
Fair timestamp allocation in distributed systems

by SAID K. RAHIMI
Honeywell Corporate Computer Sciences Center
Bloomington, Minnesota

and

WILLIAM R. FRANTA

University of Minnesota
Minneapolis, Minnesota

ABSTRACT

Many researchers have addressed the problem of uniquely identifying updates in a
distributed database system in the literature.1'5'6'711 Primitive identification schemes
that generate globally unique update IDs have also been suggested. These IDs are
usually used as priority among updates as well. When used as such, these schemes
do not distribute priority evenly across the nodes. This paper presents a numbering
scheme that generates unique update IDs and, if used as a priority scheme, is fair.

589

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1500774.1500850&domain=pdf&date_stamp=1982-06-07

Fair Timestamp Allocation in Distributed Systems 591

1. INTRODUCTION

Many authors have addressed the problem of global identifi
cation of updates in a distributed database system.1'5'6'71011

To solve the problem, these researchers have suggested prim
itive ID generation schemes that globally identify all updates.
Almost all these suggestions assume an ID to be a combina
tion of two parameters: a local physical-clock parameter to
provide for local identification and node numbers to provide
for global identification. Thomas' algorithm for concurrent
update problem of distributed database systems11 assumes
that an update ID number is a combination of a node number
and readings of a physical clock at that node at the time of
update generation. (Our model of a distributed system con
sists of a set of cooperating nodes connected by a commu
nication facility.) Physical clocks, kept at every node of the
system, tend to require resynchronization periodically. If
physical clocks are skewed with respect to one another or run
at different rates, certain anomalies may occur.11 To solve the
synchronization problem, Lamport5 has suggested a rather
expensive mechanism to resynchronize drifted clocks.

Away from physical-clock problems, these schemes are able
to generate globally unique identification numbers for up
dates. The ID numbers generated are also used as priority
numbers among updates.7' n A priority scheme as such does
not distribute priority evenly across the nodes. The reason is
the fixed node number assignment that biases the priority
among updates from different nodes.

Section 2 explains the update numbering schemes and their
problems. To solve some of the problems, Section 3 presents
the MOD numbering scheme. This scheme is solely based on
the use of logical clocks and therefore does not have the
problems associated with physical clocks. If ID numbers gen
erated by this scheme are used as priority, one can be sure that
this priority scheme is fair. The MOD numbering scheme
achieves fairness by dynamically changing the node numbers.
The problem associated with varying node numbers and a
solution to this problem are also presented.

2. UPDATE NUMBERING SCHEMES/PROBLEMS

An update ID number is generated and assigned to an update
by the initiating node at the time of update generation. It is
assumed that each node has a logical clock (instead of a phys
ical clock in similar schemes). A logical clock at a node simply
counts the number of updates generated at that node. This
means that a logical clock at a node is incremented by 1 for
every update generated at that node. Another update at a
node cannot be generated before the clock at that node is
incremented (it is assumed that all logical clocks are set to 0
at the system initiation time). Using the logical-clock readings

(LCR) at every node, therefore, solves the problem of locally
identifying the updates and orders the updates by their gener
ation. This, on the other hand, does not provide for global
identification of updates, because LCRs at different nodes
may be the same.

To ensure a global identification, node numbers are used as
the second part of update IDs. It is assumed that the N nodes
of the system are uniquely numbered 0 to N—1. If NN is node
number, the tuple (LCR, NN) is a unique ID throughout the
system. Two IDs, ID, = (LCR,,NN,-) and ID, = (LCRyNN,-)
are said to be different (ID, * ID,-) if and only if LCR, £ LCR,
or NN,- * NN,-.

It is easy to show that for any two different updates i and j
with ID, = (LCR,, NN,) and ID, = (LCR,,NN,), ID, £ ID,, To
see this, suppose updates / and / are generated at the same
node; i.e., NN, =NN,-. According to the above discussion,
LCR has to be incremented after it is read for one update, and
hence LCR, £ LCR,. If the updates are from two different
nodes, then NN, 4=- NN,, which implies that ID, £ ID,.

ID numbers are used in two different ways: for identi
fication and for priority purposes.

The uniqueness property of update IDs, generated this
way, gives us confidence in using these tuples as identification
of updates. When used as priority, however, this scheme
raises some questions. Note that priority here is concerned
with ordering conflicting updates and does not have anything
to do with user-defined or external priority. For two updates
i and / it is usual to say

update i is of equal priority to update / if ID, = ID,,
update i is of higher priority than update j if ID, < ID,,
and
update / is of lower priority than update / if ID, > ID,.

Since there are two different elements (LCR and NN) consti
tuting each update ID, there are two possible ways of defining
relations = , > , and < for two updates * and/:
First,

ID, = (LCR,,NN,)
and
ID, = (LCR,,NN,)

which means that

ID, = ID, if and only if LCR, - LCR, and NN, = NN,,
ID, > ID, if and only if (LCR, > LCR,) or (LCR, = LCR, and
NN,->NN,-)
ID, < ID, if and only if (LCR, < LCR,) or (LCR, = LCR, and
NN,-<NN,-),

592 National Computer Conference, 1982

as used in Rosenkrantz et al.,9 Thomas,11 and Traiger et al.12

A priority scheme is said to be fair if it distributes priority
evenly among the updates from different nodes. A scheme
that gives high priority to updates from one node all the time
is not fair.

As far as priority is concerned, the scheme given above is
fair if different nodes are generating updates at a close rate or
if LCRs are not skewed. To see this, suppose that a node is
generating updates at a much higher rate than the other
nodes. Soon the LCR at this node becomes much greater than
LCRs at the other nodes. Therefore, updates generated at this
node get the lowest priority among the updates generated in
the system. Some authors have suggested means of controlling
this situation by proposing synchronizing LCRs,512 which
tends to be expensive.
Second,

ID, = (NN,-, LCR,) and ID, = (NN,-,LCR,-)

which means that

ID, = ID,if and only if NN,- = NN,- and LCR, = LCR,,
ID ,> ID , if and only if (NN,>NN,) or (NN,=NN,- and
LCR, > LCR,),
ID ,< ID , if and only if (NN,<NN,) or (NN,=NN, and
LCR, < LCR,).

This scheme solves the problem of skewed clocks but has
another potential drawback. Since in this scheme dominance
is given to node number NN, all updates generated from the
node numbered N - 1 have lower priority than updates from
the node numbered TV - 2, updates generated at Node TV - 2
have lower priority than updates from Node N - 1, . . . , and
updates from Node 1 have lower priority than updates from
Node 0. According to the above definition, this scheme is not
fair either. To solve the fairness problem of this scheme, we
suggest the MOD numbering scheme.

THE MOD NUMBERING SCHEME

As before, the MOD numbering scheme assumes that the
nodes of the system are numbered 0 to TV — 1 at system ini
tiation time. Since the problems mentioned above stem from
fixed node numbers, the MOD scheme suggests that the node
numbers be changed periodically and dynamically, as follows:

New NN = (old NN + 1) MOD N

which means that Node 0 becomes 1 and Node 1 becomes 2,
. . . , and node number N -1 becomes 0. Changing the node
numbers this way solves the problem of having a biased prior
ity scheme but creates the problem of having two or more
updates with the same ID numbers. For example, assume that
the LCR at Node 2 is 4 and the LCR and Node 3 is 5. This
means that Node 3 has already generated an update num
bered (3,4). Now assume that Node 2 changes its node num
ber to 3. The very next update generated at this node will also
be numbered (3,4).

This problem can be solved by using a node sequence num-

Node #0 Node #1 Node #2 Mode #3

SN1NN SN1NN SN!NN SN!MN

0 0 0 1 0 2 ^ 0 3

1 1 1 2 1 3 ^ 1 0

Figure 1—SN!NN for a 4-node system

ber, SN, as a third part of the update ID numbers. Using SN
concatenated with NN, update ID numbers become

ID = (SN!NN,LCR)

where ! denotes concatenation.

SN is set originally to 0 at each node and is incremented each
time the node changes its node number.

Figure 1 shows SN!NN for a system of four nodes for the
first five node number changes. The dominant factor in this
scheme is SN!NN; i.e., for two updates i and j with
ID, = (SNilNN,, LCR;) and ID, = (SN,!NN„ LCR,),

ID ,= ID, if and only if SN, !NN, = SN, !NN, and
LCR, = LCR,-,
ID, > ID, if and only if (SN, !NN, > SN, !NN,)
or
(SN, !NN, = SN, !NN, and LCR, > LCR,),
ID, < ID, if and only if (SN, !NN, < SN, !NN,)
or
(SN,!NN,- = SN,-!NN,- and LCR,- <LCR,-).

To show that IDs generated this way are unique, it is sufficient
to show that SN!NN for any given node is unique over the
system. To do this, we have to show that for any two nodes i
and / at any time either SN, + SN, or NN, £ NN,.

Suppose SN,!NN, = SN,!NN, for two different nodes / and
;'. This means that SN, = SN, and NN, = NN,. Let us assume
that SN, = SN, = s, which is the number of times that these
nodes have changed their numbers (see definition of SN). If
the node number of node i at the system initiation time is ni
and the node number of node / at the system initiation time is
nj, then

NN, = (m ' + s) M O D TV

and
NN, = («; + s) MOD N

Fair Timestamp Allocation in Distributed Systems 593

If NN,- is to be equal to NNy, then

(ni + s) MOD N = (nj + s) MOD N

The only way that this equality can hold is that if

ni+s=nj+s+KN for K>0

ni = nj + KJV
or it

Since 0 < ni < N and 0 < nj < N (see initial numbering of the
nodes), the only value that K can have is 0, and therefore
ni = nj, which contradicts the fact that all nodes are uniquely
numbered at the system initiation time. Hence ni £ nj, which
means NN,- * NN,- or SN,-!NN,- £ SN;-!NN,,

Note that besides being unique, SN!NN, generated as
above, evenly distributes priority among the nodes of the
system. In Figure 1, Node 3 (at the first row) has the highest
SN!NN, whereas after the first node number change its
SN!NN drops to the lowest (at the second row). Node 2, which
had the second highest SN!NN at the beginning, will have the
highest SN!NN after the first change (second row). Figure 1
shows how the highest SN!NN or lowest priority is passed
from one node to another in a round-robin fashion.

There are two ways of initiating the node number changes.
The first scheme calls for a timer at each node. A node
changes its node number, according to the above scheme,
when its interval timer expires. At this time the timer is reset
and the sequence number is also incremented. The problem
with interval timers is similar to the problem with physical
clocks. To avoid this problem the second scheme can be used.
In this scheme every node changes its node number after it
generates M (a predefined integer number of) updates. The
problem with this scheme is that lightly loaded nodes change
their numbers more slowly than heavily loaded nodes. The
tradeoffs between the two schemes must be investigated with
regard to a specific application.

After a node changes its number, the LCR at that node can

Node #0

SN!NN,LCR

Node #1

SN!NN,LCR

Node #2

SN1NN.LCR

Node #3

SN!NN,LCR

Node_numbers_change_here

Node numbers change here

Increased ID
numbers

[Decreased priority)

Figure 2—SN!NN,LCR for a 4-node system with M = 3 and LCR restart

A

B

N(
SN

Dde #0

INN,LCR

001

002

111

112

221

222

301

302

Node #1

SN

improper
SN reset
021~

022

proper
iN_r£S£t
001

002

!NN,LCR

011

012

121

122

201
202

311

312

Ni

SN
3de #2

INN,LCR

021

022

101

102

211
212

321

322

Figure 3—Resetting SNs

be reset to 1 without threatening the local ordering of updates
from the same node. This is necessary because otherwise
LCRs may become undesirably large. Figure 2 shows some of
the update ID numbers generated for a system of four nodes
when each node changes its NN after generating M = 3 up
dates. This figure shows that updates generated from the same
node are numbered in order of their generation. Therefore,
even though LCRs are reset for each node number change,
the local ordering is still preserved.

SNs similar to LCRs can grow large (although at a slower
rate) and therefore require periodic resetting. Resetting SNs
has to be done so that the properties of uniqueness, local
ordering, and total relative ordering of the MOD numbering
scheme are preserved. One has to be careful about when to
reset a nodal SN. Since NNs and LCRs change in a circular
manner, it is possible to generate two or more updates with
the same ID when SNs are reset carelessly.

An example of a three-node system that changes a node's
number after the node generates two updates is given in Fig
ure 3. This figure shows that if SN of node number 0 is reset
to 0 at Point A, the very next update generated at this node
is numbered (0!2,1), which was first assigned to another up
date by Node 2 (first row, last column of Figure 3). In order
to avoid this (and possible message transfer for synchroni
zation), Node 0 can wait and attempt to reset its SN at Point
B. There are two important properties associated with Point
B. First, at this point, the new node number of every node is
the same as its original number assigned at the system ini
tiation time (0 for Node 0, etc). Second, if resetting is done at
this point, the only possible conflicts are local conflicts: Node
0 might generate ID = (0!0,1), which was first generated by
this node. This property eliminates the need for message
transfers and synchronization with other nodes. Therefore,
resetting SNs at this point will not cause uniqueness destruc
tion of IDs if each node is only assured that all updates it has
generated since its last SN reset are finished and out of the
system. This might delay the numbering of updates if all pre
vious updates are not finished. Considering the facts that each
update is executed in a finite period and that resetting of SNs

594 National Computer Conference, 1982

does not occur very often, the delay is not substantial. Note
that SNs can be reset independently for each node and do not
have to be reset for all nodes at the same time. Note also that
resetting a SN at a node means starting IDs from the lowest
r«n<;^'h'0 n i imhpf at tYxctt nnHp Ac far 9c thf> lr»r>al nrrlprjna r»f

updates is concerned, this does not matter, because all pre
vious updates at this node are out of the system when resetting
occurs.

A virtual ring among the nodes and a token circulating in
this ring, similar to the scheme explained in Lelann,6 can also
be used instead of the numbering scheme presented above. In
this scheme a token (or a sequencer [Reed8]) is circulating in
a prespecified virtual ring among the nodes of the system. The
token is given a token round number, TRN, that is set to 0 at
system initiation time and is incremented for each complete
rotation of the token in the ring. A node will change its node
number every time it receives the token. The TRN is attached
to update ID numbers instead of SNs; i.e.,

ID = (TRN!NN,LCR)

This scheme also provides for a unique identification and a
fair priority scheme among the updates. One drawback to this
scheme is the problem of token loss, which may occur if a
node that has the token fails. Loss of the token, even though
soluble,6 can delay the numbering procedure and hence con
tribute to delay in the execution of the updates. Link failures
can cause similar problems. The MOD numbering scheme, on
the other hand, does not require communication among the
nodes to generate timestamps. This means that link failures
do not affect timestamp generation. As far as node failures are
concerned, a node can fail without interrupting other nodes'
timestamp generation. After a node recovers, it can resume its
timestamp generation where it left off. Because of the prob
lem associated with the scheme using circulating tokens, it is
preferable to use the MOD numbering scheme for numbering
the events (updates) in a distributed system.

In summary, the scheme has four properties:

1. IDs generated using this scheme are unique.
2. For a given node, update IDs increase monotonically,

and therefore updates generated from a node preserve
the order of their generation (local ordering).

3. As discussed above, priority of nodes changes in a
round-robin fashion and is not pre-fixed.

4. Control is local and therefore communication cost is
low.

CONCLUSION

A numbering scheme that generates globally unique update
IDs has been presented. The scheme dynamically changes the
node numbers; this change results in an even distribution of
priority across the nodes. The scheme does not require phys
ical clocks and therefore avoids all the problems associated
with synchronizing them. The MOD numbering scheme could
be employed by update algorithms1-7-911 in place of numbering
schemes using fixed node numbers and physical clocks. This
is expected to improve the performance of these algorithms.

REFERENCES

1. Bernstein, P. A., J. B. Rothnie, N. Goodman, and C. A. Papadimitriou.
"The Concurrency Control Mechanism of SDD-1: A System for Distrib
uted Data Bases (The Fully Redundant Case)." IEEE Transactions on
Software Engineering, SE-A, (1978).

2. Date, C. J. "An Introduction to Database Systems." Addison-Wesley,
Reading, Massachusetts, 1977.

3. Everest, G. C. "Concurrent Update Control and Database Integrity." In
J. W. Klimbie and K. L. Koffeman (eds.), Database Management. Am
sterdam: North-Holland, 1974, pp. 241-268.

4. Eswaran, K. P.; J. N. Gray, R. A. Lorie, and I. L. Traiger. "The Notions
of Consistency and Predicate Locks in a Database System." Communica
tions of the ACM, 19 (1976).

5. Lamport, L. "Time, Clocks, and the Ordering of Events in a Distributed
System." Communications of the ACM, 21 (1978).

6. Lelann, G. "Algorithms for Distributed Data-Sharing Systems Which Use
Tickets." Proc. Third Berkeley Workshop on Distributed Data Base and
Computer Networks, University of California, Berkeley, CA, August
1978.

7. Rahimi, S. K., and W. R. Franta, "A Posted Update Approach to
Concurrency Control in Distributed Data Base Systems." Proc. 1st Intl.
Conf. on Distributed Computing Systems, IEEE, Oct. 1979.

8. Reed, D. P. "Naming and Synchronization in a Decentralized Computer
System." Ph.D. thesis, Department of Electrical Engineering, Massachu
setts Institute of Technology, September 1978.

9. Rosenkrantz, D. J., R. E. Stearns, and P. M. Lewis, II. "System Level
Concurrency Control for Distributed Database Systems." ACM Trans
actions on Database Systems, 3 (1978).

10. M. Stonebraker. "Concurrency Control and Consistency of Multiple
Copies of Data in Distributed INGRES." 3rd Berkeley Workshop on
Distributed Data Management, 1978.

11. Thomas, R. H. "A Majority Consensus Approach to Concurrency Control
for Multiple Copy Databases." ACM Transactions on Database Systems,
4 (1979).

12. Traiger, I. L., J. N. Gray, C. A. Galtieri, and B. G. Lindsay.
"Transactions and Consistency in Distributed Data Base Systems." IBM
Report RJ2555 (33155), May 1979.

