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ABSTRACT 
The results of a machine learning from user behavior can 
be thought of as a program, and like all programs, it may 
need to be debugged.  Providing ways for the user to debug 
it matters, because without the ability to fix errors users 
may find that the learned program's errors are too damaging 
for them to be able to trust such programs. We present a 
new approach to enable end users to debug a learned 
program. We then use an early prototype of our new 
approach to conduct a formative study to determine where 
and when debugging issues arise, both in general and also 
separately for males and females. The results suggest 
opportunities to make machine-learned programs more 
effective tools. 

Author Keywords 
Machine learning, debugging, end-user programming 

ACM Classification Keywords 
H5.2. Information interfaces and presentation (e.g., HCI): 
User Interfaces 

INTRODUCTION 
How do you debug a program that was written by a 
machine instead of a person? Especially when you don't 
know much about programming and are working with a 
program you can't even see? 

This is the problem faced by users of a new sort of 
program, namely, one generated by a machine learning 
system that customizes itself to the user. For example, 
intelligent user interfaces, recommender systems, and 
categorizers of email use machine learning to adapt their 
behavior to users' preferences. This learned set of behaviors 
is a program. These learned programs do not come into 
existence when the learning environment has left the hands 
of the machine learning specialist; instead, they are learned 

on the user's computer. Thus, if these programs make a 
mistake, the only one present to fix them is the end user. 
These attempts to "fix" the system can be viewed as 
debugging—the user is aware of faulty system behavior, 
and wants to change the system's logic so as to fix the 
flawed behavior.  

In this paper we present an approach to support end-user 
debugging of machine-learned programs. Because this 
notion of debugging is new, an exploration of fundamental 
issues and challenges is necessary. We therefore built a 
prototype based upon our approach, so that we could 
investigate both barriers faced by end users when 
debugging machine-learned programs, and challenges to 
machine learning algorithms themselves. 

Using our prototype e-mail sorter as our research vehicle, 
we studied end users' difficulties in debugging the learned 
program's behavior. We analyzed the resulting set of 
barriers for patterns in their occurrence and how they 
related to the users' debugging progress. Since researchers 
have recently found evidence of gender differences in 
debugging (e.g., [24]), we also investigated the interaction 
of gender with these barriers.  

The main contributions of this paper are:   

• A new "why-oriented" approach to allow end users to 
debug the logic of a machine-learned program. 

• Identification of barriers encountered by end users 
attempting to debug a machine-learned program. 

• Identification of gender differences in the barriers 
encountered. 

• A set of challenges for researchers developing machine 
learning algorithms, when the programs learned by 
these algorithms must be debugged by end users. 

BACKGROUND AND RELATED WORK  There are a number of debugging systems that help with 
finding the causes of faulty program behavior. For 
example, in the spreadsheet domain, WYSIWYT [4] has a 
fault localization device that reasons about successful and 
unsuccessful "tests" to highlight cells whose formulas seem 
likely to be faulty. Woodstein [26] helps users debugging e-
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Why Questions 
Why will this message be filed to <Personal>? 
Why won't this message be filed to <Bankruptcy>? 
Why did this message turn red? 
Why wasn't this message affected by my recent changes?
Why did so many messages turn red? 
Why is this email undecided? 
Why does <banking> matter to the <Bankruptcy> folder? 
Why aren't all important words shown? 
Why can't I make this message go to <Systems>? 

Table 1: The Why questions. 

commerce problems, visualizing events and transactions 
between services. The Whyline [10] is a debugging tool 
aimed at event-driven programs and has recently been 
extended to help users debug the document and application 
state in word processors [18]. None of this work, however, 
allows end users to change the logic of a program learned 
by a machine.  

Many end user debugging systems require users to have 
access to source code. This is particularly problematic for 
machine-learned programs, since there is no obvious 
"source code" behind the scenes to study. Recent studies 
have highlighted the need for explanation and visualization 
of the machine learning algorithm's reasoning. The first 
[19] examines the obstacles faced by developers familiar 
with machine learning who need to apply machine learning 
to real-world problems. The second [8] investigates the 
types of questions a research team would like to ask an 
adaptive agent in order to increase their trust in the agent. 
We tackle a more difficult problem, with end users who 
know nothing about machine learning but are required to 
interact with a learning system.  

Much of the work in explaining probabilistic machine 
learning algorithms has focused on the naïve Bayes 
classifier [2, 12] and, more generally, on linear additive 
classifiers [20] because explanation is more 
straightforward. More sophisticated but computationally 
expensive explanation algorithms have been developed for 
general Bayesian networks [13].  All of these approaches, 
however, are intended to explain the reasoning of the 
algorithm, rather than let the user modify it. 

Some Programming by Demonstration (PBD) systems learn 
programs interactively from users' examples using machine 
learning techniques [14]. However, in the few cases in 
which user feedback is permitted, this feedback is limited 
to certain interactions, such as correcting an object the 
system identified [15] or telling the system to "stop that!" 
[16], or it requires a familiarity with an underlying 
language syntax such as Lisp (e.g., [25]). 

Thus, previous research on enabling people to interact with 
machine learning systems have focused on helping people 
more easily create a machine-learned program or 
understand it, but not on enabling end users to debug it. 

DEBUGGING OF LEARNED PROGRAMS 
Inspired by the success of the Whyline's support of 
debugging [10, 18], we designed a method to allow end 
users to ask Why questions of machine-learned software. 
Our approach is novel in the following ways: (1) it supports 
end users asking questions of machine-learned programs, 
and (2) the answers aim at providing suggestions for these 
end users to debug the learned programs. 

Design of the Why Questions 
We began by defining the universe of possible Why 
questions that could be asked in our domain. Our first step 
toward this goal was to inventory the domain objects, such 
as messages and folders. Our second step was to inventory 
all possible user actions we expected to support, which we 
obtained from an experiment involving a previous research 
prototype [23]. That prototype also provided an inventory 
of feedback effects from the system (such as folder 
prediction and word importance). From these inventories, 
we generated a query grammar of all legal combinations of 
objects, actions, and effects. This described our universe of 
Why questions.  

To select from these, we then drew from earlier work on 
learning barriers for novice programmers [11]; we chose 
the questions that could help a user overcome one or more 
of these barriers. This resulted in the nine Why questions 
(and answers) depicted in Table 1. The textual answers 
include a mixture of static and dynamic text to make clear 
to users that the answers relate to their current situation. 
For example, the answer to Table 1's second question (with 
dynamically-replaced text in <brackets>) is: 

The message will be filed to <Personal> instead of 
<Bankruptcy> because <Personal> rates more words 
in this message near Required than <Bankruptcy> 
does, and it rates more words that aren't present in this 
message near Forbidden. (Usage instructions followed 
this text.) 

In addition to the textual answers, three questions are also 
answered visually. These are shown in Table 2. The bars 
indicate the weight of each word for predictions to a given 
folder; the closer to Required/Forbidden, the more/less 
likely messages containing this word will be classified to 
this folder. Providing the necessary dynamic content to 
these textual and visual explanations required support from 
the underlying machine learning algorithm. Details on the 
machine learning algorithm and how it was used to provide 
dynamic answers will be discussed in later sections. 

Design Principles for End-User Debugging 
In general, debugging involves inspecting concrete data 
about program execution. For example, debuggers provide 
access to variables' values and the stack. Therefore, one 
principle that guided the design of our prototype was that 
users should be able to "debug" by directly interacting with 
the words in actual e-mail messages. 

Taking this philosophy a step further, we developed an 
approach in which the answers to the debugging questions 
(Table 1) also serve as the source code itself. Specifically, 
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the visualizations (Table 2) are actually representations of 
the learned program's code, because they are the only 
representation of the program logic available for human 
reading. Because of these dual purposes of the Why 
answers, our policy was to make these answers be faithful 
representations of the system logic. For this reason, we 
discarded variants of the visualizations that omitted details.  

Consistent with the notion that these visualizations are the 
source code, and that what the user is trying to do is fix the 
code, it follows that the user must be able to manipulate the 
visualizations. These manipulations are the method users 
have to fix machine-learned bugs—they allow the user to 
directly change the logic the learned program will follow.  

Machine Learning Design Considerations 
For the purposes of investigating our basic approach and 
barriers, we decided to begin with an algorithm widely used 
in our study's setting. We chose naïve Bayes [21] because, 
first, it is a commonly used algorithm for spam filtering. 
Second, naïve Bayes is structured such that rich user 
feedback can be integrated in a straightforward manner. 
Third, we can readily generate rule-based explanations 
from the naïve Bayes classifier. Our previous work [22] has 
shown that rule-based explanations are the most easily 
understood types of explanations. Our bar graph 
visualization can be considered either a rule-based or a 
keyword-based explanation, since the rules are defined 
using keyword presence and absence. Fourth, when the user 
modifies the weight on a keyword, naïve Bayes will set the 
new value to be almost exactly the value specified by the 
user. In contrast, techniques like user co-training [23] 
assign a new value, which could potentially be quite 
different from the user-assigned value. User co-training 
assigns a value that is a combination of the user-assigned 
value and the classifier's internal weight. With the bar 
graph visualization used in this study, this behavior can be 
frustrating to end users, as it makes the algorithm appear to 
disobey the user's change. 

In our visualization, naïve Bayes does in fact make a slight 
modification to the user-assigned weight. We treat the user-

specified folder assignment for the current email as a new 
training data point for the classifier. Thus, in addition to the 
user-assigned weights, the classifier (and hence the 
visualization) is also changed by the new data point formed 
from the current email and the user-specified folder 
assignment. This change was to make the classifier more 
sensitive to user feedback in the interactive setting. 

How Debugging Works 
Figure 1 gives a bird's eye view of the prototype we built 
following these principles. It consists of the usual email 
client elements: a folder list (top left pane), a list of headers 
in the current folder (top center pane), and the current 
message (right pane). The two bottom panes contain the 
textual answers (left) and interactive visualizations for 
debugging (center). 

If at some point the user wants to know why the program is 
behaving in a certain way, she can ask any of the Why 
questions through either the menu bar, or context-sensitive 
menus by right-clicking on the object (such as a particular 
word) she has questions about. For example, in Figure 1, 
the user has just asked why this message is not filed in 
Systems. The keyword bar graph shows the system's 
opinion of the importance of each word to the Resumes 
folder (dark pink), which is the current folder for this 
message, versus importance to the Systems folder (light 
blue). In the figure, the user is trying to debug the system's 
behavior by decreasing the weight of the word "please" to 
Systems. 

In prior empirical work [23], we learned that users wanted 
access to a rich set of information, possibly even the entire 
set of keywords that the system has available. The keyword 
bar graph provides this—all words are available using this 
graph, and each can be manipulated. Users' changes to bar 
graph entries cause the system to immediately recalculate 
its predictions of all messages in the inbox. These changed 
folder predictions are listed textually next to each message 
header in the inbox, highlighting headers whose predictions 
have changed. For every manipulation, the user 
immediately sees both how the "source code" in terms of 

Why does 
<word> matter 
to <folder>? 

Why will this 
message be filed 
to <folder>? 

Why won't this 
message be filed to 
<folder>? 

 

  

Table 2: Visual explanations for three Why questions. 

   

 
Figure 1: (Top left): A thumbnail view of the prototype. (Top 
right): Blow-up of the visualization/debugging features. The 

user has just decreased the importance of "please" to 
Systems by dragging the blue (light) bar downward. 

(Bottom): But the system still thinks the message belongs in 
Resumes. 
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importance of words has changed, and also how the 
resulting program output changes. 

Answering the "Why?" Questions 
The questions "Why will this message be filed to X?" and 
"Why won't this message be filed to X?" both require 
dynamically generated answers that rely on support from 
the underlying machine learning algorithm. Before 
explaining how these answers are generated, we define the 
following notation. An email message is represented as a 
"bag of words", which converts the email message into a 
Boolean vector W = (W1, …, Wm) in which  Wi takes the 
value true if the ith word of a vocabulary of m words is 
present in the email message and false otherwise. The 
vocabulary in our experiment consists of the union of the 
words from the following parts of all the emails: the email 
body, the subject line, and email addresses in the To, From 
and CC parts of the email header. Stop words, which are 
common words with little predictive value such as "a" and 
"the", are not included in the vocabulary. 

Answering: "Why will this message be filed in X?" 
In previous work [22] we observed that end users 
understood how the presence of keywords influenced the 
classification, but they struggled with the concept of how 
the absence of keywords influenced the classification. We 
addressed this difficulty through the visualization of the 
naïve Bayes classifier, shown in the leftmost image of 
Table 2, in which the "weight" associated with each word 
in the vocabulary is depicted as a bar which slides between 
the two extremes of Required and Forbidden. For folder f, 
this weight is the probability P(Wi = true | F = f) where Wi 
is the random variable for the ith word and F is the random 
variable for the folder. Since P(Wi = false | F=f) = 1.0-
P(Wi = true | F = f), the position of the bar can be 
interpreted in two ways. The higher the top of the bar, the 
more important the presence of the word is to the 
prediction. Alternately, the lower the bottom of the bar, the 
more important the absence of the word is to the prediction. 

Answering: "Why won't this message be filed in X?" 
If the current message is predicted to be filed under folder f, 
the user can ask why it won't it be filed in folder f'. The 
application answers this why question by displaying the 
two-bar graph shown in the middle image of Table 2. The 
two bars correspond to P(Wi = true | F = f) and P(Wi = true 
| F = f') respectively. The purpose of this two-bar view is to 
allow the user to compare and contrast the importance of 
various words between the two folders. Furthermore, since 
the dual bar view only allows weights associated with the 
two folders f and f' to be manipulated, we can illustrate the 
degree that an email "belongs" to either folder f or f' based 
on the magnitude of P( F = f' | W1, …, Wm) and P( F = f | 
W1, …, Wm) respectively. For instance, if folder f is the 
originally predicted folder for the email and P( F = f' | W1, 
…, Wm) > P( F = f | W1, …, Wm) after the user interacts 
with the visualization, then the email will be filed under 
folder f'. In the visualization, we can illustrate the degree to 
which an email "belongs" to folders f and f' using the arrow 
shown at the bottom of Figure 1. 

THE STUDY 
Using a prototype of the above approach, we conducted a 
formative study. Our purpose was not to validate the 
approach, but rather to investigate fundamental issues 
relating to barriers and their impact on end users attempting 
to debug a machine-learned program.  

The study involved a dialogue-based think-aloud design, in 
which two users verbally expressed their thoughts to each 
other while collaborating on a task. This encouraged 
participants to voice their reasoning and justifications for 
actions via typical social communication with their 
partners. 

The participants consisted of 6 pairs of female and 5 pairs 
of male students with an even distribution of GPA, years in 
university, and email experience across gender. All 
participants were required to have previous email 
experience but could not have a computer science 
background. In order to eliminate a lack of familiarity with 
each other as a source of noise in our data, pairs had to 
know each other prior to the study and sign up together. 
Pairs also had to be same-gender, so that we could clearly 
identify any gender differences that might arise. 

We ran the study one pair at a time. Each session started 
with the participants completing a questionnaire, which 
asked for background information and gathered pre-session 
self-efficacy data [6]. We then familiarized the pair with 
the software and examples of classification through a 20-
minute hands-on tutorial. For the main experiment task, 
participants were asked to imagine that they were co-
workers in a corporate department at Enron. Their 
department included a shared e-mail account to provide 
easy access to work communications that affected all of 
them. The premise was that new e-mail software had 
recently been installed, featuring the ability to learn from 
the users and automatically classify messages into a set of 
existing folders. They were told that their supervisor had 
asked them to get messages from the Inbox into the 
appropriate folders as quickly as possible, doing so in a 
way that would help improve later classification.  

We used the publicly available Enron e-mail data set in our 
experiment. To simulate a shared mailbox, we combined 
messages from three users (farmer-d, kaminski-v, and 
lokay-m) that they had originally filed into five folders 
(Bankruptcy, Enron News, Personal, Resumes, and 
Systems). At the start of the experiment, each folder held 
20 messages; these were used to initially train both the 
classifier and the participants about how messages were to 
be filed. The Inbox contained 50 messages for the 
participants to work on. 

The pair worked on the main experiment task for 40 
minutes, with participants being asked to switch control of 
the mouse after 20 minutes. We used Morae software to 
capture video and audio of their session synchronized with 
screen activity. We also logged their actions using our own 
instrumentation. After the main task, participants 
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individually filled out a post-session questionnaire 
gathering their feedback and post-session self-efficacy. 

DIALOGUE ANALYSIS METHODOLOGY 
To analyze the dialogue, we developed two code sets 
(Table 3), capturing barriers and debugging activities. 
Regarding barriers, Ko et al. identified six types of learning 
barriers experienced by novice programmers using a new 
programming environment [11]. These barriers are 
appropriate to our investigation because our participants, 
like theirs, were problem-solving about how to make 
programs work correctly and were inexperienced with the 
provided facilities for debugging. The first five barrier 
names and the definitions as they apply to our environment 
are in Table 3. We did not use Ko et al.'s sixth barrier, 
searching for external validation, because all problem 
solving in our experiment was based on facts internal to our 
environment. Regarding debugging activities, previous 
research [7, 10] identified six common actions in fixing 
bugs in programming environments. We applied the two of 
these not involving data structuring or editing source code, 
and also introduced a fault detection code. These codes are 
also given in Table 3. 

We then applied the codes to "turns". A turn consisted of 
sentences spoken by a participant until his/her partner next 
spoke. Speech by one participant that contained a 
significant pause was segmented into two turns. Coding 
iteratively, two researchers independently coded a 5-minute 
random section of a transcript. We calculated similarity of 
coding using the Jaccard index (dividing the size of the 
intersection of codes by that of the union). Disagreements 
led to refinements in coding rules, which were then tested 
in the next coding iteration. Agreement eventually reached 
82% for a 5-minute transcript section, and 81% for a 
complete 40-minute transcript. Given this acceptable level 

of reliability, the two researchers then divided up the 
coding of the remaining transcripts. 

Code Meaning 
Design Barrier Doesn't know how, where, or whether to 

give feedback. "Can we just click File It?"  
Selection 
Barrier 

Knows what to do, but not which object to 
change. "What kind of words should tell the 
computer to [file this] to Systems?" 

Coordination 
Barrier 

Doesn't understand how changes affect the 
rest of the system. "Why... why it won't go to
Personal..." 

Use Barrier Does not know how to determine the best 
weight of words. "So is [this word] 
'unimportant'?" 

Understanding 
Barrier 

Doesn't understand system's feedback. 
"Why is 'web' more forbidden for [the] 
Systems [folder]?" 

Fault Detection Noticing an incorrect folder choice by the 
system. "It's going to [the] Systems [folder]; 
we do not want Systems." 

Diagnosing Figuring out the specific cause of a detected
fault. "Well, 'e-mail' needs to be higher." 

Hypothesizing Proposing a general solution for a detected 
fault. "Let's move something else, and then 
maybe it'll move [the e-mail] to Systems." 

Table 3: Coding scheme used in this study. 

RESULTS 

Barriers Encountered 
Participants ran into an average of 29 barriers during the 
40-minute study (with a range from 7 to 66). Barriers were 
equally likely to be encountered at the beginning and end of 
the study. It is important to note, however, that everyone hit 
barriers, and some encountered them very frequently, 
underscoring the importance of addressing barriers in 
fixing machine-learned programs. 

As Figure 2 shows, the most frequent barriers were 
Selection barriers (40.99% of all barriers encountered). 
This type of barrier relates to the difficulty of finding the 
right words or messages to modify to give feedback to the 
system, for example: 

P712: "Then 'news'? Well, they like team players. 
Contributions? That would be more that you'd use for 
news then Systems." 

Coordination barriers also arose often (28.57% of all 
barriers). Participants often wondered how the feedback 
they were about to give would change system behavior or 
why the system had responded to feedback as it did: 

P732: "Resume? [user finds word, makes 'resume' 
required] Why didn't it change it? How about university?" 

The fact that Selection and Coordination barriers accounted 
for the most observed barriers is confirmed by the 
questionnaires, where 16 of 22 respondents (72%) 
mentioned difficulty in determining which words were 
important when fixing misclassified mail. The prevalence 
of these types of barriers suggests the need for intelligent 
user interfaces to be able to direct end users to the most 
useful places to give feedback, such as which words will 
have the strongest effect on message reclassification.  

Participants ran into Design and Use barriers less 
frequently (14.29% and 12.73%, respectively). While these 
barriers should not be neglected, the predominance of 
Selection and Coordination barriers suggests that end users 
may have less trouble deciding on a strategy for how to 
give feedback (Design and Use), than on where to give 
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Figure 2: Number of barriers encountered across all 

transcripts. 
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feedback (Selection and Coordination). 
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Figure 3: Average number of barriers per session 
encountered by males (dark bars) and females (light bars). 

Gender Differences in Barrier Encounters 
Males and females did not experience the same number of 
barriers: females encountered more barriers (average of 
33.3 per session) than males (average 24.4 per session). 
This difference was despite the fact that males talked more 
(and thus had more opportunities to verbalize barriers) than 
females, averaging 354.6 turns per session, compared to 
288.1 for females. 

Figure 3 shows the average barrier count per session for 
intuitive clarity; the same differences were observed when 
comparing the average counts per turn. Females 
experienced more barriers in almost every category except 
Coordination, where there was no difference, and 
Understanding, where the situation was reversed. Selection 
barriers, the most common barrier type, had a very large 
difference: females averaged 14 per session, about 1.5 
times more than the male average of 9. Design barriers, too, 
exhibited a strong contrast, with the female average of 5.33 
per session versus the male 2.8. 

One reason for these differences may be that females 
expected more problems, due to lower self-efficacy (a form 
of self-confidence specific to the expectation of succeeding 
at the upcoming task [1]). Females began the experiment 
with lower self-efficacy than males, scoring an average of 
38 vs. 42.1 for males (via a self-efficacy question set [6]). 
Even with our small sample, this difference was significant 
(Wilcoxon Rank-Sum Test: z=-2.64, p<.01). This is 
consistent with similar self-efficacy differences for end 
users engaging in other complex computer tasks [3, 9, 24]. 
Our results about differences in barriers is consistent with 
this prior research in another aspect, too: these prior works 
showed gender differences in both features used, and the 
strategies by which end users tried to fix errors in 
spreadsheets. 

Another reason for the gender dissimilarity may be due to 
differences in information processing. For example, work 
on the selectivity theory of information processing [17] has 
shown a number of differences in how males and females 
process information. According to this theory, females are 
more likely to work with information comprehensively, 
whereas males are more likely to pursue the first few 
portions of information and then move on. The following 
quotes illustrate the tendency of female pairs to examine 
several words at a time, versus males' propensity for 
moving on as quickly as possible:  

Female Pair 
P1131: "So that's really important. And then, um, 
probably 'updates' would be important. And then, um... 
virus?" 
P1132: "Yeah. And then, uh, 'login'." 

Male Pair 
P1211: "It's correct. It's learned something, eh." 
P1212: "Um hmm." 
P1211: "Lets go to the next message." 

This theory is also consistent with our data, which revealed 
that females worked with a larger set of words than males 
did (106 unique words for females vs. 62 for males), 
perhaps to perfect the algorithm's performance. Males may 
have been more inclined to move on to the next message as 
soon as they obtained the desired effect. 

Barriers and Transitions  
When a participant encountered a barrier, what happened 
next? To answer this question, we investigated patterns in 
barrier transitions, that is, determining the subsequent 
barriers and activities to which a participant transitioned 
after encountering each type of barrier. Barriers/activities 
coded in participants’ verbalizations are simply states 
between which they can transition. To calculate the 
probability of each state (barrier or activity) following an 
initial barrier, we divided the subsequent states by the total 
number of states that followed the initial barrier. For 
example, if Selection followed Design once and 
Diagnosing followed Design twice, then the probability of 
Selection following Design was computed as 1/(1 + 2) = 
.33, or 33%, and the probability of Diagnosing following 
Design was computed as 2/(1 + 2) = .66, or 66%. We use 
these probabilities for intuitive clarity only. Our graphs 
show the exact number of instances for completeness. 
Despite these numerical summaries included for clarity, 
note that the lack of preconceived hypotheses make 
inferential statistics on these data inappropriate, and we do 
not make them. 

The distribution of transitions from Design barriers (Figure 
4) was the most uniform of the barriers, especially for 
females. Subsequent Coordination barriers were most 
frequent, averaging 19.05% over all transcripts, but Design, 
Selection, Fault Detection, Hypothesizing, and Diagnosing 
each followed this barrier at least 10% of the time. Males, 
however, followed Design barriers with some form of 
debugging activity an average 70% of the time, versus 
46.88% for females. 

Selection barriers were followed by Diagnosing 40% of the 
time (Figure 5). The next most-prevalent barrier was a 
second Selection code (19.13%), suggesting that Selection 
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barriers were either quickly overcome and led to 
Diagnosing, or they cascaded, stalling participants. The 
relatively high instance of Selection barriers stalling 
participants suggests the need for machine-learned 
programs to point out which words or features would be 
most likely to change the program's behavior; we will 
discuss how this might be done in the Challenges for 
Machine Learning section. These participants, for example, 
could have benefitted from this sort of help: 

P732: "And what about 'interview'? Oh, we just did that, 
so no. 'Working', maybe?" [finds word] 
P731: "Well, no because 'working' could be used for 
anything really." 
P732: "True." 
P731: "'Work', no." 
P732: "What about... [scrolls left] 'scheduling'. No, that 
could be News." 
P731: "That could be News, too." 
P732: "What about 'scientist'?" 
P731: "That could be Personal." 

Males had a higher tendency of Hypothesizing following a 
Selection barrier than females, 26.67% to 11.76%. Recall 
that Hypothesizing was coded when the pair discussed a 
possible fix but didn't include a specific word, whereas 
Diagnosing indicates that the pair specified the word they 
intended to modify. Thus, males were more likely to follow 
a Selection barrier with a general solution, while females 
tended to first agree on a word to alter. 

Like Selection barriers, Coordination barriers often led to 
Diagnosing (30.95%) (Figure 6). Taken together with the 
other two debugging actions, Fault Detection (14.29%) and 
Hypothesizing (20.24%), this barrier was followed by a 
debugging action 65.48% of the time. Males, however, 

tended to follow Coordination barriers with more 
Diagnosing than females (47.22% vs. 18.75% 
respectively), whereas females followed them with more 
Hypothesizing than males (29.17% vs. 8.33%). Essentially, 
after having trouble coordinating changes to one area of the 
machine-learned program with other sections of the 
application, females frequently proposed a generic solution, 
whereas males tended to fix specific things. This appears to 
be yet another indication of the comprehensive problem-
solving strategy associated with females [17], providing 
further evidence of the need to support both comprehensive 
and non-comprehensive problem-solving strategies. 

Finally, Use barriers were strongly tied with Diagnosing 
(44.12%); all the other transitions were below 15%. It 
seems that when a Use barrier was encountered, our 
participants' response was to adjust their specific solution, 
rather than move on to a different problem or generalize a 
solution. This appeared to be equally the case for males and 
females. 

Gender Differences in Debugging Feature Usage 
Previous researchers have reported gender differences in 
usage of debugging features in spreadsheets [3, 9, 25], and 
our data revealed that males and females used debugging 
features for the learned email program differently as well. 
Specifically, when interacting with the keyword bar graph 
(which was their only explicit way of specifying logic 
changes to the classifier), there were three differences 
between males and females. 

The first difference was identifying the fault. The primary 
way to pursue a fault was to ask a "Why isn't this message 
in this folder?" question, since that was the way to bring up 
the bar graph showing the importance of words to both the 

  

  

Figures 4 (top left), 5 (top right), 6 (bottom left), and 7 (bottom right): Number of transitions from barriers to other barriers and to 
debugging activities.  Light squares represent one instance by a female pair, dark squares represent one instance by a male pair.  
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faulty and the desired folder (Figure 1, top right). Females 
asked considerably more of these "Why isn't this message 
in this folder?" questions than males did (average 12.16 per 
session for females, 9.6 for males).  

The second difference was in the comprehensiveness with 
which males and females considered the state of the 
machine-learned program. Specifically, scrolling through 
the bar graph (in answer to the above why question) 
allowed the current weights of words, respective to folders, 
to be compared. Females scrolled through the bar graph 
more than twice as much as males (average of 189.3 
scrolling movements for females per session vs. 89 for 
males), clearly demonstrating more comprehensive 
consideration of the words and their weights.  

The third difference was in explicitly debugging the logic, 
i.e., adjusting the weights of the words. Logs of 
participants' actions revealed that females made more edits 
to words and their weights in the keyword bar graph than 
males (average 38.83 per session for females, 34 for males) 
in their debugging.  

These differences in using specific features to effect 
changes to the program are corroborated by what the 
participants said about debugging:  females’ verbalizations 
included more Fault Detection (average of 14.33 per 
session vs. 8.8 for males), more Hypothesizing (13.33 vs. 
8.6) and slightly more Diagnosing  (28.66 vs. 26.6) than 
males. These differences were despite males’ greater 
number of total verbalizations.  

Males, on the other hand, focused more on filing messages 
in the present, with less regard for debugging to improve 
the future: they filed more messages away (average 15.4 
per session) than females (average 11 per session), and 
dragged more messages directly to folders (average 4.2 per 
session for males, 2 per session for females).  

There are several possible explanations for this behavior. 
Females' interest in more of the words is consistent with 
Meyers-Levy's work reporting females' greater tendency to 
process more information [17]. Our own prior work has 
also found gender differences consistent with this theory 
when end users debug spreadsheets [24]. Females may 
have also exhibited a greater responsiveness to social 
norms and obligations, as one participant articulated:  

P512: "But if the computer does not learn from this, then 
the next group that comes in after us will have to do the 
same thing." 

An important difference between adjusting words via the 
bar graph (done more by females) and filing or dragging 
messages (done more by males) was reversibility; word 
adjustments could be reset to their original values with the 
click of a button, but, as was emphasized during the 
tutorial, messages could not be moved once filed. This 
created a risk related to filing that did not exist with 
manipulating words. Our findings thus are consistent with 
existing literature reporting that females are more risk 

averse than males (discussed in [3]). This suggests the need 
for features to lower perceived risk, such as the addition of 
an "Unlearn" capability. 

CHALLENGES FOR MACHINE LEARNING 

Supporting The Why Questions 
Can any machine learning algorithm provide informative 
and efficiently computed answers to these or other "Why" 
questions? Can a general "recipe" be used by any machine 
learning algorithm to answer these questions? For the 
"Why won't this message be filed to X?" question, the 
strategy employed by naïve Bayes can be easily extended 
to any other classifier. The "Why will this message be filed 
to X?" question is somewhat more restrictive. Any linear 
additive classifier of the form ,where wi is the ith 

weight and fi is the ith feature, can be visualized as a bar 
graph. Apart from naïve Bayes, many other machine 
learning algorithms are linear additive classifiers, including 
logistic regression, perceptrons, and linear support vector 
machines. The interpretation of the bar, however, will 
depend on the classifier, and the bar may not necessarily 
behave as the slider described above. Also, the bar graph 
visualization is more complicated to explain if the linear 
additive classifier requires regularization to deal with 
correlated features. 

∑
i

ii fw

In general, machine learning algorithms vary greatly in 
their comprehensibility and thus the bar graphs are not a 
one-size-fits-all solution. For instance, classifications by 
decision trees are visually understood while predictions 
from neural networks are much more difficult to explain. 
Furthermore, other machine learning algorithms are 
capable of providing much more in-depth explanations and 
can thus answer a greater range of "Why?" questions. As an 
example, Bayesian networks provide a sophisticated but 
computationally expensive mechanism for providing 
detailed explanations of how different pieces of evidence 
influence the final prediction made by the algorithm [13]. A 
current challenge for machine learning is to develop 
informative and efficiently computed explanations of 
statistical machine learning algorithms. 

Sensitivity Analysis 
One of the difficulties with visualizing a text classifier is 
the fact that there are approximately 16,000 features 
involved, where each feature corresponds to a word in the 
vocabulary. The sheer number of features makes finding a 
desired word in the bar graph particularly cumbersome for 
a user, even though we supported sorting by weight and by 
alphabetical order. Furthermore, modifying the weight on 
many of these words produces little or no change to the 
final prediction.  

To mitigate this problem, we plan to incorporate ideas from 
sensitivity analysis, which is a technique used in statistical 
modeling to determine the robustness of a model to 
changes to its parameters [5]. Chan and Darwiche [5] 
investigate the sensitivity of probabilistic queries on a 
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Bayesian network in response to changes to a single 
parameter in the network. The authors then develop bounds 
on the effect of these changes to the query. In future work, 
we will apply these bounds to the naïve Bayes classifier, 
which is a special case of a Bayesian network. The bounds 
will allow us to determine if a change to a parameter (i.e., 
the probability P(Wi | F)) has little or no effect on the 
predicted folder. We can then reduce the number of 
features displayed in the visualization by not displaying the 
bars which cause insignificant changes to the final 
prediction.  

The Popularity Effect 
Participants who concentrated on training the classifier to 
recognize emails for one specific folder at a time 
experienced a "popularity effect" in which the folder with 
the largest number of filed emails dominated the classifier's 
predictions for the rest of the emails in the inbox. This 
popularity effect is primarily caused by the high 
dimensional nature of the data, the relatively sparse training 
data, and the class imbalance of the email folders. These 
factors cause the classifier to overfit both the training data 
and the rich user feedback for the smaller folders. 

To illustrate this point, suppose the user employs such a 
filing strategy. The dominant folder could be the Systems 
folder, which has keywords such as "Windows" and 
"McAfee" that are easily identified by the user. Once a 
large number of messages have been filed to the dominant 
folder and the classifier learns from this set of newly 
acquired training examples, the distribution for the 
dominant folder is accurately learned. However, the 
classifier is poorly trained on the non-dominant folders. In 
fact, the classifier overfits the training data for the non-
dominant folders, and the rich user feedback for these 
folders may even exacerbate the overfitting. This 
overfitting makes all emails seem unlikely to be classified 
into the non-dominant folders, because they must match 
exactly the under-smoothed distributions for these folders. 
As a result, the classifier files many of the emails in the 
inbox under the dominant folder.  

Although this can be remedied by providing sufficient 
training data for all folders, there remain some practical 
challenges: Specialized email folders tend to contain small 
numbers of emails, resulting in sparse training data for 
email classifiers, and email is known to be "bursty," with 
emails from a small handful of folders dominating the 
inbox at certain times. Due to the imbalance in the number 
of emails belonging to each folder, the popularity effect 
thus remains a real-world problem. 

IMPLICATIONS AND CONCLUSIONS 
In this paper we took a fresh look at end-user interactions 
with machine-learned programs. Efforts by end users to 
change the program's logic can be viewed as debugging, 
and taking this view, we developed a "Why-oriented" 
approach to support end users debugging these programs.   

Using this approach as a basis for our investigation, our 
study revealed barriers faced by end users debugging 
machine-learned programs, as well as challenges for the 
design of the machine learning algorithms supporting such 
programs.  Our primary results were: 

• Every participant encountered barriers while 
debugging the learned program, demonstrating that 
these barriers present real obstacles for end users 
debugging in this domain. 

• Selection and Coordination barriers were the most 
frequent obstacles to debugging the learned program.  
The sheer number of these instances strongly suggests 
the value of providing end users with information 
about where to give feedback to the machine-learned 
program in order to debug effectively. Sensitivity 
analysis may help to focus the end-user on where 
changes should occur. 

• Gender differences were present in the number of 
barriers encountered, the pattern of barriers, and usage 
of debugging features. These differences, and their ties 
to theories explaining possible roots, suggest that 
debugging tools for learned programs must support 
both comprehensive and non-comprehensive 
debugging strategies. 

• Class imbalance can cause problems for end users 
interacting with machine learning algorithms, 
interfering with their preferred debugging strategies.  

These results start us down a path to effectively supporting 
end-user debugging of machine-learned programs. 
Overcoming these barriers, both for the end user and the 
machine, will be an important step towards rich, intelligent 
guidance for intelligent user interfaces. 
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