
The importance of Ada programming support environments

by THOMAS A. STANDISH

University of California
Irvine, California

ABSTRACT

In this paper it is argued that even if we assume the most optimistic scenario we can
think up for the introduction of the Ada* language, the language alone, in the
absence of an Ada Programming Support Environment (APSE), is insufficient to
achieve the gains in programming productivity and software reliability with which
use of Ada tantalizes us.

Moreover, it is argued that the level of support envisaged in the Minimal Ada
Programming Support Environment (MAPSE), specified in the STONEMAN,
which provides a rudimentary level of capability incorporating a text editor, com
piler, linker/loader, and symbolic debugger, is also insufficient; and that it is time
to seize the opportunity to conceptualize what sort of advanced programming
support tools should populate a mature APSE of high utility and effectiveness. In
this context, consideration of support tools for software project management, inter
active programming, modern programming practices, software reuse, and improved
program understanding techniques arises.

*Ada is a trademark of the United States Department of Defense (OUSDREAJPO).

333

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1500774.1500815&domain=pdf&date_stamp=1982-06-07

Ada Programming Support Environments 335

WHY THE ADA LANGUAGE NEEDS AN APSE failing to implement certified compilers that achieve per
formance and reliability, there is no point in discussing
what must follow for the whole game to be won.)

3. If certified Ada compilers run standard Ada on most
machines of reasonable size, the best we can hope for is
that a framework will be established permitting a flour
ishing commerce of Ada programs. (Few people these
days are so ill-informed as to think that having a pre
cisely defined and implemented standard programming
language will solve the program portability problem
100%. After all, programs are written containing depen
dencies on operating system calls, device characteristics,
and other interface requirements that lie outside the
scope of definition of a programming language. None
theless certification, standardization, and widespread
implementation of Ada compilers could help reduce the
cost of program transfer, since machine dependencies
could be isolated in Ada packages with invariant exter
nal interfaces, and since some machine dependencies
could be expressed using Ada representation specifica
tions. This tells us that we might be able to reduce the
cost of program transfer with Ada to a point at which it
costs less to do it with Ada than with other approaches.)

Suppose that the most optimistic scenario we can dream up for
the introduction of the Ada language actually comes to pass.
Will this be enough for us to reap the benefits we are hoping
Ada can provide?

In this paper, it shall be argued that the Ada language,
considered as an isolated tool, cannot solve all of the problems
of reliability, performance, and productivity that must be ad
dressed if Ada is to succeed in realizing the high hopes some
have for it. Rather, it is argued that Ada must be buttressed
by powerful programming support environments that provide
the means for performing a variety of essential tasks lying
beyond the reach of programming languages.

Defining an Ada Programming Support Environment
(APSE) as the collection of tools, resources, procedures, and
policies that support the development, repair, and upgrade of
Ada software, it is argued that even more than the rudi
mentary level of capability envisaged in the STONEMAN's
Minimal Ada Programming Support Environment (MAPSE)
is necessary if we are to achieve the significantly improved
levels of programming productivity and software quality with
which use of Ada beckons us.

Thus, the central question that the paper addresses is: could
the Ada environment be even more important than the Ada
language in helping to achieve the benefits we seek from the
use of Ada?

First, for the purposes of setting an appropriate context for
the subsequent discussion, let's conjure an optimistic scenario
for successful introduction of the Ada language.

An Optimistic Scenario

Our optimistic scenario for the introduction of Ada consists
of the assumption that we succeed in accomplishing the fol
lowing steps:

1. There would have to be success in establishing precise,
comprehensible standards for the definition of Ada. If
we don't know what Ada means, we can't write certified
compilers which implement the common meaning and
provide a framework for exchanging Ada programs.

2. There would have to be success in writing certifiable Ada
compilers which produce efficient, reliable running pro
grams. (Note: the author is not so naive as to be unaware
that the risk that we might fail in getting this far isn't
entirely trivial; but the rest of the paper would be rather
uninteresting if we don't assume we can reach at least a
state of affairs where we have certified Ada compilers
running on many computers of reasonable size. That is,
if we lose the game by failing to define a standard and by

To continue by optimistic speculation, if Ada becomes
widespread in use, begins to function as a medium of ex
change, and opens up a substantial market for the sale and
exchange of programs, what response might one assume from
the free enterprise system?

Perceiving that a wide market will exist for sales, here is a
list of possibilities: (a) computer manufacturers would de
velop certified Ada compilers for new computers; (b) software
firms would develop and sell Ada programming support tools;
(c) publishers would publish books and educational materials
on Ada; (d) educators would introduce and teach Ada in
programming courses (perceiving that Ada, in addition to
being popular and useful, could be a good carrier of modern
programming principles); and (e) enterprises could get Ada
programmers, Ada compilers, and Ada programming support
tools in the marketplace and could import and export Ada
programs.

To complete the optimistic scenario, we assume that some
(but not necessarily all) of these economic consequences of
the introduction of Ada take place.

Ada is Still Not Enough!

Even if an optimistic scenario such as this comes to pass, it
is argued that the Ada language alone is not enough. More is
needed. Here's why.

Wonderful as they are, programming languages play only a

336 National Computer Conference, 1982

small role in the software life cycle. It is estimated, for in
stance, that in software projects of substantial size, coding the
design in a programming language accounts for only 15% of
the total pre-release cost, and that the total pre-release cost
may be only 10-30% of the total life cycle cost.

Furthermore, many activities in the software life cycle are
supported by tools, procedures, or policies that are not di
rectly connected with the programming language (s) employed
by the project.

For instance, software project managers devise project
schedules; manpower loading plans; milestone charts; and
budgets for machine cycles, memory, and monetary re
sources. They monitor tasks on the critical path, report on
progress and resource consumption, incrementally shift re
sources in response to perceived needs, and oversee the hiring
and training of new project personnel. Recent evidence1 sug
gests that upward of 80% of software project failures are
software management failures as opposed to technical fail
ures. Few if any of these management activities depend in any
essential way on the choice of the programming language.

The system requirements and the system design may be
expressed in natural language or in design representation no
tations separate from the programming language; and activ
ities such as requirements tracing and design reviews may take
place using notations, language, and procedures entirely sep
arate from those given by the programming language.

Maintenance of current system documentation, module test
sets, test completion status, and system configurations may
depend more on database, word processing, and file system
tools than on the programming language or on programming
language support tools.

Let's take a glimpse at some software economics, for a
moment, to try to establish a framework in which we can
discuss the relative importance of trying to introduce vari-

_ouS kinds of support tools and policies into a programming
environment.

In the first place, the demand for computer instructions
appears to be increasing rapaciously, and a serious shortfall of
programmers to produce them exists in relation to demand.

For instance, the number of instructions NASA used to
support the Mercury, Gemini, Apollo, and Space Shuttle pro
grams has been growing at 24-25% per year for a couple of
decades. While Gemini support took 1 million support in
structions, and Apollo took 10 million, the Space Shuttle now
takes 40 million. Most of the Space Shuttle instructions sup
port ground launch and pre-launch check-out procedures and
were designed to avoid the necessity of employing a ground
launch support crew of 20,000 people. What is true for NASA
appears to be true for the economy in general; namely, auto
mation js being employed to avoid inefficient, labor-intensive
production, and computers are being used to enhance product
versatility and market appeal. Thus, the overall demand for
computer instructions appears to be increasing in the neigh
borhood of 10% per year in many industries, and the national
demand for computer instructions may, in general, be grow
ing somewhere near 20% per year.

However, the supply of programmers is increasing perhaps
only in the neighborhood of 5% per year, and programmer
productivity has been falling! During the 1960s when high-
level languages were replacing assembly languages, program

mer output (in delivered instructions per person year) was
increasing at perhaps 8-11% per year; but recently, the an
nual increase has been estimated to be in the range of 4-5%
per year.

In short, given the poor prospects for increasing the output
of new programmers from the educational system, there may
be no alternative but to increase software productivity if the
demand for production of computer instructions is to be met
and if the shortfall in programmers will be a condition we will
have to live with.

How then do we address the problem of increasing produc
tivity? One approach is to analyze the cost drivers that cor
relate with the cost of software projects. In his new book,
Software Engineering Economics2 Barry Boehm introduces
the Constructive COst MOdel (COCOMO), which is a good
fit to a database of measurements on 63 software projects
spanning a range of different application areas. Briefly, one
starts with a baseline estimation formula such as

MM = 2.4(KDSI)**1.05

giving an initial unadjusted estimate of the number of man-
months (MM) to complete a project as a function of the
number of thousands of delivered source instructions (KDSI),
and one multiplies by coefficients that determine whether the
estimated man-months will increase or decrease as a function
of measurable software project characteristics (which can be
thought of as cost-drivers). The ratio between the best in
crease and worst decrease in productivity for each cost-driver
forms a productivity range. Examples of such productivity
ranges are as follows:

1.20—programming language experience
1.32—turn-around time
1.49—software tools
1.51—modern programming practices
1.57—applications experience
2.36—product complexity
4.18—personnel/team capability

Software Productivity Range
(from cover of Boehm2)

Some of these cost-drivers are controllables. That is, by in
vesting to provide software project resources or by following
certain project disciplines, we can control factors that enhance
productivity.

For instance, we could invest in good programming support
equipment to give programmers excellent turn-around time.
We could provide good software tools. We could train pro
grammers to use the programming language well. We could
adopt modern programming practices as a software project
discipline, and we could attempt to select programmers with
proven track records and applications experience, if possible.
The cumulative effect of these measures on productivity could
be very dramatic (e.g., factors of 4, 8, or 10 could be achieved
using the short list of measures just given), and these could
easily dwarf any effects of choosing to use Ada or not.

In summary, we see that software productivity may depend
heavily on the characteristics of the environment employed

Ada Programming Support Environments 337

and not so heavily on the characteristics of the programming
language employed.

What is true for software productivity may be true to a
lesser but still significant extent for software reliability and
software performance.

Software performance will obviously be influenced criti
cally by whether or not it is possible to compile Ada source
programs into compact, fast-running object programs. How
ever, performance may also be influenced critically by
whether or not the Ada Programming Support Environment
provides effective tools to perform measurement and opti
mization. Frequently, upwards of 90% of the execution costs
are attributable to 7 to 10% of the code. Identifying and
optimizing the critical sections has been found to be an effec
tive way to improve performance. If the name of the game is
measurement and tuning, both the programming support en
vironment and the compiler must work together to provide
the solution, with the environment furnishing performance
measurement tools and the compiler providing optimizations.
Where compiler optimizations are insufficient, the environ
ment may make the key difference by providing source-to-
source program improvement transformations or by making
manual program rewriting more manageable and systematic.

Where software reliability is concerned, the programming
language can play a key role in promoting reliability. Pro
ponents of Ada have argued that Ada will promote reliability
because it supports clean module interfaces and information
hiding (through packages) and because it permits clear ex
pression of control and data (through exceptions, tasking, and
an extensive data type system). Opponents have argued that
Ada programs may not be reliable because the language is too
complex or may have ill-defined interactions between its fea
tures. But we have all known reliable programs written in
unreliable languages and unreliable programs written in reli
able languages. Promoting reliability may have more to do
with assuring clean designs and thorough testing than with the
characteristics of the language in which the program is writ
ten. It is the environment, not the language, which must pro
vide tools and disciplines to perform design, design review,
and testing.

Thus, it could be that the reliability of Ada programs will be
more dependent on the characteristics of the Ada Program
ming Support Environment and the programmers who write
them than on the characteristics of Ada itself. In summary,
the success of Ada in promoting software reliability, per
formance, and productivity depends critically on the char
acteristics of APSEs. While Ada is clearly necessary for suc
cess, even under the most optimistic scenario, Ada alone is
insufficient.

A BRIEF VIEW OF THE STONEMAN PHILOSOPHY

The STONEMAN3 requirements document for APSEs speci
fies three levels of structure: (a) a KAPSE or Kernel Ada
Programming Support Environment, (b) a MAPSE or Mini
mal Ada Programming Support Environment, and (c) the
APSE itself. In a nutshell, the KAPSE provides basic oper
ating system services and database capabilities and is intended
to provide a machine-independent set of kernel services on

which APSEs may be built. The MAPSE provides minimal
Ada programming support services such as: (a) a text editor,
(b) an Ada compiler, (c) a linker/loader, (d) an Ada debug
ger, and (e) a command language interface (for logging on,
calling tools, manipulating files, etc.).

The STONEMAN philosophy, expressed in its so-called
"strategy for advancement," envisages that the KAPSE can
be implemented as a standard operating system kernel on
many machines to provide a standard foundation for APSEs.
If the KAPSE could be standardized and expressed as an Ada
package, then all the KAPSE services and capabilities could
be made available to Ada programs, and a major deterrent to
program portability could be overcome.

The MAPSE, if successful, could provide a means for using
Ada as a systems programming language for implementing
not only Ada applications programs, but also the tools that
constitute the full APSE. Thus, one could get going by sup
plying a rudimentary Ada programming environment (the
MAPSE), and one could bootstrap out of the rudimentary
environment into an advanced APSE by using Ada as the
systems programming language for populating the APSE with
environment tools. Such tools could be compiled, loaded, and
run on top of the MAPSE to form a highly portable APSE.

APSE tools would thus be supplied in an Ada library avail
able as a companion to the MAPSE. Current design efforts
(the Army's ALS or Ada Language System and the USAF's
AIE or Ada Integrated Environment) focus on providing the
MAPSE-level capability specified in the STONEMAN but do
not call for design of full APSE toolsets.

While STONEMAN provides some guidance on what
APSEs must support effectively (such as maintenance and
configuration management), STONEMAN does not attempt
to present an extensive or very refined view of how to popu
late an APSE.

At the moment, therefore, an important opportunity exists
for conceptualizing what an advanced APSE should contain.

Thus it is important to do our homework on what a full
APSE should look like, and a number of important targets of
opportunity come to mind.

POSSIBLE TARGETS OF TECHNOLOGICAL
OPPORTUNITY FOR APSES

Interactive Programming

Although it is hard to cite credible experiments that demon
strate that interactive programming is more productive than
batch programming, some experiments suggest an improve
ment of roughly 33% if interactive programming is used in
place of batch.

Good interactive languages, such as APL and LISP, permit
sophisticated and powerful actions to be taken by program
mers while interacting with their programs. For example, at a
point of suspension of a running program, a user at a terminal
can do such things as: (a) print formatted values or texts of
defined procedures; (b) define new procedures or assign new
values to new variables; (c) perform queries ("Where am I?,
Who calls this procedure? Who can read and set this vari
able?"); (e) resume program execution at the point of sus-

338 National Computer Conference, 1982

pension (or at other valid points of control); (f) call for expla
nations to be printed from online manuals; and (g) set break
points, traces, and performance measurement probes.

It is rare that such interactive services are available to the
user of a high-performance systems programming language,
such as JOVIAL, CMS-2, BLISS, C, Pascal, or MESA. In
order to support queries and incremental changes character
istic of interactive programming, programs must usually be
represented in a somewhat elastic (and thus incrementally
updatable and explicitly queriable) representation. Usually
this implies that program representations must be interpreted
to be executed. On the other hand, to get high performance,
programs must usually be compiled into rigidly efficient ma
chine code. Such machine code does not conveniently support
incremental editing in source program terms, and it usually
does not contain symbolic information discarded by compilers
yet needed at run-time during interactive sessions to reply to
user queries in source program terms.

To the author's knowledge, nobody has succeeded satis
factorily in providing the combined advantages of compiled
systems programming language performance with the power
of interactive language query and incremental change. There
may be a considerable technological challenge in provid
ing this kind of support for Ada (or for any other high-per
formance systems programming language for that matter).

Management Support

If the evidence suggests that upward of 80% of software
project failures are management failures and not technical
failures, and that these failures result, in large measure, from
ignoring software practices of proven effectiveness, what
might we do to support project management so it can avoid
well-known pitfalls?

Might we have online management interviews at the time a
project is being organized to remind managers about software
practices of proven effectiveness and to enable them to select
thorough, effective project disciplines well-matched to a par
ticular organization's characteristics?

What sort of management support tools might help man
agers devise project schedules, estimate resources required,
make required reports, track project activities (monitoring
especially the activities on the critical path), and adjust re
sources incrementally to fit changing needs?

Programming Methodologies?

Should an APSE support a programming methodology? If
so, should it try to support a standard one and encourage its
use? For example, should an APSE provide for use of an
Ada-based program design language (PDL) together with
some sort of discipline for design composition, design review,
and requirements tracing?

Any suggestion that an APSE should support a standard
programming methodology usually engenders heated oppo
sition and dire warnings about the evils of premature stan
dardization, and the points about such evils are usually well-
taken. However, it may be possible to phrase the policy on the
use of such methodologies in order to overcome most of the

objections. One might say, for instance, "Here is a recom
mended methodology which is provided in the APSE library,
and here are its abstract characteristics: (a) it provides a clear,
comprehensible design representation, (b) it is accompanied
by effective ways of getting design review by independent
teams, and (c) one can determine which design modules are
responsible for implementing which items of the system re
quirements, and so on." An RFP might then specify the fol
lowing: "You can propose either to use the recommended
methodology or you can propose to use your own, but if you
choose to use your own, you should give some justification as
to how using your own meets the essential abstract charac
teristics of the recommended one."

Software Reuse

Since the biggest cost-driver in software projects is the size
of the software, any method that permits successful reuse of
software to implement portions of a system dramatically in
creases productivity. Although the idea of software reuse has
been around for a long time, and although it works in limited
application areas (typified by well-defined interface and com
position paradigms and by libraries of useful, well-indexed,
well-explained components), we do not generally build soft
ware by assembling catalogued, prefabricated components.
Getting software reuse methods to work as a general program
composition technique may involve surmounting challenges
such as finding ways to reuse designs and higher-level program
abstractions and finding how to generate concrete refinements
of the abstractions that meet the extraordinary variety of con
crete usage constraints encountered in practice. Nonetheless,
the payoff for finding an effective software-reuse technology
would be dramatic, especially if performance measurement
and certification were performed on all components entered
into a component catalogue.

Program Understanding

Software maintenance accounts for 70 to 90% of the cost of
the software life cycle for many large, long-lived systems. If,
as recent evidence suggests, upward of half of the software
maintenance time is devoted to trying to understand how a
program works and what the effects of a proposed alteration
would be, the activity of trying to understand programs and
the effects of incremental program changes could be a domi
nant cost-driver in the system life cycle.

If this is the case, there might be an inviting technological
target of opportunity in trying to devise ways of making it
vastly less expensive and more effective to go about under
standing programs. We might ask the following questions:

1. How can we write comprehensible program descrip
tions?

2. Is paper a good container for program documentation,
or can we do better by using a computer to store expla
nations appropriate for different intended audiences and
by computing various appropriate views for the different
audiences?

3. Given a projected software lifetime (and other appropri-

ate unit costs), what level of capitalization is appropriate
for developing program explanations?

4. Are there any techniques for "program archaeology,"
wherein, if we are confronted by an undocumented or
poorly documented program, we could systematically go
about trying to develop an understanding of it and
whereby we could estimate the cost of doing so ahead of
time?

Advanced APSE Tool Sets

What kinds of tools could an APSE provide the system
builder? (Unfortunately, there is a great variety of answers to
this question, and space does not permit the author to do
more than provide a pointer or two to the literature. Two good
sources that provide a variety of views and excellent bibli
ographies are Hiinke4 and SIGSOFT.5)

RISK AREAS IN APSE DEVELOPMENTS

What are some of the risk areas that confront the develop
ment of APSEs? Since this is highly speculative, the author
prefers to give just two areas where he perceives risk:

1. No KAPSE Standardization: What if the KAPSE never
gets standardized? The KAPSE in STONEMAN is en
visaged as a machine-independent Kernel operating sys
tem and database support system. If it can be standard
ized (with a machine-independent interface, given, for
example, as an Ada package), one can write machine-
independent Ada programs which call on KAPSE ser
vices in a standard notation (much as package Standard
functions in Ada now), and such Ada programs will
transfer to every machine on which an Ada compiler
interfaces to a standard KAPSE. A special case of pro
gram transfer of great interest is a full APSE with tools
written in Ada and depending on KAPSE services for
support. Thus, KAPSE standardization holds the key to
the machine independence of APSEs and to providing a
powerful conduit for portability of Ada programs and
environments. If the KAPSE cannot be standardized,
can the market for APSE tools, which depends on hav
ing a viable method for the exchange and portability of
Ada programs, ever become an effective reality?

2. Too Little and Too Late: What if some of the thirty or so
current efforts to write Ada compilers succeed and seri-

Ada Programming Support Environments 339

ous Ada programming begins before MAPSEs and
APSEs can be designed, built, and used? If serious Ada
programming begins starting with a compiler, does one
not then tend to use the available tools in the de facto
environment surrounding that compiler (meaning the
text editors, file system, linkers, and so forth), and do
not critical dependencies then develop which inhibit pro
gram transfer to other different environments (with
other different file system and operating system conven
tions)? To what degree is the timeliness of APSE devel
opment a critical factor in its possible success?

CONCLUSIONS

In conclusion, this paper argues that the benefits some seek
for the introduction of Ada cannot be realized effectively
without also introducing advanced APSEs that provide capa
bilities well beyond the STONEMAN MAPSE level. Further
more, the time is ripe to do our homework on what a full
APSE should look like, and a number of inviting targets of
technological opportunity present themselves.

ACKNOWLEDGMENTS

This work was supported by the Defense Advanced Research
Projects Agency of the United States Department of Defense
under contract MDA-903-82-C-0039 to the Irvine Program
ming Environment Project. The views and conclusions con
tained herein are those of the author and should not be inter
preted as necessarily representing the official policies, either
expressed or implied, of the Defense Advanced Research
Projects Agency or the United States Government.

REFERENCES

1. Boehm, Barry. "Software Engineering as it is." 4th International Confer
ence on Software Engineering, Munich, September 1979.

2. Boehm, Barry. Software Engineering Economics. Englewood Cliffs, NJ:
Prentice-Hall, 1981.

3. Buton, J.N. and Druffel, L. E. "Requirements for an Ada Programming
Support Environment, Rationale for Stoneman." Proceedings COMPSAC
80, Chicago, 111., October 1980.

4. Hiinke Horst. Software Engineering Environments. North Holland, Am
sterdam, 1980.

5. SIGSOFT. NBS Workshop Report on Programming Environments, Soft
ware Engineering Notes, Vol. 6, No. 4, August 1981.

