPU for use with 
the Z8000, but it does perform many of the same functions: 
bidirectional parallel I/O with a variety of handshake modes, 
counting and timing of external signals, and priority interrupt 
control. 

The Serial Communications Controller (SCC) 

The SCC, like the CIO, carries out many of the functions of 
a dedicated CPU working with the Z8000. It performs all of 
the tasks associated with serial communications on two in
dependent 1 Mbit/second channels, using any of a variety of 
protocols. 

COOPERATIVE TRANSACTIONS 

An essential element of the Z8000's distributed processing 
Family plan is the use of cooperative transactions. The prin
cipal examples are: 

Figure 2—FIO links processors and cooperates in DMA transfers 

1. CPU/MMU generation of physical addresses 
2. Extended processing architecture 
3. DTC/FIO "flyby" transfers 

The common theme behind cooperative transfers is that each 
device has specific capabilities and that when a task requires 
a combination of capabilities, it is better to allow several 
devices to participate in the task than to replicate capabilities 
in several devices. Thus, for example, rather than equipping 
the FIO with DMA transfer capabilities, it was deemed more 
sensible to provide for joint DTC/FIO transfers. 

Of the three examples of cooperative transfers listed above, 
CPU and MMU cooperation has already been discussed. The 
other two examples will now be described. 

Extended Processing Architecture 

An important goal of the Z8000 Family design was to ac
commodate additional processing capabilities (such as what 
would be provided by a floating point chip) with no redesign 
of the overall system or software. This goal was achieved with 
a scheme that allows certain CPU instructions either to cause 
traps (allowing simulation of an absent chip's function) or to 
be executed cooperatively by the CPU and an extended pro
cessing unit (EPU). With this cooperative approach, the 
CPU's addressing capabilities are used to fetch or store the 
arguments, and the EPU performs the operations. EPU oper
ation can proceed in parallel with the execution of subsequent 
instructions by the CPU; synchronization is achieved by the 
EPU's assertion of the CPU's STOP line if the CPU fetches 



Distributed Processing with the Z8000 Family 57 

another EPU instruction before the EPU is ready to execute 
it. Figure 3 illustrates the cooperation of the EPU and the 
CPU. 

The Extended Processor Architecture gives designers a 
great deal of flexibility. For example, an EPU doing floating 
point operations could be used interchangeably with floating 
point software controlled by the same instruction stream; only 
a single bit in the CPU's Flag/Control Word (FCW) control 
register would need to change. Thus, a high-performance 
floating point chip could be an optional feature of a product 
that used floating point operations. The "slow" version would 
use software execution of the floating point instructions, and 
the "fast" version would use the chip to execute instructions. 
Both versions would have identical applications program code 
and circuitry. 

Figure 3—CPU and EPU cooperate to execute instructions 

The EPU monitors the status lines, looking for "Instruction Fetch, First 
Word" status. When this occurs, it examines the instruction presented on the 

AID bus. If the instruction is for that EPU, it either asserts STOP 
(if it is still busy executing a previous instruction) 
or initiates execution of the indicated instruction. 

The EPU instruction can be entirely internal to the EPU, or it can include 
one or more transfers of data between the EPU and CPU or EPU and 

memory. For each of these cases, the CPU generates the appropriate status 
signal (ST3-ST0) and transaction control (RAV, B/W, AS, MREQ, DS) lines, 

and the EPU takes or supplies data as appropriate. 

Flyby Transfers 

A "flyby" transfer is a DMA transfer in which the data 
never enters the DMA controller circuit. The DMA controller 
provides all necessary memory addressing, transfer counts, 
and bus control signals, but at the point in the transaction 
when data must pass from one component to another, an 
intelligent peripheral (like the FIO) supplies or takes the data. 
Flyby transfers are, therefore, approximately twice as fast as 
ordinary DMA transfers, in which one transaction is required 
to fetch the data from the source and to latch it in the DMA 
controller, and a second transaction is required to pass the 
data from the DMA controller to the destination. 

SUPPORT FOR MESSAGE PASSING 

The support for message passing in the Z8000 Family plan is 
predicated on the assumption that interprocess communica
tion in Z8000 systems can be conducted effectively through 
messages. Other means of interprocess communication are 
not precluded, but message passing is the only interprocess 
communication method supported by special architectural 
features. 

Since message passing is generally implemented through 
the movement of blocks of characters from one location to 
another, one of the principal means of supporting message 
passing in the Z8000 Family plan is the multi-level support of 
block data movement. The block I/O and memory transfer 
instructions of the CPU, the capabilities of the DTC, and the 
features of the FIO are all designed to complement each other 
in providing efficient, flexible block data movement through
out Z8000 systems. 

Another instance of message passing occurs in the commu
nication protocol defined between the Z8000 CPUs and the 
Universal Peripheral Controller (UPC). The UPC is a Z8-
based single-chip microcomputer designed for use in device 
controllers. It functions as a slave processor to the CPU, and 
because it is directly tied to the operation of a physical device, 
it is essential that a faulty CPU program not cause the UPC 
to fail. 

The fail-safe protocol for CPU/UPC communication calls 
for designation by the UPC of specific blocks of its internal 
memory for use as shared message buffers. The CPU has 
direct access to the designated buffer area but cannot access 
any other portion of the UPC's memory until the UPC desig
nates that portion as the message buffer. The CPU always sees 
a single address in its I/O address space as "UPC message 
buffer," but the UPC maps this address internally into the 
desired area of its memory. 

SUMMARY 

Distributed processing with the Z8000 Family is not a special 
case. The distribution of function among CPU and extensively 
programmable VLSI components demands that the basic 
mechanisms of communication and synchronization be in
cluded in the design of the Z-BUS and all the Z8000 Family 
components. In addition, specific attention has been given to 
multi-CPU system problems through use of specific CPU in
structions and bus protocols and through use of the First-In-
First-Out Interface Unit (FIO) as a flexible buffer between 
asynchronously functioning systems. Cooperative transac
tions, in which the functions of several components must com
bine to carry out the desired action, bring distribution of 
function to the bus and component level. Finally, architec
tural features supporting message passing facilitate distrib
uted processing at the software and application structuring 
level. 






