
Speak software and carry a strip chip 

by MICHAEL SHAPIRO 

Texas Instruments 
Houston, Texas 

ABSTRACT 

A short description of TI's innovative Strip Chip Architectural Topology is given. 
The key features of the TMS7000 8-bit Microlanguage Processor are listed, and each 
of the current family members is discussed briefly. The architecture of the 7000 
family is reviewed with emphasis placed on those aspects which enhance its pro­
gramming power. Addressing modes and other software highlights are discussed in 
some detail, followed by an overview of microprogramming. 

95 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1500774.1500787&domain=pdf&date_stamp=1982-06-07




Speak Software and Carry a Strip Chip 97 

INTRODUCTION 

In the 1970's the Texas Instruments team hit high and low, 
scoring points with both the budget-cutting TMS1000 4-bit 
microcomputer family and the cerebral TMS9900 16-bit mi­
croprocessor. While churning out yards of silicon in 4-bit 
slices (more than 70 million chips), we also introduced the 
industry's first 16-bit single-chip microcomputer—the 
TMS9940. Now, to center our offensive line, we have plunged 
into the 1980's with the innovative TMS7000 Microlanguage 
Processor family, our new 8-bit star. 

TI had no intention of being a look-alike in a marketplace 
which already accepted several 8-bit architectures. Rather, by 
using a unique design approach to lower chip costs, and by 
implementing a rich instruction set to raise programming effi­
ciency, we embarked on a third-generation design which is 
expanding into a powerful line of microcomputer products. 
This paper will touch first on the design concept and hardware 
features, concentrating later attention on the instruction set 
highlights and other software considerations. 

SCAT—STRIP CHIP ARCHITECTURE TOPOLOGY 

SCAT is TI's term for the design philosophy that incorporates 
the nonmemory elements of the microcomputer (the CPU 
registers, the ALU, the control logic) into a strip of vertical 
blocks in the logic design. Traditional design schemes have 
attacked the individual functional blocks first, leaving the 
problem of interconnect for last. Unfortunately, in the final 
layout, the interconnect often squanders the real estate 
prudently conserved in the early stages of design. To combat 
this profligate process, TI planned both architecture and lay­
out from the beginning. 

Figure 1 shows the layout of the TMS7020, the 2K ROM 
version of the TMS7000 family. By placing most of the ran­
dom logic in the "strip," we were able to use control and data 
paths that interconnect the active elements but take up almost 
no additional silicon area. The logic of the elements in the 
strip is implemented on a low level of the silicon bar, whereas 
the data and address busses are constructed in metal over the 
silicon. This avoids the wasteful dedication of bar area to 
interconnect alone. 

An additional space-saving feature of the SCAT design is 
the use of transistor arrays and ROM elements to replace 
random logic. Not only are these structures more compact, 
but the use of the micro-control ROM in place of the com­
monly used programmable logic array for the instruction 
decode allows the necessary control signals to be fed horizon­
tally out of the control ROM right across to the strip. Tor­
turous routing problems are avoided, and no additional com­
binatorial logic is required. A valuable by-product of this 

TMS 7000 MICROLANGUAGE PROCESSOR FAMILY 
TMS 7000/7020 MICROCOMPUTER DEVICE BAR PLAN 

PRE-SCALER 
TIMER 

CONTROL 

INTERRUPT 

ENTRY POINT 

ADDR 
BUFFER 

MEMORY 
CONTROL & GRP DECODE 

VCC 

PROGRAMMABLE VSS 

& 
CHGP 

RAM 
REF 

Figure 1—TMS7000/7020 microcomputer device bar plan 

approach is microprogrammability, which will be discussed 
later in this paper. 

KEY ELEMENTS OF THE TMS 7000 FAMILY 

The most attractive components of the TMS7000 family in­
clude the microprogrammed 8-bit CPU, addressing capability 
for up to 64K bytes of onboard and offboard memory, 32 
individual I/O lines, multiple operating modes, unrestricted 
stack for control and data storage, 8-bit timer with presettable 
5-bit prescaler, and four levels of vectored interrupt. The first 
family members have been implemented in high-density 
NMOS technology. CMOS and LMOS versions will follow in 
the months to come. 

Family Overview 

The TMS7000 family offers a variety of on-chip RAM and 
ROM configurations plus packaging and technology options 
to support the full scope of application requirements. The 
current family members include the TMS7000, 7020, 7040, 
70L22, and the soon to be released 70E40. 



98 National Computer Conference, 1982 

The TMS7000 is a ROM-less device with 128 bytes of RAM. 
It functions as a powerful 8-bit microprocessor with on-chip 
RAM, interfacing to as much as 64K bytes of external memo­
ry on an 8-bit data system bus. The TMS 7000 provides eight 
input and four output I/O pins on the chip, each of which may 
be set, reset, and tested individually. Utilizing the 8-bit data 
bus, any of the common 8-bit I/O peripherals can be 
easily interfaced to the TMS7000 in order to expand its I/O 
capability. 

The TMS7020 and 7040 are similar to the TMS7000 and 
contain the same CPU, RAM, and on-chip I/O when oper­
ating in the Microprocessor Mode. Moreover, these devices 
contain 2K and 4K respectively of on-chip ROM for applica­
tion programming. The 7020 and 7040 may be configured in 
several memory expansion modes where memory interface 
pins are traded off for I/O pins. Besides the Microprocessor 
Mode, the other choices are as follows: 

1. Single-Chip Mode providing 32 I/O lines 
2. Peripheral Expansion Mode for interfacing to 8-bit 

peripherals 
3. Full Expansion Mode to address 64K bytes of memory 
4. System Emulator Mode for aiding program development 

A (R0), functions just like a dedicated accumulator to allow 
for faster access times and the 1-byte instructions that are 
inherent in a register type of machine. Similarly, the second 
byte, Register B (Rl), can perform the task of a dedicated 
index register. However, the flexibility of the 7000 enables 
any one of the on-chip RAM bytes to assume the accumulator 
function by the addition of one byte to the instruction. True 
register-to-register operations can be accomplished through­
out the 128-byte register space when a third byte is used in the 
instruction to specify the second operand. 

Registers 

The 7000 family has three hard-wired CPU registers acces­
sible to the user. The 16-bit program counter (PC) contains 
the address of the next instruction to be executed. The status 
register (ST) contains three status bits that are used for condi­
tional jump instructions. Also present in this register is the 
interrupt enable bit (I). The 8-bit stack pointer (SP) points to 
the top (last) entry in the data stack, and it facilitates multi­
level subroutining and interrupts. The register file (RF) con­
sists of 128 bytes of on-chip RAM. 

The most pertinent features of the TMS7020 and 7040 mi­
crocomputers are as follows: 

1. Microprogrammed 8-bit CPU 
2. 2048 bytes of on-chip ROM—TMS7020 
3. 4096 bytes of on-chip ROM—TMS7040 
4. 128 Memory-mapped registers (register file) 
5. Multilevel program/data stack 
6. 32 bits of general purpose I/O 
7. On-chip 13-bit timer/event counter with interrupt and 

capture latch 
8. Three maskable interrupts 

The TMS70E40 is functionally identical to the 7040 except 
that the System Emulator Mode has been deleted and the 
on-chip mask ROM has been replaced by a programmable 
EPROM. One change has also been made in the instruction 
set to allow the 70E40 to program its own internal EPROM. 
This device is ideally suited for prototype fabrication or initial 
field testing of a new application prior to masked ROM vol­
ume production. 

The TMS70L22 is a lower-cost alternative to the 7020, 
which retains most essential features, but gives up nine I/O 
pins to accommodate the smaller (and cheaper) 28-pin pack­
age. Processed in our power-saving LMOS technology, the 
70L22 also works a trade on the clock frequency, operating at 
1 MHz versus 5 MHz, achieving a tenfold reduction in power 
consumption. A new feature on the 70L22 is a slowdown 
mode that allows the user to further reduce current to accom­
modate applications in which power must be conserved. 

Architecture 

All members of the TMS7000 family incorporate features 
that take the best from both memory- and register-based ar­
chitectures. The first byte in the RAM register file, Register 

Peripheral File 

Beyond the memory address space devoted to the register 
file, there is a 256-byte region for memory-mapped peripheral 
input/output control, called the peripheral file (PF). The 32 
bits of general purpose I/O, available in the Single-Chip 
Mode, are broken out into four 8-bit ports (see Figure 2) that 
can be manipulated via six dedicated peripheral instructions. 
Any of these bits may be individually set or cleared, or tested 
in conjunction with an appropriate bit-test-jump instruction. 

Not only can the dedicated input (A Port) and output (B 
Port) ports be read from and output to, but the individual bits 
of the bi-directional ports (C Port and D Port) can be config­
ured selectively as input or output by accessing their data 
direction registers (DDR), which also reside in the peripheral 
file. 

To simplify use of the peripheral file, a special peripheral 
file-addressing mode was established to reference all 256 
locations. Inputs and outputs on the I/O lines are accom­
plished by reading or writing to the appropriate port. For 
example, the B Port is implemented as port P6 in the periph-

BIDIRECTIONAL 
LINES 

BIDIRECTIONAL 
LINES 

Figure 2—I/O ports in single-chip mode 



Speak Software and Garry a Strip Chip 99 

eral file. Thus, writing to this port is handled by the 
instruction 

MOVP A,P6 

which takes the value in the Register A (RO) and stores it on 
the B Port outputs. 

In the Peripheral Expansion Mode, the peripheral in­
structions can be used to communicate with off-chip devices. 
When a memory address not corresponding to an on-chip port 
is used, the 7000 family device performs an external memory 
reference enabling an 8-bit peripheral chip to respond. 

Timer/Event Counter 

The 7000 family is equipped to handle real-time control 
applications by using a programmable 8-bit timer with a pre-
settable prescaler value of from 1 to 32. As shown in Figure 
3, the timer may use an internal clock source divided down or 
an external signal. On each positive edge transition of the 
clock input, the prescaler register is decremented. When the 
prescaler reaches zero, the decrement is performed on the 
8-bit timer, and the prescaler is reloaded from the control 
latch. 

As with the prescaler, the timer register will decrement 
until it reaches zero. The succeeding decrement will generate 
an interrupt (INT2), and the timer register will be reloaded 
from the timer latch. Since these registers reside in the periph­
eral file, the prescale latch value and the timer latch value may 
be written to, and the current timer value may be read using 
peripheral file instructions. Likewise, the timer on/off and the 
clock source bit are under program control in the peripheral 
file. 

PHI/8-
EXTERNA 

SIGNAL " 

~\ "CLK 

5-BIT CONTROL 
LATCH (PLI 

1 
5-BIT 

PRESCALER 

8-BIT TIMER 
LATCH ITL) 

1 
8-BIT TIMER 

(CURRENT VALUE) 

1 1 INT3 

I 
INT2 TIMER 

VALUE 

~i i 
8BIT 

CAPTURE LATCH 

i 
CAPTURE 

Figure 3—Programmable timer/event counter 

In the event counter mode, the counter will function as 
described above, but the decrementer clock source will now 
be line A7 of the A Port. This timer mode can also serve the 
purpose of a real-time clock when an appropriate source is fed 
to A7. The A7 input can also be used as a positive edge-
triggered interrupt by loading the prescaler and timer latches 
with 0. 

A unique feature of the 7000 timer is the 8-bit capture latch, 
which saves the current value of the timer when an external 
(INT3) interrupt occurs. This allows the processor to deter­
mine precisely when the external event took place by com­
paring the captured value to the value that is now current. 

This capability can be essential if the external interrupt occurs 
while the processor is servicing a higher-order interrupt. 

Interrupts 

There are three levels of maskable interrupts: the INT2 
associated with the timer and INT1 and INT3, which are 
externally triggered. The system reset cannot be masked, but 
the other three interrupts can each be enabled separately by 
bits in the I/O control register, arid as a group by the interrupt 
enable bit (I) in the status register. When an interrupt is 
recognized, the contents of the status register and the pro­
gram counter are pushed onto the stack. The processor then 
branches to the location stored in the corresponding interrupt 
vector location and starts execution of the interrupt routine. 

Interrupts may be tested without actually recognizing them, 
allowing for greater user flexibility. Interrupts may be edge-
or level-triggered, and no external synchronization is re­
quired. The signals are latched internally to catch short inter­
rupt pulses. 

The TRAP instruction can be used to create a "software" 
interrupt. There are 24 TRAP opcodes corresponding to 24 
trap vector locations in the highest addresses of memory. As 
in an interrupt, the trap vector will provide a branch address 
at which a subroutine begins execution. Limitation on nesting 
in subroutines or interrupts is only a function of the overall 
stack capacity. 

PROGRAMMING THE TMS7000 

From the outset, the TMS7000 family was designed to opti­
mize programming efficiency by virtue of its architecture and 
instruction set. The ease of access to the RAM, ROM, and 
I/O is achieved by mapping all of these into a single address 
space. Figure 4 illustrates the memory address scheme for the 
7020/7040. This structure can be fully exploited by means of 

^uuuu 

X)07F 
X)080 

X)0FF 
X)100 

X)1FF 
X)200 

>EFFF 
>F000 

>FFFF 

REGISTER 
FILE 

FUTURE 
USE 

PERIPHERAL 
FILE 

OFF-CHIP 
MEMORY 

EXPANSION 

ON-CHIP 
ROM 

PROGRAM MEMORY 

Figure 4—TMS7040 memory map 



100 National Computer Conference, 1982 

nine separate addressing modes. Add to this a full comple­
ment of standard instructions (the usual byte-oriented in­
structions plus multiplication, single- and multiple-bit tests, 
double precision arithmetic), and the design engineer has the 
upper hand in dealing with almost every application. 

Addressing Modes 

The nine different addressing modes for the TMS7000 fam­
ily are listed below. The terms Register A and Register B are 
synonymous with the first two bytes in the register file, R0 and 
Rl, respectively. 

1. Register File—The byte(s) following the opcode specify 
any byte in the register file as the operand location(s). 
This includes single operand instructions such as 

INC R56 Increment the contents of R56 

CLR R99 Clear R99 

and dual operand instructions such as 

ADD R68,R45 Add R68 to R45 and store in R45 
2. Register A—The operand location is implied, and R0 is 

fetched from the register file. This is a special case of 
register-file addressing, since Register A can be refer­
enced implicitly as A or explicitly as R0; however, the 
implied mode saves a byte in the instruction. For exam­
ple, the instruction 

MOV R20, R30 Move R20 to R30 

is three bytes versus two for the instruction 

MOV R20,A 

3. Register B—The operand location is implied, and Rl is 
fetched from the register file. This is identical to Regis­
ter A addressing except now B is the implied register. 

4. Peripheral File—The byte following the opcode specifies 
a port in the peripheral file which contains the operand. 
These instruction mnemonics are identified by a P suffix. 
Each is a dual operand instruction with a peripheral file 
as the second or destination operand. Examples of these 
are 

XORP A,P3 Exclusive OR A with P3 and 
place the result in P3 (the timer 
control register) 

%>60, Setup bits 1,2 of D PORT as 
DDDR inputs 

MOVP 

5. Direct—The two bytes after the opcode contain the ad­
dress of the byte in memory that contains the operand. 
The notation for the direct memory address is the ex­
pression preceded by the @ sign. For example 

LDA @ > E34D Copy the contents of memory lo­
cation > E34D to Register A 

6. Indirect—The byte following the opcode specifies the 
second of a RAM register pair which contains the ad­
dress of the operand. This addressing mode is indicated 
by the * before the register as in the following in­
struction: 

STA *R19 Copy the contents of A into the 
memory location specified by R18 
and R19 

7. Indexed—The 16 bits following the opcode are added to 
the B register contents to form the effective address of 
the operand. The format for this instruction is given 
below. 

BR @HERE(B) Branch to the address specified 
by the contents of B and the val­
ue of the symbol HERE 

8. PC Relative—The byte following the opcode is used as 
a signed offset to the current PC to produce the effective 
address. This is the addressing mode used for all jump 
instructions, and it eliminates the designer's concern 
about where in ROM his program is jumping to, since 
the offset may lie anywhere in ROM. 

9. Immediate—The byte following the instruction is the 
operand. For example, the instruction 

ANDP %COUNT, Logically AND the value of 
P10 COUNT and the contents of P10 

and copy results to P10. 

illustrates the use of immediate addressing. 

Because of the memory-mapped architecture, many modes 
can apply universally to any 16-bit address in the TMS7000 
memory space. Thus ROM, RAM, or peripherals can be ref­
erenced with similar instructions possibly using common rou­
tines. The need for dedicated instructions in each category is 
now eliminated. 

A very flexible feature of the 7000 is the capability of freely 
specifying two operands, the source and destination, within 
the dual operand addressing modes. While most microcom­
puters would restrict one of the operands to a particular regis­
ter, the 7000 allows any RAM location to be named the source 
or the destination. 

Instruction Set Highlights 

As mentioned before, the TMS7000 family provides the full 
range of standard instructions. Rather than list the entire set, 
we will discuss some of the more unique members. 

The MPY (Multiply) instruction takes the product of a gen­
eral source and destination operand and places the 16-bit 
result in either A or B. The 7000 can perform this 8-by-8-bit 



Speak Software and Carry a Strip Chip 101 

unsigned multiply in just 17.2 microseconds, assuming a 5 
MHz clock. 

The MOVD (Move Double) instruction is used to move a 
16-bit value to a specified register pair destination. The source 
for this move can be an immediate constant, another register 
pair, or an indexed address. 

The DAC (Decimal Add with Carry) and DSB (Decimal 
Subtract with Borrow) instructions provide the unique feature 
of performing fully corrected decimal addition or subtraction 
on two packed binary coded decimal (BCD) bytes. 

The DECD (Decrement Double) instruction allows a 16-bit 
address to be easily decremented. This instruction can be 
especially useful for referencing tabular information in 
memory. 

There are several jump instructions with especially useful 
test conditions to dictate transfer of program control. The 
BTJO (Bit Test and Jump if One) instruction looks at those 
bits which are l's in the source operand and compares the 
corresponding bits in the destination operand. If any of these 
bits are also l's, the relative jump is taken. There is a similar 
instruction BTJZ which does the comparison on bits which are 
0's. These instructions allow for single- or multiple-bit tests. 

Instructions as powerful as these are usually only available 
on more expensive high-end microcomputers (if at all). How­
ever, in the case where the designer has underscoped the task 
or runs up against a particular application intricacy, micro-
programmability provides a possible out. 

Microprogrammability 

When TI implemented the TMS7000 instructions using a 
control ROM rather than random logic, it opened up the 
possibilities for user-defined "personalized" instruction sets, 
because the control ROM can be altered and then mask-
programmed for production. Although the standard instruc­
tion set is very efficient for most applications, the user may 
find a repetitive program sequence of several instructions that 
could be reduced to a single command through microcoding. 
This would both increase throughput and reduce memory us­
age. Approximately 75% of the standard instructions are des­
ignated as core instructions and must be maintained. The 
remainder may be swapped out for user-created instructions 
which are customized to best serve that particular application. 
Software will soon be available to aid users in the design of 
microcode for a custom instruction set. 

SUMMARY 

This paper has attempted to give a broad overview of the 
TMS7000 family. We have given the reader only a brief taste 
(with software seasoning) of the capabilities available in the 
7000 larder. In addition to the stock of products now avail­
able, we will soon be introducing a CMOS implementation 
and enhanced feature versions. To the hungry design engineer 
in search of a satisfying microcomputer—bon appetit! 






