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ABSTRACT 

Many researchers have addressed the problem of uniquely identifying updates in a 
distributed database system in the literature.1'5'6'711 Primitive identification schemes 
that generate globally unique update IDs have also been suggested. These IDs are 
usually used as priority among updates as well. When used as such, these schemes 
do not distribute priority evenly across the nodes. This paper presents a numbering 
scheme that generates unique update IDs and, if used as a priority scheme, is fair. 
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1. INTRODUCTION 

Many authors have addressed the problem of global identifi
cation of updates in a distributed database system.1'5'6'71011 

To solve the problem, these researchers have suggested prim
itive ID generation schemes that globally identify all updates. 
Almost all these suggestions assume an ID to be a combina
tion of two parameters: a local physical-clock parameter to 
provide for local identification and node numbers to provide 
for global identification. Thomas' algorithm for concurrent 
update problem of distributed database systems11 assumes 
that an update ID number is a combination of a node number 
and readings of a physical clock at that node at the time of 
update generation. (Our model of a distributed system con
sists of a set of cooperating nodes connected by a commu
nication facility.) Physical clocks, kept at every node of the 
system, tend to require resynchronization periodically. If 
physical clocks are skewed with respect to one another or run 
at different rates, certain anomalies may occur.11 To solve the 
synchronization problem, Lamport5 has suggested a rather 
expensive mechanism to resynchronize drifted clocks. 

Away from physical-clock problems, these schemes are able 
to generate globally unique identification numbers for up
dates. The ID numbers generated are also used as priority 
numbers among updates.7' n A priority scheme as such does 
not distribute priority evenly across the nodes. The reason is 
the fixed node number assignment that biases the priority 
among updates from different nodes. 

Section 2 explains the update numbering schemes and their 
problems. To solve some of the problems, Section 3 presents 
the MOD numbering scheme. This scheme is solely based on 
the use of logical clocks and therefore does not have the 
problems associated with physical clocks. If ID numbers gen
erated by this scheme are used as priority, one can be sure that 
this priority scheme is fair. The MOD numbering scheme 
achieves fairness by dynamically changing the node numbers. 
The problem associated with varying node numbers and a 
solution to this problem are also presented. 

2. UPDATE NUMBERING SCHEMES/PROBLEMS 

An update ID number is generated and assigned to an update 
by the initiating node at the time of update generation. It is 
assumed that each node has a logical clock (instead of a phys
ical clock in similar schemes). A logical clock at a node simply 
counts the number of updates generated at that node. This 
means that a logical clock at a node is incremented by 1 for 
every update generated at that node. Another update at a 
node cannot be generated before the clock at that node is 
incremented (it is assumed that all logical clocks are set to 0 
at the system initiation time). Using the logical-clock readings 

(LCR) at every node, therefore, solves the problem of locally 
identifying the updates and orders the updates by their gener
ation. This, on the other hand, does not provide for global 
identification of updates, because LCRs at different nodes 
may be the same. 

To ensure a global identification, node numbers are used as 
the second part of update IDs. It is assumed that the N nodes 
of the system are uniquely numbered 0 to N—1. If NN is node 
number, the tuple (LCR, NN) is a unique ID throughout the 
system. Two IDs, ID, = (LCR,,NN,-) and ID, = (LCRyNN,-) 
are said to be different (ID, * ID,-) if and only if LCR, £ LCR, 
or NN,- * NN,-. 

It is easy to show that for any two different updates i and j 
with ID, = (LCR,, NN,) and ID, = (LCR,,NN,), ID, £ ID,, To 
see this, suppose updates / and / are generated at the same 
node; i.e., NN, =NN,-. According to the above discussion, 
LCR has to be incremented after it is read for one update, and 
hence LCR, £ LCR,. If the updates are from two different 
nodes, then NN, 4=- NN,, which implies that ID, £ ID,. 

ID numbers are used in two different ways: for identi
fication and for priority purposes. 

The uniqueness property of update IDs, generated this 
way, gives us confidence in using these tuples as identification 
of updates. When used as priority, however, this scheme 
raises some questions. Note that priority here is concerned 
with ordering conflicting updates and does not have anything 
to do with user-defined or external priority. For two updates 
i and / it is usual to say 

update i is of equal priority to update / if ID, = ID,, 
update i is of higher priority than update j if ID, < ID,, 
and 
update / is of lower priority than update / if ID, > ID,. 

Since there are two different elements (LCR and NN) consti
tuting each update ID, there are two possible ways of defining 
relations = , > , and < for two updates * and/: 
First, 

ID, = (LCR,,NN,) 
and 
ID, = (LCR,,NN,) 

which means that 

ID, = ID, if and only if LCR, - LCR, and NN, = NN,, 
ID, > ID, if and only if (LCR, > LCR,) or (LCR, = LCR, and 
NN,->NN,-) 
ID, < ID, if and only if (LCR, < LCR,) or (LCR, = LCR, and 
NN,-<NN,-), 
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as used in Rosenkrantz et al.,9 Thomas,11 and Traiger et al.12 

A priority scheme is said to be fair if it distributes priority 
evenly among the updates from different nodes. A scheme 
that gives high priority to updates from one node all the time 
is not fair. 

As far as priority is concerned, the scheme given above is 
fair if different nodes are generating updates at a close rate or 
if LCRs are not skewed. To see this, suppose that a node is 
generating updates at a much higher rate than the other 
nodes. Soon the LCR at this node becomes much greater than 
LCRs at the other nodes. Therefore, updates generated at this 
node get the lowest priority among the updates generated in 
the system. Some authors have suggested means of controlling 
this situation by proposing synchronizing LCRs,512 which 
tends to be expensive. 
Second, 

ID, = (NN,-, LCR,) and ID, = (NN,-,LCR,-) 

which means that 

ID, = ID,if and only if NN,- = NN,- and LCR, = LCR,, 
ID ,> ID , if and only if (NN,>NN,) or (NN,=NN,- and 
LCR, > LCR,), 
ID ,< ID , if and only if (NN,<NN,) or (NN,=NN, and 
LCR, < LCR,). 

This scheme solves the problem of skewed clocks but has 
another potential drawback. Since in this scheme dominance 
is given to node number NN, all updates generated from the 
node numbered N - 1 have lower priority than updates from 
the node numbered TV - 2, updates generated at Node TV - 2 
have lower priority than updates from Node N - 1, . . . , and 
updates from Node 1 have lower priority than updates from 
Node 0. According to the above definition, this scheme is not 
fair either. To solve the fairness problem of this scheme, we 
suggest the MOD numbering scheme. 

THE MOD NUMBERING SCHEME 

As before, the MOD numbering scheme assumes that the 
nodes of the system are numbered 0 to TV — 1 at system ini
tiation time. Since the problems mentioned above stem from 
fixed node numbers, the MOD scheme suggests that the node 
numbers be changed periodically and dynamically, as follows: 

New NN = (old NN + 1) MOD N 

which means that Node 0 becomes 1 and Node 1 becomes 2, 
. . . , and node number N -1 becomes 0. Changing the node 
numbers this way solves the problem of having a biased prior
ity scheme but creates the problem of having two or more 
updates with the same ID numbers. For example, assume that 
the LCR at Node 2 is 4 and the LCR and Node 3 is 5. This 
means that Node 3 has already generated an update num
bered (3,4). Now assume that Node 2 changes its node num
ber to 3. The very next update generated at this node will also 
be numbered (3,4). 

This problem can be solved by using a node sequence num-

Node #0 Node #1 Node #2 Mode #3 

SN1NN SN1NN SN!NN SN!MN 

0 0 0 1 0 2 ^ 0 3 

1 1 1 2 1 3 ^ 1 0 

Figure 1—SN!NN for a 4-node system 

ber, SN, as a third part of the update ID numbers. Using SN 
concatenated with NN, update ID numbers become 

ID = (SN!NN,LCR) 

where ! denotes concatenation. 

SN is set originally to 0 at each node and is incremented each 
time the node changes its node number. 

Figure 1 shows SN!NN for a system of four nodes for the 
first five node number changes. The dominant factor in this 
scheme is SN!NN; i.e., for two updates i and j with 
ID, = (SNilNN,, LCR;) and ID, = (SN,!NN„ LCR,), 

ID ,= ID, if and only if SN, !NN, = SN, !NN, and 
LCR, = LCR,-, 
ID, > ID, if and only if (SN, !NN, > SN, !NN,) 
or 
(SN, !NN, = SN, !NN, and LCR, > LCR,), 
ID, < ID, if and only if (SN, !NN, < SN, !NN,) 
or 
(SN,!NN,- = SN,-!NN,- and LCR,- <LCR,-). 

To show that IDs generated this way are unique, it is sufficient 
to show that SN!NN for any given node is unique over the 
system. To do this, we have to show that for any two nodes i 
and / at any time either SN, + SN, or NN, £ NN,. 

Suppose SN,!NN, = SN,!NN, for two different nodes / and 
;'. This means that SN, = SN, and NN, = NN,. Let us assume 
that SN, = SN, = s, which is the number of times that these 
nodes have changed their numbers (see definition of SN). If 
the node number of node i at the system initiation time is ni 
and the node number of node / at the system initiation time is 
nj, then 

NN, = ( m ' + s ) M O D TV 

and 
NN, = («; + s) MOD N 
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If NN,- is to be equal to NNy, then 

(ni + s) MOD N = (nj + s) MOD N 

The only way that this equality can hold is that if 

ni+s=nj+s+KN for K>0 

ni = nj + KJV 
or it 

Since 0 < ni < N and 0 < nj < N (see initial numbering of the 
nodes), the only value that K can have is 0, and therefore 
ni = nj, which contradicts the fact that all nodes are uniquely 
numbered at the system initiation time. Hence ni £ nj, which 
means NN,- * NN,- or SN,-!NN,- £ SN;-!NN,, 

Note that besides being unique, SN!NN, generated as 
above, evenly distributes priority among the nodes of the 
system. In Figure 1, Node 3 (at the first row) has the highest 
SN!NN, whereas after the first node number change its 
SN!NN drops to the lowest (at the second row). Node 2, which 
had the second highest SN!NN at the beginning, will have the 
highest SN!NN after the first change (second row). Figure 1 
shows how the highest SN!NN or lowest priority is passed 
from one node to another in a round-robin fashion. 

There are two ways of initiating the node number changes. 
The first scheme calls for a timer at each node. A node 
changes its node number, according to the above scheme, 
when its interval timer expires. At this time the timer is reset 
and the sequence number is also incremented. The problem 
with interval timers is similar to the problem with physical 
clocks. To avoid this problem the second scheme can be used. 
In this scheme every node changes its node number after it 
generates M (a predefined integer number of) updates. The 
problem with this scheme is that lightly loaded nodes change 
their numbers more slowly than heavily loaded nodes. The 
tradeoffs between the two schemes must be investigated with 
regard to a specific application. 

After a node changes its number, the LCR at that node can 

Node #0 

SN!NN,LCR 

Node #1 

SN!NN,LCR 

Node #2 

SN1NN.LCR 

Node #3 

SN!NN,LCR 

Node_numbers_change_here 

Node numbers change here 

Increased ID 
numbers 

[Decreased priority) 

Figure 2—SN!NN,LCR for a 4-node system with M = 3 and LCR restart 
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Figure 3—Resetting SNs 

be reset to 1 without threatening the local ordering of updates 
from the same node. This is necessary because otherwise 
LCRs may become undesirably large. Figure 2 shows some of 
the update ID numbers generated for a system of four nodes 
when each node changes its NN after generating M = 3 up
dates. This figure shows that updates generated from the same 
node are numbered in order of their generation. Therefore, 
even though LCRs are reset for each node number change, 
the local ordering is still preserved. 

SNs similar to LCRs can grow large (although at a slower 
rate) and therefore require periodic resetting. Resetting SNs 
has to be done so that the properties of uniqueness, local 
ordering, and total relative ordering of the MOD numbering 
scheme are preserved. One has to be careful about when to 
reset a nodal SN. Since NNs and LCRs change in a circular 
manner, it is possible to generate two or more updates with 
the same ID when SNs are reset carelessly. 

An example of a three-node system that changes a node's 
number after the node generates two updates is given in Fig
ure 3. This figure shows that if SN of node number 0 is reset 
to 0 at Point A, the very next update generated at this node 
is numbered (0!2,1), which was first assigned to another up
date by Node 2 (first row, last column of Figure 3). In order 
to avoid this (and possible message transfer for synchroni
zation), Node 0 can wait and attempt to reset its SN at Point 
B. There are two important properties associated with Point 
B. First, at this point, the new node number of every node is 
the same as its original number assigned at the system ini
tiation time (0 for Node 0, etc). Second, if resetting is done at 
this point, the only possible conflicts are local conflicts: Node 
0 might generate ID = (0!0,1), which was first generated by 
this node. This property eliminates the need for message 
transfers and synchronization with other nodes. Therefore, 
resetting SNs at this point will not cause uniqueness destruc
tion of IDs if each node is only assured that all updates it has 
generated since its last SN reset are finished and out of the 
system. This might delay the numbering of updates if all pre
vious updates are not finished. Considering the facts that each 
update is executed in a finite period and that resetting of SNs 
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does not occur very often, the delay is not substantial. Note 
that SNs can be reset independently for each node and do not 
have to be reset for all nodes at the same time. Note also that 
resetting a SN at a node means starting IDs from the lowest 
r«n<;^'h'0 n i imhpf at tYxctt nnHp Ac far 9c thf> lr»r>al nrrlprjna r»f 

updates is concerned, this does not matter, because all pre
vious updates at this node are out of the system when resetting 
occurs. 

A virtual ring among the nodes and a token circulating in 
this ring, similar to the scheme explained in Lelann,6 can also 
be used instead of the numbering scheme presented above. In 
this scheme a token (or a sequencer [Reed8]) is circulating in 
a prespecified virtual ring among the nodes of the system. The 
token is given a token round number, TRN, that is set to 0 at 
system initiation time and is incremented for each complete 
rotation of the token in the ring. A node will change its node 
number every time it receives the token. The TRN is attached 
to update ID numbers instead of SNs; i.e., 

ID = (TRN!NN,LCR) 

This scheme also provides for a unique identification and a 
fair priority scheme among the updates. One drawback to this 
scheme is the problem of token loss, which may occur if a 
node that has the token fails. Loss of the token, even though 
soluble,6 can delay the numbering procedure and hence con
tribute to delay in the execution of the updates. Link failures 
can cause similar problems. The MOD numbering scheme, on 
the other hand, does not require communication among the 
nodes to generate timestamps. This means that link failures 
do not affect timestamp generation. As far as node failures are 
concerned, a node can fail without interrupting other nodes' 
timestamp generation. After a node recovers, it can resume its 
timestamp generation where it left off. Because of the prob
lem associated with the scheme using circulating tokens, it is 
preferable to use the MOD numbering scheme for numbering 
the events (updates) in a distributed system. 

In summary, the scheme has four properties: 

1. IDs generated using this scheme are unique. 
2. For a given node, update IDs increase monotonically, 

and therefore updates generated from a node preserve 
the order of their generation (local ordering). 

3. As discussed above, priority of nodes changes in a 
round-robin fashion and is not pre-fixed. 

4. Control is local and therefore communication cost is 
low. 

CONCLUSION 

A numbering scheme that generates globally unique update 
IDs has been presented. The scheme dynamically changes the 
node numbers; this change results in an even distribution of 
priority across the nodes. The scheme does not require phys
ical clocks and therefore avoids all the problems associated 
with synchronizing them. The MOD numbering scheme could 
be employed by update algorithms1-7-911 in place of numbering 
schemes using fixed node numbers and physical clocks. This 
is expected to improve the performance of these algorithms. 
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