LA-UR-82-456 ( [",?/_ 5’_1(74,047 —-—k

L-umumwuwmhmmnmmwmummhnmmmmdmmW-ﬂw.vm-:m-u

LA=UR=-£2=-450

NDU2 0174

TITLE: PARALLEL PROCESSING A LARGE SCTENTIFIC PROBLEM

AUTHONS): Robert Hiromoto }

susmTED Yo National Computer Conference, Houston, X, June 1982

By acoepiancy of 1M aricle. The publighar racepniies Mol the U § Gevernmen! relaing 8 nenestivaive roysity-ires keanad io publnh ar rep! egute
e publehed form ©f e CONIDUNON. O 10 aOw Sthere o @0 00. for U B Qevernment purssses

The Lee Alemos Netions! LEDeraton requesie Nl 1he pubisher ienudy 18 Srhois 89 wart Roriermay vnger the aursines of e U § "spertment of Cnergy

L@S Aﬂ am@g Los Alamos National Laborator
Los Alamos,New Mexico 8754


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


PARALLEL PROCESSING A LARGE SCIENTIFIC PROBLEM

by Robert Hiromoto
Los Alamos National Laboratory
MS 265, C-3
Los Alamos, New Mexico

Phone (505) 667-7028

ABSTRACT

We discuss a parallel-processing experiment that
uses a particle-in-cell (PIC) cude to study the
feasibility of doing large-scale scientific
calculations on mult.ple-processor architectures. A
multithread version of this Los Alamos PIC code was
successfully implemented and timed on a UNIVAC System
1100/80 computer. Use of a single copy of the
instruction stream, and common memory to hold data,
climinated data transmission between processors. The
multiple-processing algorithm exploits the PIC code's
high degree of large, independent tasks, as well as
the configuration of the UNIVAC System 1100/80.
Timing results for the multithread version of the PIC
code using one, two, three, and four identical
processors are given and are shown to have promising
speedup times when compared to the overall run times

measured for a singic-thread version of the PIC code,

Keywords: Parallel processing, activities, processors,
common memory, algorithm, multiple-processor

architecture.



Robert Hiromoto
Parallel Processing

INTRODUCTION

Anticipating a need for increased computatinnal speed1 for
laboratory codes (which is unlikely to be attained by single
processor systems), we have initiated studies to test the
feasibility of doing parallel processirg on multiple-processor
architectures.2 In part, our hope is to learn about multiple-
processcr architectures, the compatibility of algorithms with
particular parallel processing environments, parallel processing
speedups as a function of the number of processors, and the
desirable characteristics of multiple-processor architectures in
general.

This paper presents the results of our investigation
concerning the feasibility of parallel processing a specified
scientific problem on a commercially available multiple-
processor system and to determine the computational speedups as
a function of the number of processors employed. The problem
used in this experiment involves a particle-in-ceil (PIC) method
for simulating the electrostatic interactions of a collisioniess
plasma. We first outline the PIC algorithm and graphically
describe its parallel-processing structure as implemented in our
experiment. A general description of the UNIVAC System 1100/80
is then given, followed by a discussion of the implementation of

the PIC code on that system. Results of our experiment are



Robert Hiromoto
Parallel Processing

given, showing overall computational speedups as a function of
the number of processors and the equivalent number of parallel

acti ies.

PARTICLE-IN-CELL

The problem selected for our parallel-processing experiment
models the collisicnless, electrostatic interaction between two
superimposed plasma beams with a relative drift vc]ocity.3 The
code uses a particle-in-cell method for studying the interaction
and resulting motion of the charged particles in this
simulation.a This code is of general interest to us because it
represents a class of algorithms exhibiting limited vector
capabilities lor implemcntation on our vector computers. Due to
the PIC algorithm (discussed below), the conversion to parallel

processing was made with relative ease.
PIC algorithm

The particle-in-cel]l method used in this study decomposes a
region of space into a collection of cells. These cells are
then used for tracking particle movement, and assist in
cvaluating relevant physical properties. An initiaiization
stage scets up two ensembles ~f charged particles (we shall use

particles to mean charged particles throughout this paper)



;ﬁ;&um.S

Robert Hiromoto
Parallel Processing

constituting the two superimposed, collisionless plasma beams.
During this initialization, the particies are distributed
uniformly in space and randomly in velocity. The mcvement of
particles is discretized in a time step (dt).

During each computational time step of the simulation (see
Figure 1), cell-centered charges (C) are calculated by linearly
weighting each particle's charge contribution to the four
nearest-neighbor cecll centers. Using this charge distribution,
Poisson's equation with periodic boundary conditicns is solved
for the associated electrostatic potential (¢) on the grid of
cell centers, with the resulting electric (E) field interpolated
to individual particle pecsitions. Under this E field, each
particle's position and velocity (see Figure 2) are advanced

(pushed).

PIC parallel-processing structure

The computational structure of the PIC alpgorithm, as
implemented on the UNIVAC System 1100/80, :akes advantage of the
large, natural computational divisions ot the particle initial-
ization and aspects of the particle-in-cell calculations.

Figure 3 graphicaolly displays the multi/single-thread diagram of
our PIC code, with accompanying definitions of the respective

calculation(s) each thread performs.



Robert Hiromoto
Parallel Processing

IMPLEMENTATION ON A UNIVAC SYSTEM 1100/80

Our parallel-processing version of the PIC code was imple-
mented on a UNIVAC 1100/80 multiple-processor system.* The
System 1100/80 may be configured with from one to four proc-
essors. UNIVAC's designation for its System 1100/80 with a
one-, two-, three-~, or four-processor configuration is denoted
by 1100,81, 1100/82, 1100/83, or 1100/84, respectively.
*Provided for our use by the Compu er Operations Department,

Sandia Nation«l Laboratories, Albuquerque, New Mexico.

A plobal software manager (EXEC) executes out of all
processors and, coupled with hardware devices, drives the
multiple-processor architecture of thc¢ System 1100/80. The
aggregate of processors fhare a common memory, which allows for
multiple-program executjon for tasks written in Fortran or
Cobol. A principal f{eature of the System 1100/80 is its ability
to multiprocess a single Cobol instruction stream. This
capability, though not incorporated by UNIVAC for processing

Fortran programs, was essential for our particular experiment,
Implementation

The PIC code was written entirely in Fortran, and

implemented with a single copy of the instruction stream.  The

4



Robe. t Hiromoto
Parallel Processing

management of data addressing and the mechanics of parailel-

processing synchronization were devised and implemented by Dave

Hammer of Sandia National Laboratories, Albuquerque, NM.*

*By devising an address mapping and a synchronization scheme
for multithread activities, Hammer essentially converted
the Sy<*em 1100/80 into a Fortran parallel-processing

machine for our use.

;?7““’4' Figure 4 represents a simplified diagram of a UNIVAC

1100/84 (four-processor) system, on which our PIC timing runs
were made. Although not indicated in the diagram, the
processing of each activity is not necessarily handled by only
one physical procesisor. In fuct during the complete
computational cycle of such an activity, all processors may
timeshare the execution of the activity. A distinction,
therefore, is made between activities and processors.

All relevant particle-in-cell data were put into various
comr 'n blocks and partitioned for use by specific activities,
Duc to software addressing limitations, the PIC code was
restricted to a maximum of 262k (decimal) words of total memory.
For each particle, five data quantities (two for position and
threc for velority) were required. Three mesh quantities,
constituting a 34 X 34 mesh size, were required and duplicated
for a maximum of eight (particle-push) activities. A total of

37k particles were initiated for processiryg, requiring 213k



Robert Hiromoto
Parallel Processing

words of memory (particle plus mesh data). A further 47k of
memcry was used for the instruction stream, address mapping, and

activity synchronization scheme.

PIC PARALLEL PROCESSING RESULTS

A multithread version of the PIC code was executed on a
UNIVAC System 1100/80* with one, two, three, and four identical
processors. Overall run times were measured and the results are
given in Table 1 and Figure 5. The speedup values are the
ratios of the overall execution time of a single-thread version
of PIC (running on one processor) to the overall execution time
of a multithread PI1C code running on two, three, and four
processors. We found that a maximum speedup of three was
attained when using four processors with four activities spawned
for each task.

*Provided for our use through the courtesy of SPERRY UNIVAC,
Roseville, Minnesota.

Because the multijthread PIC was not totally parallel (see
Figure 3), the speedup [cor four processors may not indicate the
full potential of the PIC algorithm. The times recorded and
used for the parallel-processing speedup calculations were bascd
on wall clock tLimes, with timing runs made in a dedicated mode.
Due to rosource and time limitations, actual CPU times were not

measured; therefore, no estimates could be determined for losses

6



Rcbert Hiromoto
Parallel Processing

in effective processing time during the synchronization stage of

each multithread activity.

CONCLUSIONS

Our results strongly suggest the possibility of significant
computational speedups for a multiple-processor architecture
similar to the UNIVAC System 1100/80. The coupling between
algorithm and processing architecture illustr:.ites not only the
seemingly high degree of compatibility between our particular
code and the computing environment, but also the need to
distinguish those algorithms for which specific multiple-
processor architectures are most effective.

The straightforward use of Fortran in coding the multi-
thread PIC algorithm greatly simplified the overall task of
implementing our parallel-processing experiment. Programming in
Fortran is certainly a characteristic of Laboratory codes, and
would be a desirable feature to retain when converting such
codes from serial- to parallel-processing systems.

Encouraged by our results, we currently are studying the
possibility of a totally parallel version of ithe PIC algorithm.
We also plan to investigate parallel processing on multiple-

processor architectures possessing as miany as 16 processors.



Robert Hiromoto
Parallel Processing

REFERENCES

1. Buzbee, B.L., W. J. Worlton, G. Michael, and G. Rodrigue.
"DOE Research in Utilization of High-Performance Computers."
Los Alamos Scientific Laboratory report LA-8609-MS, December
1980.

2. Bucher, 1. Y., P. 0. Frederickscn, and J. W. Moore.
"Experience with a Multiprocessor Based on Eight FPS 120B
Array Processors." Los Alamos Scientific Laboratory report
LA-UR-81-1082 (unpublished), 1981.

3. Morse, R. L., and C. W. Nielson. "One-, Two-, and Three-
Dimensional Numerical Simulation of Two Beam Plasmas."
Physical Review Letters 23 (10 November 1969), 19, pp.
1087-1090.

4 Morse, R. L., and C. W. Nielson. "Numerical Simulation of
Warm Two Beam Plasma." The Physics of Fluids 12 (November

1969), 11, pp. 2418-2425.




Robert Hiromoto
Parallel Procescing

Figure 1.

N

Figure

Figure 3.

Figure 4.

Figure 5.

Table 1.

FIGURE CAPTIONS
A distribution of particles (dots with attached
arrows--denoting position and velocity, respectively)
contained within the four nearest-neighbor., cell-

centers (+) from which the charges Ci’ C C., and

i+l Y3

C are in part calculated.

j+l
Distribution of particles pushed under the influence
of the four nearest-neighbor, cell-centered (+)

electric fields Ei’ Ei+1' E., and Ej+l (determined by

J
solving Poisson's equation (-V2¢= C) for o) and the
uniform background electric/magnetic fields.

A multithread version of PIC as implemented on a
UNIVAC System 1100/80 with two parallel-processing
tasks (1 and 4), where An = total number of parallel
activities (multithread), n = total number of
particles, n, = number of particles for activity i, C
= total charge (distribution), and Ci = charge
computed for activity i.

A simplified diagram of the UNIVAC System 1100/80
with four processors (P), designated 1100/84,

Plot of number of processors versus speedup
corresponding to Table I.

Run times and speedups as a function of number of
processors and number of activities for each parallel

task spawned.



Number of Activities] Number of Average run Speedup
Per Parallel Task Processors Time (millisecond)
1 1 102631 1
2 2 57110 1.80
3 3 42214 2.43
4 4 35263 3.09

TABLF. 1




L W

Fi..,



Ejy E
+ « |9 ‘ +
{ 1N/ 5
« f N
q I g
: LIS :’
I 'D
I; G- ¥ 4.' 6' ‘Q
: ¢ 40
: ‘.‘. g n J B
: +v 2ol N+
i ) " Ei+
!
|
.i.._____._._. e e S
5 p ¢

SA



(PANY

a i :I .
-'I a =l i .ill
N P . LI
. (Y]
\n L] .
i atle o
s [ ]
Y Y (R | ' AN
Fraan Ui e
Y ] F P T

1
l.AD



CENTRAL MEMORY

CACHE

CACHE

FIf.




SPEEDUP

4 —
3-
@
2=
1_
| | I
1 2 3
NUMBER OF PRGOZSSC=S



