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ABSTRACT 

In this paper it is argued that even if we assume the most optimistic scenario we can 
think up for the introduction of the Ada* language, the language alone, in the 
absence of an Ada Programming Support Environment (APSE), is insufficient to 
achieve the gains in programming productivity and software reliability with which 
use of Ada tantalizes us. 

Moreover, it is argued that the level of support envisaged in the Minimal Ada 
Programming Support Environment (MAPSE), specified in the STONEMAN, 
which provides a rudimentary level of capability incorporating a text editor, com
piler, linker/loader, and symbolic debugger, is also insufficient; and that it is time 
to seize the opportunity to conceptualize what sort of advanced programming 
support tools should populate a mature APSE of high utility and effectiveness. In 
this context, consideration of support tools for software project management, inter
active programming, modern programming practices, software reuse, and improved 
program understanding techniques arises. 

*Ada is a trademark of the United States Department of Defense (OUSDREAJPO). 
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WHY THE ADA LANGUAGE NEEDS AN APSE failing to implement certified compilers that achieve per
formance and reliability, there is no point in discussing 
what must follow for the whole game to be won.) 

3. If certified Ada compilers run standard Ada on most 
machines of reasonable size, the best we can hope for is 
that a framework will be established permitting a flour
ishing commerce of Ada programs. (Few people these 
days are so ill-informed as to think that having a pre
cisely defined and implemented standard programming 
language will solve the program portability problem 
100%. After all, programs are written containing depen
dencies on operating system calls, device characteristics, 
and other interface requirements that lie outside the 
scope of definition of a programming language. None
theless certification, standardization, and widespread 
implementation of Ada compilers could help reduce the 
cost of program transfer, since machine dependencies 
could be isolated in Ada packages with invariant exter
nal interfaces, and since some machine dependencies 
could be expressed using Ada representation specifica
tions. This tells us that we might be able to reduce the 
cost of program transfer with Ada to a point at which it 
costs less to do it with Ada than with other approaches.) 

Suppose that the most optimistic scenario we can dream up for 
the introduction of the Ada language actually comes to pass. 
Will this be enough for us to reap the benefits we are hoping 
Ada can provide? 

In this paper, it shall be argued that the Ada language, 
considered as an isolated tool, cannot solve all of the problems 
of reliability, performance, and productivity that must be ad
dressed if Ada is to succeed in realizing the high hopes some 
have for it. Rather, it is argued that Ada must be buttressed 
by powerful programming support environments that provide 
the means for performing a variety of essential tasks lying 
beyond the reach of programming languages. 

Defining an Ada Programming Support Environment 
(APSE) as the collection of tools, resources, procedures, and 
policies that support the development, repair, and upgrade of 
Ada software, it is argued that even more than the rudi
mentary level of capability envisaged in the STONEMAN's 
Minimal Ada Programming Support Environment (MAPSE) 
is necessary if we are to achieve the significantly improved 
levels of programming productivity and software quality with 
which use of Ada beckons us. 

Thus, the central question that the paper addresses is: could 
the Ada environment be even more important than the Ada 
language in helping to achieve the benefits we seek from the 
use of Ada? 

First, for the purposes of setting an appropriate context for 
the subsequent discussion, let's conjure an optimistic scenario 
for successful introduction of the Ada language. 

An Optimistic Scenario 

Our optimistic scenario for the introduction of Ada consists 
of the assumption that we succeed in accomplishing the fol
lowing steps: 

1. There would have to be success in establishing precise, 
comprehensible standards for the definition of Ada. If 
we don't know what Ada means, we can't write certified 
compilers which implement the common meaning and 
provide a framework for exchanging Ada programs. 

2. There would have to be success in writing certifiable Ada 
compilers which produce efficient, reliable running pro
grams. (Note: the author is not so naive as to be unaware 
that the risk that we might fail in getting this far isn't 
entirely trivial; but the rest of the paper would be rather 
uninteresting if we don't assume we can reach at least a 
state of affairs where we have certified Ada compilers 
running on many computers of reasonable size. That is, 
if we lose the game by failing to define a standard and by 

To continue by optimistic speculation, if Ada becomes 
widespread in use, begins to function as a medium of ex
change, and opens up a substantial market for the sale and 
exchange of programs, what response might one assume from 
the free enterprise system? 

Perceiving that a wide market will exist for sales, here is a 
list of possibilities: (a) computer manufacturers would de
velop certified Ada compilers for new computers; (b) software 
firms would develop and sell Ada programming support tools; 
(c) publishers would publish books and educational materials 
on Ada; (d) educators would introduce and teach Ada in 
programming courses (perceiving that Ada, in addition to 
being popular and useful, could be a good carrier of modern 
programming principles); and (e) enterprises could get Ada 
programmers, Ada compilers, and Ada programming support 
tools in the marketplace and could import and export Ada 
programs. 

To complete the optimistic scenario, we assume that some 
(but not necessarily all) of these economic consequences of 
the introduction of Ada take place. 

Ada is Still Not Enough! 

Even if an optimistic scenario such as this comes to pass, it 
is argued that the Ada language alone is not enough. More is 
needed. Here's why. 

Wonderful as they are, programming languages play only a 
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small role in the software life cycle. It is estimated, for in
stance, that in software projects of substantial size, coding the 
design in a programming language accounts for only 15% of 
the total pre-release cost, and that the total pre-release cost 
may be only 10-30% of the total life cycle cost. 

Furthermore, many activities in the software life cycle are 
supported by tools, procedures, or policies that are not di
rectly connected with the programming language (s) employed 
by the project. 

For instance, software project managers devise project 
schedules; manpower loading plans; milestone charts; and 
budgets for machine cycles, memory, and monetary re
sources. They monitor tasks on the critical path, report on 
progress and resource consumption, incrementally shift re
sources in response to perceived needs, and oversee the hiring 
and training of new project personnel. Recent evidence1 sug
gests that upward of 80% of software project failures are 
software management failures as opposed to technical fail
ures. Few if any of these management activities depend in any 
essential way on the choice of the programming language. 

The system requirements and the system design may be 
expressed in natural language or in design representation no
tations separate from the programming language; and activ
ities such as requirements tracing and design reviews may take 
place using notations, language, and procedures entirely sep
arate from those given by the programming language. 

Maintenance of current system documentation, module test 
sets, test completion status, and system configurations may 
depend more on database, word processing, and file system 
tools than on the programming language or on programming 
language support tools. 

Let's take a glimpse at some software economics, for a 
moment, to try to establish a framework in which we can 
discuss the relative importance of trying to introduce vari-

_ouS kinds of support tools and policies into a programming 
environment. 

In the first place, the demand for computer instructions 
appears to be increasing rapaciously, and a serious shortfall of 
programmers to produce them exists in relation to demand. 

For instance, the number of instructions NASA used to 
support the Mercury, Gemini, Apollo, and Space Shuttle pro
grams has been growing at 24-25% per year for a couple of 
decades. While Gemini support took 1 million support in
structions, and Apollo took 10 million, the Space Shuttle now 
takes 40 million. Most of the Space Shuttle instructions sup
port ground launch and pre-launch check-out procedures and 
were designed to avoid the necessity of employing a ground 
launch support crew of 20,000 people. What is true for NASA 
appears to be true for the economy in general; namely, auto
mation js being employed to avoid inefficient, labor-intensive 
production, and computers are being used to enhance product 
versatility and market appeal. Thus, the overall demand for 
computer instructions appears to be increasing in the neigh
borhood of 10% per year in many industries, and the national 
demand for computer instructions may, in general, be grow
ing somewhere near 20% per year. 

However, the supply of programmers is increasing perhaps 
only in the neighborhood of 5% per year, and programmer 
productivity has been falling! During the 1960s when high-
level languages were replacing assembly languages, program

mer output (in delivered instructions per person year) was 
increasing at perhaps 8-11% per year; but recently, the an
nual increase has been estimated to be in the range of 4-5% 
per year. 

In short, given the poor prospects for increasing the output 
of new programmers from the educational system, there may 
be no alternative but to increase software productivity if the 
demand for production of computer instructions is to be met 
and if the shortfall in programmers will be a condition we will 
have to live with. 

How then do we address the problem of increasing produc
tivity? One approach is to analyze the cost drivers that cor
relate with the cost of software projects. In his new book, 
Software Engineering Economics2 Barry Boehm introduces 
the Constructive COst MOdel (COCOMO), which is a good 
fit to a database of measurements on 63 software projects 
spanning a range of different application areas. Briefly, one 
starts with a baseline estimation formula such as 

MM = 2.4(KDSI)**1.05 

giving an initial unadjusted estimate of the number of man-
months (MM) to complete a project as a function of the 
number of thousands of delivered source instructions (KDSI), 
and one multiplies by coefficients that determine whether the 
estimated man-months will increase or decrease as a function 
of measurable software project characteristics (which can be 
thought of as cost-drivers). The ratio between the best in
crease and worst decrease in productivity for each cost-driver 
forms a productivity range. Examples of such productivity 
ranges are as follows: 

1.20—programming language experience 
1.32—turn-around time 
1.49—software tools 
1.51—modern programming practices 
1.57—applications experience 
2.36—product complexity 
4.18—personnel/team capability 

Software Productivity Range 
(from cover of Boehm2) 

Some of these cost-drivers are controllables. That is, by in
vesting to provide software project resources or by following 
certain project disciplines, we can control factors that enhance 
productivity. 

For instance, we could invest in good programming support 
equipment to give programmers excellent turn-around time. 
We could provide good software tools. We could train pro
grammers to use the programming language well. We could 
adopt modern programming practices as a software project 
discipline, and we could attempt to select programmers with 
proven track records and applications experience, if possible. 
The cumulative effect of these measures on productivity could 
be very dramatic (e.g., factors of 4, 8, or 10 could be achieved 
using the short list of measures just given), and these could 
easily dwarf any effects of choosing to use Ada or not. 

In summary, we see that software productivity may depend 
heavily on the characteristics of the environment employed 
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and not so heavily on the characteristics of the programming 
language employed. 

What is true for software productivity may be true to a 
lesser but still significant extent for software reliability and 
software performance. 

Software performance will obviously be influenced criti
cally by whether or not it is possible to compile Ada source 
programs into compact, fast-running object programs. How
ever, performance may also be influenced critically by 
whether or not the Ada Programming Support Environment 
provides effective tools to perform measurement and opti
mization. Frequently, upwards of 90% of the execution costs 
are attributable to 7 to 10% of the code. Identifying and 
optimizing the critical sections has been found to be an effec
tive way to improve performance. If the name of the game is 
measurement and tuning, both the programming support en
vironment and the compiler must work together to provide 
the solution, with the environment furnishing performance 
measurement tools and the compiler providing optimizations. 
Where compiler optimizations are insufficient, the environ
ment may make the key difference by providing source-to-
source program improvement transformations or by making 
manual program rewriting more manageable and systematic. 

Where software reliability is concerned, the programming 
language can play a key role in promoting reliability. Pro
ponents of Ada have argued that Ada will promote reliability 
because it supports clean module interfaces and information 
hiding (through packages) and because it permits clear ex
pression of control and data (through exceptions, tasking, and 
an extensive data type system). Opponents have argued that 
Ada programs may not be reliable because the language is too 
complex or may have ill-defined interactions between its fea
tures. But we have all known reliable programs written in 
unreliable languages and unreliable programs written in reli
able languages. Promoting reliability may have more to do 
with assuring clean designs and thorough testing than with the 
characteristics of the language in which the program is writ
ten. It is the environment, not the language, which must pro
vide tools and disciplines to perform design, design review, 
and testing. 

Thus, it could be that the reliability of Ada programs will be 
more dependent on the characteristics of the Ada Program
ming Support Environment and the programmers who write 
them than on the characteristics of Ada itself. In summary, 
the success of Ada in promoting software reliability, per
formance, and productivity depends critically on the char
acteristics of APSEs. While Ada is clearly necessary for suc
cess, even under the most optimistic scenario, Ada alone is 
insufficient. 

A BRIEF VIEW OF THE STONEMAN PHILOSOPHY 

The STONEMAN3 requirements document for APSEs speci
fies three levels of structure: (a) a KAPSE or Kernel Ada 
Programming Support Environment, (b) a MAPSE or Mini
mal Ada Programming Support Environment, and (c) the 
APSE itself. In a nutshell, the KAPSE provides basic oper
ating system services and database capabilities and is intended 
to provide a machine-independent set of kernel services on 

which APSEs may be built. The MAPSE provides minimal 
Ada programming support services such as: (a) a text editor, 
(b) an Ada compiler, (c) a linker/loader, (d) an Ada debug
ger, and (e) a command language interface (for logging on, 
calling tools, manipulating files, etc.). 

The STONEMAN philosophy, expressed in its so-called 
"strategy for advancement," envisages that the KAPSE can 
be implemented as a standard operating system kernel on 
many machines to provide a standard foundation for APSEs. 
If the KAPSE could be standardized and expressed as an Ada 
package, then all the KAPSE services and capabilities could 
be made available to Ada programs, and a major deterrent to 
program portability could be overcome. 

The MAPSE, if successful, could provide a means for using 
Ada as a systems programming language for implementing 
not only Ada applications programs, but also the tools that 
constitute the full APSE. Thus, one could get going by sup
plying a rudimentary Ada programming environment (the 
MAPSE), and one could bootstrap out of the rudimentary 
environment into an advanced APSE by using Ada as the 
systems programming language for populating the APSE with 
environment tools. Such tools could be compiled, loaded, and 
run on top of the MAPSE to form a highly portable APSE. 

APSE tools would thus be supplied in an Ada library avail
able as a companion to the MAPSE. Current design efforts 
(the Army's ALS or Ada Language System and the USAF's 
AIE or Ada Integrated Environment) focus on providing the 
MAPSE-level capability specified in the STONEMAN but do 
not call for design of full APSE toolsets. 

While STONEMAN provides some guidance on what 
APSEs must support effectively (such as maintenance and 
configuration management), STONEMAN does not attempt 
to present an extensive or very refined view of how to popu
late an APSE. 

At the moment, therefore, an important opportunity exists 
for conceptualizing what an advanced APSE should contain. 

Thus it is important to do our homework on what a full 
APSE should look like, and a number of important targets of 
opportunity come to mind. 

POSSIBLE TARGETS OF TECHNOLOGICAL 
OPPORTUNITY FOR APSES 

Interactive Programming 

Although it is hard to cite credible experiments that demon
strate that interactive programming is more productive than 
batch programming, some experiments suggest an improve
ment of roughly 33% if interactive programming is used in 
place of batch. 

Good interactive languages, such as APL and LISP, permit 
sophisticated and powerful actions to be taken by program
mers while interacting with their programs. For example, at a 
point of suspension of a running program, a user at a terminal 
can do such things as: (a) print formatted values or texts of 
defined procedures; (b) define new procedures or assign new 
values to new variables; (c) perform queries ("Where am I?, 
Who calls this procedure? Who can read and set this vari
able?"); (e) resume program execution at the point of sus-
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pension (or at other valid points of control); (f) call for expla
nations to be printed from online manuals; and (g) set break
points, traces, and performance measurement probes. 

It is rare that such interactive services are available to the 
user of a high-performance systems programming language, 
such as JOVIAL, CMS-2, BLISS, C, Pascal, or MESA. In 
order to support queries and incremental changes character
istic of interactive programming, programs must usually be 
represented in a somewhat elastic (and thus incrementally 
updatable and explicitly queriable) representation. Usually 
this implies that program representations must be interpreted 
to be executed. On the other hand, to get high performance, 
programs must usually be compiled into rigidly efficient ma
chine code. Such machine code does not conveniently support 
incremental editing in source program terms, and it usually 
does not contain symbolic information discarded by compilers 
yet needed at run-time during interactive sessions to reply to 
user queries in source program terms. 

To the author's knowledge, nobody has succeeded satis
factorily in providing the combined advantages of compiled 
systems programming language performance with the power 
of interactive language query and incremental change. There 
may be a considerable technological challenge in provid
ing this kind of support for Ada (or for any other high-per
formance systems programming language for that matter). 

Management Support 

If the evidence suggests that upward of 80% of software 
project failures are management failures and not technical 
failures, and that these failures result, in large measure, from 
ignoring software practices of proven effectiveness, what 
might we do to support project management so it can avoid 
well-known pitfalls? 

Might we have online management interviews at the time a 
project is being organized to remind managers about software 
practices of proven effectiveness and to enable them to select 
thorough, effective project disciplines well-matched to a par
ticular organization's characteristics? 

What sort of management support tools might help man
agers devise project schedules, estimate resources required, 
make required reports, track project activities (monitoring 
especially the activities on the critical path), and adjust re
sources incrementally to fit changing needs? 

Programming Methodologies? 

Should an APSE support a programming methodology? If 
so, should it try to support a standard one and encourage its 
use? For example, should an APSE provide for use of an 
Ada-based program design language (PDL) together with 
some sort of discipline for design composition, design review, 
and requirements tracing? 

Any suggestion that an APSE should support a standard 
programming methodology usually engenders heated oppo
sition and dire warnings about the evils of premature stan
dardization, and the points about such evils are usually well-
taken. However, it may be possible to phrase the policy on the 
use of such methodologies in order to overcome most of the 

objections. One might say, for instance, "Here is a recom
mended methodology which is provided in the APSE library, 
and here are its abstract characteristics: (a) it provides a clear, 
comprehensible design representation, (b) it is accompanied 
by effective ways of getting design review by independent 
teams, and (c) one can determine which design modules are 
responsible for implementing which items of the system re
quirements, and so on." An RFP might then specify the fol
lowing: "You can propose either to use the recommended 
methodology or you can propose to use your own, but if you 
choose to use your own, you should give some justification as 
to how using your own meets the essential abstract charac
teristics of the recommended one." 

Software Reuse 

Since the biggest cost-driver in software projects is the size 
of the software, any method that permits successful reuse of 
software to implement portions of a system dramatically in
creases productivity. Although the idea of software reuse has 
been around for a long time, and although it works in limited 
application areas (typified by well-defined interface and com
position paradigms and by libraries of useful, well-indexed, 
well-explained components), we do not generally build soft
ware by assembling catalogued, prefabricated components. 
Getting software reuse methods to work as a general program 
composition technique may involve surmounting challenges 
such as finding ways to reuse designs and higher-level program 
abstractions and finding how to generate concrete refinements 
of the abstractions that meet the extraordinary variety of con
crete usage constraints encountered in practice. Nonetheless, 
the payoff for finding an effective software-reuse technology 
would be dramatic, especially if performance measurement 
and certification were performed on all components entered 
into a component catalogue. 

Program Understanding 

Software maintenance accounts for 70 to 90% of the cost of 
the software life cycle for many large, long-lived systems. If, 
as recent evidence suggests, upward of half of the software 
maintenance time is devoted to trying to understand how a 
program works and what the effects of a proposed alteration 
would be, the activity of trying to understand programs and 
the effects of incremental program changes could be a domi
nant cost-driver in the system life cycle. 

If this is the case, there might be an inviting technological 
target of opportunity in trying to devise ways of making it 
vastly less expensive and more effective to go about under
standing programs. We might ask the following questions: 

1. How can we write comprehensible program descrip
tions? 

2. Is paper a good container for program documentation, 
or can we do better by using a computer to store expla
nations appropriate for different intended audiences and 
by computing various appropriate views for the different 
audiences? 

3. Given a projected software lifetime (and other appropri-



ate unit costs), what level of capitalization is appropriate 
for developing program explanations? 

4. Are there any techniques for "program archaeology," 
wherein, if we are confronted by an undocumented or 
poorly documented program, we could systematically go 
about trying to develop an understanding of it and 
whereby we could estimate the cost of doing so ahead of 
time? 

Advanced APSE Tool Sets 

What kinds of tools could an APSE provide the system 
builder? (Unfortunately, there is a great variety of answers to 
this question, and space does not permit the author to do 
more than provide a pointer or two to the literature. Two good 
sources that provide a variety of views and excellent bibli
ographies are Hiinke4 and SIGSOFT.5) 

RISK AREAS IN APSE DEVELOPMENTS 

What are some of the risk areas that confront the develop
ment of APSEs? Since this is highly speculative, the author 
prefers to give just two areas where he perceives risk: 

1. No KAPSE Standardization: What if the KAPSE never 
gets standardized? The KAPSE in STONEMAN is en
visaged as a machine-independent Kernel operating sys
tem and database support system. If it can be standard
ized (with a machine-independent interface, given, for 
example, as an Ada package), one can write machine-
independent Ada programs which call on KAPSE ser
vices in a standard notation (much as package Standard 
functions in Ada now), and such Ada programs will 
transfer to every machine on which an Ada compiler 
interfaces to a standard KAPSE. A special case of pro
gram transfer of great interest is a full APSE with tools 
written in Ada and depending on KAPSE services for 
support. Thus, KAPSE standardization holds the key to 
the machine independence of APSEs and to providing a 
powerful conduit for portability of Ada programs and 
environments. If the KAPSE cannot be standardized, 
can the market for APSE tools, which depends on hav
ing a viable method for the exchange and portability of 
Ada programs, ever become an effective reality? 

2. Too Little and Too Late: What if some of the thirty or so 
current efforts to write Ada compilers succeed and seri-
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ous Ada programming begins before MAPSEs and 
APSEs can be designed, built, and used? If serious Ada 
programming begins starting with a compiler, does one 
not then tend to use the available tools in the de facto 
environment surrounding that compiler (meaning the 
text editors, file system, linkers, and so forth), and do 
not critical dependencies then develop which inhibit pro
gram transfer to other different environments (with 
other different file system and operating system conven
tions)? To what degree is the timeliness of APSE devel
opment a critical factor in its possible success? 

CONCLUSIONS 

In conclusion, this paper argues that the benefits some seek 
for the introduction of Ada cannot be realized effectively 
without also introducing advanced APSEs that provide capa
bilities well beyond the STONEMAN MAPSE level. Further
more, the time is ripe to do our homework on what a full 
APSE should look like, and a number of inviting targets of 
technological opportunity present themselves. 
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