
L&un-f12-456

I

TITLE: PA RALI,I% PROCESS lNC A LAKE SCT ENTT FI c PR(3111,EM

Aumonm IWhcrt III rmu to

f“ ---Im,,.,”, ,, _,

... ---- ..-.

I 1

4!!&

.

LmsmlalrmsLasAlarms NationalLaborator
lmsAlamos,NewMexico8754 ~

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

PARALLEL PROCESSING A LARGE SCIENTIFIC PROBLEM

by Robert Hiromoto

Los Alamos National Laboratory

MS 265, C-3

Los Alamos, New Mexico

Phone (505) 667-7028

ABSTRACT

We discuss a parallel-processing experiment that

uses a particle-in-cell (PIC) c(,[le to study the

feasibility of doing large-scale scientific

calculations on mult:ple-processor architectures. A

multithread version of Lhis Los A]amos PIC code was

successfully implemented and timed on a UNIVAC. System

1100/80 computer, Use of a single copy of the

Instruction stream, and common memory to hold data,

rlimin.ll(”d dalii transmission between processors. “I”hr

mul[iplv-processing algorithm exploit% the’ PIC ~*ode’s

high dcgrrc of Iarg(’, independent tasks, ;Js w(!11 IS

Lhl’ configuration of Lhe UNIVAC Syst.crn l’10()/lJO.

Timing results lor Ihc multithrcad vu]sion [)! the PIC

C(MI(’ using onr, t,W(], thrwr. and four idrnt iral

procr~:; ors arc given and arc shown to h.~vc promising

sprvdIIp t imes whrn rompilrcd 10 the ovrra] 1 run t imrs

mr;lsurcd for a singir -thread version of thr lJIc coctr.

Robert Hiromoto
Parallel Processing

INTRODUCTION

Anticipating a need for increased computational speedl for

laboratory codes (which is unlikely to be attained by single

processor systems), we have initiated studies to test the

feasibility of doing parallel processing on multiple-processor

2architectures. In part, our hope is to learn about multiple-

processer architectures, the compatibility of algorithms with

particular parallel processing eilvironments, parallel processing

speedups as a function of the number of processors, and the

desirable characteristics of multiple-processor architectures in

general.

This paper presents the results of our investigation

concerning the feasibility of parallel processing a specified

scientific problem on a commercially available multiple-

proccssor system and to determine the computatiol~al speedups as

a function of the number of processors employed. The problem

used in this experiment involves a particle-in-cell (PIC) method

for simulating the electrostatic int.eract.ions of a collision~ess

plasmd. We first outline the PIC algorithm ancl graphically

describe its p;]rallcl-processil~g strllcturc as implcmcntcti in out-

cxpcrirncnt , A gcncr;ll clcscription of’ the UNIVAC System 11~0/80

is l.hcn given, followud by a discussi~,n of tl~c implrmcntaliuri of

the p]~ code 011 that syst.cm. Rc:+ults of’ our experiment are

1

Robert Hiromoto
Parallel Processing

given, showing overall computational speedups as a function of

the number of processors and the equivalent number of parallel

acti ies.

PARTICJ.E-IN-CELL

The problem selected for our parallel-processing experiment

models the collisicnless, electrostatic interaction between two

superimposed plasma beams with a relative drift velocity. 3 The

code uses a particle-in-cell method for studying the interaction

and resulting motion of the charged particles in this

4
simula’:ion. This code is of general interest to us because it

represents a class of a]goriLhms exl~ibiting limited vector

capabilities tor implementation on our vector computers, Due to

the PIC algorithm (discussed below), the conversion LO parallel

processing was madv with relative ease.

PIC :],1.gori[hm.- —,..,.-.

Robert Hiromoto
Parallel Processing

constituting the two superimposed, collisionless plasma beams.

During this initialization, the particles are distributed

uniformly in space and randomly in velocity. The movement of

particles is discretized in a time step (dt).

During each computational time step of the simulation (see

7+’
/ Figure 1), cell-centered charges (C) are calculated by linearly

weighting each particle’s charge contribution to the four

nearest-neighbor cell centers. Using this charge distribution,

Poisson’s equation with periodic boundary conditions is solved

for Ltie associated electrostatic potential (0) on the grid of

cell cent~rs, with the resulting electric (E) field interpolated

to individual particle pesit.ions. Und~r this E field, each

yL .

r
Z parLiclc’s positiun and velocity (see Figure 2) are advanced

(pushed).

I]lC parall(’1-pl”or(:ssil~.g structure..- --- - ..—

I

Robert Hiromoto
Parallel Processing

IMPLEMENTATION ON A UNIVAC SYSTEM 1100/80

Our parallel-processing version of the PTC code was imple-

mented on a UNIVAC 1100/80 multiple-processor system.* The

System 1100/80 may be configured with from one to four proc-

essors, UNIVfl.C’s designation for its System 1100/80 with a

one-, two-, three-, or four-processor configuration is denoted

by 1100/81, 1100/82, 1100/83, or 1100/84, respectively.

- - .- . -- -. - - .- --- . -- .- - - . - - - . - . . . - - - .- . -- - . - - - . - . . - . - . . - -. . -- .

*provided for our use by the Compu er Operations Department,

Sandia Nation~l Laboratories, Albuquerque, New Mexico.

. - -- - - - . . - . -- -- - --- . . - -. - - - -- - - - - -- - - - -- - -- - - - - -. - - - - --- - - . - -

A global software manager (EXEC) executes OUL of all

processors and, coupled with hardware devices, drives the

multiple-processor architecture of the System 1100/80. The

aggregate of processors : +arr iI common memory, wl~ich allows for

multiple-prc)gram execution !or tilsks written in Fort ran or

Cobol . A print’ipa] f“u:lturl’ of tllc System ;100/80 is its ability

to multiprocess a fjinglr Cobol instrurtic)n sl.rewn. This

capability, though not in(’orlx)rated by lJNIVAC for proc(’ssin~

Forlran programs, was t’sscnl idl for our ~jrlrlicular cxpcrin]t~nt ,

lnlpl~’mt’n!at iorl. . .

Robe. t Hiromoto
Parallel Processing

management of data addressing and the mechanics of par?.llel-

processing synchronization were devised and implemented by Dave

Hammer of Sandia National Laboratories, Albuquerque, NM.*

*By devising an address mapping and a synchronization scheme

for multithread activities, Hammer essentially converted

the Sy”’.em 1100/80 into a Fortran parallel-processing

machine for our use.

.- --- -. - .- - -. - . . --- --- - . . - . . - . . - .- - .- --- . -- -- - -. --- ------- ----

77A+ Figure 4 represents a simplified diagram of a UNIVAC

1100/8L (four-processor) system, on which our PIC timing runs

were made, Although not indicated in the diagram, the

processing of each activity is not necessarily handled by only

one physical proce:;sor. In f,lct during the complete

computational cy-cle of such a;~ activity, all processors may

timeshare the execution of the activity. A distinction,

therefore, is made between activities and processors.

All rt’lev;lnt particle-in-cell data were put into various

comm ~11blocks and partitioned f“or use by specific activities.

Duu to software addressing limitations, the PIC code was

restricted to a maximum of 262k (decimal) words of total memory.

F{]r rach part icle, five data quantities (two for position and

three for vclorily) wrt-c required. Three mesh quantities,

con:;titbt ing a ~lit X 34 mesh sizr, were required and duplicated

for a m~ximum of right (pi~rtic]e-push) activities. A total of

37k p(irti[.1[’s wcr(’ initi:Jted for proccssirg, t-vquiring 213k

5

Robert Hiromoto
Parallel Processing

words of memory (particle plus mesh data). A further 47k of

memory was used for the instruction stream, address mapping, and

activity synchronization scheme.

PIC PARALLEL PROCESSING RESULTS

A multithread version of the PIC code was executed on a

IJNIVAC system 1100/80* with one, two, three, and four identical

UT
processors. Overall run times were measured and the results are

P
%’ < given in Table I and Figure 5. The speedup values are the

ratios of the overall execution time of a single-thread version

of PIC (running on one processor) to the overall execution time

of a multithread PIC code running on two, three, and four

processors. We found that a maximum speedup of three was

attained when using four processors with four activities spawned

for each task.

;+Provided for our use through the courtesy of SPERRY UNIVAC,

Roseville, Minnesota.

Because the multit.bread PIC was not totally parallel (see

Figutme 3), the speedup fcr four processors may not indicate the

full, pot.entiql of the PIC algorithm. The times rccordcd .Incl

used for the paral Iel-processing spccciup calculations were based

on wall (’lock Limes, with liming runs made in a dedicated moclc,

t)ue to r’:source and t.imc limitations, actual CPU times were not

6

F.obert Hiromoto
Parallel Processing

in effective processing time during the synchronization stage of

each multithread activity.

CONCLUSIONS

Our results strongly suggest the possibility of significant

computational speedups for a multiple-processor architecture

s~.milar to the UNIVAC System 1100/80. The coupling between

algorithm and processing architecture iliustriltes not only the

seemingly high degree of compatibility between our particular

code and the computing environment, but also the need to

distinguish those algorithms for which specific multiple-

processor architectures are most. effective.

The straightforward use of Fortran in coding the multi-

thread PIC algorithm greatly simplified the overall task of

implementing our parallel-processing experiment. Programming in

Fortran is certainly a characteristic of Laboratory codes, and

would be a desirable feature to retain when converting such

codes from serial- to parallel-processing systems,

Encouraged by our resul~s, we currently are studying the

possibility of a totally parallel version of ‘Lhe PIC algorithm.

We also plan to investigate parallel processing on multiple-

processor architectures possessing as many as 16 processors.

7

Robert Hiromoto
Parallel Processing

REFERENCES

1. Buzbee, B.L., W. J. Worlton, G. Michael, and G. Rodrigue.

“DOE Research in Utilization of High-Performance Computers.”

Los Alamos Scientific Laboratory report LA-8609-MS, December

1980.

2. Bucher, 1. Y., P. O. Fredrickson, and J. W. Moore.

“Experience with a Multiprocessor Based on Eight FPS 120B

Array Processors.” Los Alamos Scientific Laboratory report

LA-UR-8I-1082 (unpublished), 1981.

3. Morse, R. L., and C. W. Nielson. “One-, Two-, and Three-

Dimensional Numerical Simulation of Two Beam Plasmas.”

Physical Review Letters 23 (10 November 1969), 19, pp.

1087-1090,

4 Morse, R. L., and C. W. Nielson. “Numerical Simulation of

Warm Two Beam Plasma.” The Physics of Fluids 12 (November.— —

1969), 11, pp. 2418-2425.

Robert Hiromoto
Parallel Processing

FIGURE CAPTIONS

Figure 1. A distribution of particles (dots with attached

arrows --denoting position and velocity, respectively)

contained within the four nearest-neighbor, cell.-

centers (+) from which the charges Ci, Ci+l, C., and
J

c.
J+l are in pa~t calculated.

Figure 2. Distribution of particles pushed under the influence

of the four nearest-neighbor, cell-centered (+)

electric fields Ei, Ei+l, E., and Ej+l (determined by
J

solving Poisson’s equation (-V*@= C) for O) and the

uniform background electric/magnetic fields.

Figure 3. A multithread version of PIC as implemented on a

UNIVAC System 1100/80 with two parallel-processing

tasks (1 and 4), where An ❑ total number of parallel

activities (multi thread), n ❑ total number of

particles, ni = number of particles for activity i, C

= total charge (distribution), and Ci = charge

computed for activity i.

Figure 4. A simplified diagram of the UNIVP.C System 1100/80

with four processors (P), designated 1100/84,

Figtirc 5. Plot of number of processors versus speedup

corresponding to Table I.

Table 1. Run times and .speec]ups as a fu~lction of number of

processors and number of activities for each parallel

task spawned.

9

2 5’7110

Number of Activities Number of Avci-age run Speed up
Per Pard]el Task Processors Time (millisecond)

1111 1102631
1.80

Q 3 4~~14 2.43

4 4 r-rlqtn. 3G.)uo. 3.09

..

.

—

I I I.,## 5 5
i I

I

i

-–

!
: I

i I 1

I

in. .
I Cj+l i

1

I

+ 1.

,%
,
:

;% I
:

d#/
1 :m

● “* :
%

#8 “ ;
.

--—. .. —.-... .- . . . -. . . - 9; —-—..

.

.

r,

:
1

. - . .m—
1
.

v’s
,
i
n

.
i
1
I
i1

----- .. —.. .—.

t

#9—

I

I
I i I

.

I
I

i

1

i

i

%% - .- m..-—-—.—. -. -- --.—-— 1 .-. -------

— w

\A

. . ..— I—-.w.

5

I I

Fit:. ?

.

“I .1 ‘“

.
‘\

.

-.

I

I.. \il

●
✚

m

■
✍✎ ✎

✎ ✎

.
■ ✎ i :1 .’

J

■ m.... b : .111

.
m

.

m

m .fi

\
.

● 1. n

I
CENTRAL MEMORY

1-
CACHE

I

CACHE L
I—

P P - P P

4-

3-

2-

1-

1 I I I I
,.

