

City, University of London Institutional Repository

Citation: Kulesza, T., Wong, W-K., Stumpf, S., Perona, S., White, R., Burnett, M., Oberst,
I. and Ko, A. J. (2009). Fixing the program my computer learned: barriers for end users,
challenges for the machine. In: Conati, C., Bauer, M., Oliver, N. and Weld, D. S. (Eds.),
Proceedings of the 14th international conference on Intelligent user interfaces. (pp. 187-
196). ACM. ISBN 978-1-60558-168-2

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/14848/

Link to published version: http://dx.doi.org/10.1145/1502650.1502678

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral
Rights remain with the author(s) and/or copyright holders. URLs from
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or
charge. Provided that the authors, title and full bibliographic details are
credited, a hyperlink and/or URL is given for the original metadata page
and the content is not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Fixing the Program My Computer Learned:
Barriers for End Users, Barriers for the Machine

Todd Kulesza1, Weng-Keen Wong1, Simone Stumpf1, Stephen Perona1, Rachel White1,
Margaret M. Burnett1, Ian Oberst1, Andrew J. Ko2

1School of EECS
Oregon State University

Corvallis, Oregon
{kuleszto, wong, stumpf, peronas, white, burnett,

obersti}@eecs.oregonstate.edu

2The Information School
University of Washington

Seattle, WA
ajko@u.washington.edu

ABSTRACT
The results of a machine learning from user behavior can
be thought of as a program, and like all programs, it may
need to be debugged. Providing ways for the user to debug
it matters, because without the ability to fix errors users
may find that the learned program's errors are too damaging
for them to be able to trust such programs. We present a
new approach to enable end users to debug a learned
program. We then use an early prototype of our new
approach to conduct a formative study to determine where
and when debugging issues arise, both in general and also
separately for males and females. The results suggest
opportunities to make machine-learned programs more
effective tools.

Author Keywords
Machine learning, debugging, end-user programming

ACM Classification Keywords
H5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces

INTRODUCTION
How do you debug a program that was written by a
machine instead of a person? Especially when you don't
know much about programming and are working with a
program you can't even see?

This is the problem faced by users of a new sort of
program, namely, one generated by a machine learning
system that customizes itself to the user. For example,
intelligent user interfaces, recommender systems, and
categorizers of email use machine learning to adapt their
behavior to users' preferences. This learned set of behaviors
is a program. These learned programs do not come into
existence when the learning environment has left the hands
of the machine learning specialist; instead, they are learned

on the user's computer. Thus, if these programs make a
mistake, the only one present to fix them is the end user.
These attempts to "fix" the system can be viewed as
debugging—the user is aware of faulty system behavior,
and wants to change the system's logic so as to fix the
flawed behavior.

In this paper we present an approach to support end-user
debugging of machine-learned programs. Because this
notion of debugging is new, an exploration of fundamental
issues and challenges is necessary. We therefore built a
prototype based upon our approach, so that we could
investigate both barriers faced by end users when
debugging machine-learned programs, and challenges to
machine learning algorithms themselves.

Using our prototype e-mail sorter as our research vehicle,
we studied end users' difficulties in debugging the learned
program's behavior. We analyzed the resulting set of
barriers for patterns in their occurrence and how they
related to the users' debugging progress. Since researchers
have recently found evidence of gender differences in
debugging (e.g., [24]), we also investigated the interaction
of gender with these barriers.

The main contributions of this paper are:

• A new "why-oriented" approach to allow end users to
debug the logic of a machine-learned program.

• Identification of barriers encountered by end users
attempting to debug a machine-learned program.

• Identification of gender differences in the barriers
encountered.

• A set of challenges for researchers developing machine
learning algorithms, when the programs learned by
these algorithms must be debugged by end users.

BACKGROUND AND RELATED WORK There are a number of debugging systems that help with
finding the causes of faulty program behavior. For
example, in the spreadsheet domain, WYSIWYT [4] has a
fault localization device that reasons about successful and
unsuccessful "tests" to highlight cells whose formulas seem
likely to be faulty. Woodstein [26] helps users debugging e-

 1

Why Questions
Why will this message be filed to <Personal>?
Why won't this message be filed to <Bankruptcy>?
Why did this message turn red?
Why wasn't this message affected by my recent changes?
Why did so many messages turn red?
Why is this email undecided?
Why does <banking> matter to the <Bankruptcy> folder?
Why aren't all important words shown?
Why can't I make this message go to <Systems>?

Table 1: The Why questions.

commerce problems, visualizing events and transactions
between services. The Whyline [10] is a debugging tool
aimed at event-driven programs and has recently been
extended to help users debug the document and application
state in word processors [18]. None of this work, however,
allows end users to change the logic of a program learned
by a machine.

Many end user debugging systems require users to have
access to source code. This is particularly problematic for
machine-learned programs, since there is no obvious
"source code" behind the scenes to study. Recent studies
have highlighted the need for explanation and visualization
of the machine learning algorithm's reasoning. The first
[19] examines the obstacles faced by developers familiar
with machine learning who need to apply machine learning
to real-world problems. The second [8] investigates the
types of questions a research team would like to ask an
adaptive agent in order to increase their trust in the agent.
We tackle a more difficult problem, with end users who
know nothing about machine learning but are required to
interact with a learning system.

Much of the work in explaining probabilistic machine
learning algorithms has focused on the naïve Bayes
classifier [2, 12] and, more generally, on linear additive
classifiers [20] because explanation is more
straightforward. More sophisticated but computationally
expensive explanation algorithms have been developed for
general Bayesian networks [13]. All of these approaches,
however, are intended to explain the reasoning of the
algorithm, rather than let the user modify it.

Some Programming by Demonstration (PBD) systems learn
programs interactively from users' examples using machine
learning techniques [14]. However, in the few cases in
which user feedback is permitted, this feedback is limited
to certain interactions, such as correcting an object the
system identified [15] or telling the system to "stop that!"
[16], or it requires a familiarity with an underlying
language syntax such as Lisp (e.g., [25]).

Thus, previous research on enabling people to interact with
machine learning systems have focused on helping people
more easily create a machine-learned program or
understand it, but not on enabling end users to debug it.

DEBUGGING OF LEARNED PROGRAMS
Inspired by the success of the Whyline's support of
debugging [10, 18], we designed a method to allow end
users to ask Why questions of machine-learned software.
Our approach is novel in the following ways: (1) it supports
end users asking questions of machine-learned programs,
and (2) the answers aim at providing suggestions for these
end users to debug the learned programs.

Design of the Why Questions
We began by defining the universe of possible Why
questions that could be asked in our domain. Our first step
toward this goal was to inventory the domain objects, such
as messages and folders. Our second step was to inventory
all possible user actions we expected to support, which we
obtained from an experiment involving a previous research
prototype [23]. That prototype also provided an inventory
of feedback effects from the system (such as folder
prediction and word importance). From these inventories,
we generated a query grammar of all legal combinations of
objects, actions, and effects. This described our universe of
Why questions.

To select from these, we then drew from earlier work on
learning barriers for novice programmers [11]; we chose
the questions that could help a user overcome one or more
of these barriers. This resulted in the nine Why questions
(and answers) depicted in Table 1. The textual answers
include a mixture of static and dynamic text to make clear
to users that the answers relate to their current situation.
For example, the answer to Table 1's second question (with
dynamically-replaced text in <brackets>) is:

The message will be filed to <Personal> instead of
<Bankruptcy> because <Personal> rates more words
in this message near Required than <Bankruptcy>
does, and it rates more words that aren't present in this
message near Forbidden. (Usage instructions followed
this text.)

In addition to the textual answers, three questions are also
answered visually. These are shown in Table 2. The bars
indicate the weight of each word for predictions to a given
folder; the closer to Required/Forbidden, the more/less
likely messages containing this word will be classified to
this folder. Providing the necessary dynamic content to
these textual and visual explanations required support from
the underlying machine learning algorithm. Details on the
machine learning algorithm and how it was used to provide
dynamic answers will be discussed in later sections.

Design Principles for End-User Debugging
In general, debugging involves inspecting concrete data
about program execution. For example, debuggers provide
access to variables' values and the stack. Therefore, one
principle that guided the design of our prototype was that
users should be able to "debug" by directly interacting with
the words in actual e-mail messages.

Taking this philosophy a step further, we developed an
approach in which the answers to the debugging questions
(Table 1) also serve as the source code itself. Specifically,

 2

the visualizations (Table 2) are actually representations of
the learned program's code, because they are the only
representation of the program logic available for human
reading. Because of these dual purposes of the Why
answers, our policy was to make these answers be faithful
representations of the system logic. For this reason, we
discarded variants of the visualizations that omitted details.

Consistent with the notion that these visualizations are the
source code, and that what the user is trying to do is fix the
code, it follows that the user must be able to manipulate the
visualizations. These manipulations are the method users
have to fix machine-learned bugs—they allow the user to
directly change the logic the learned program will follow.

Machine Learning Design Considerations
For the purposes of investigating our basic approach and
barriers, we decided to begin with an algorithm widely used
in our study's setting. We chose naïve Bayes [21] because,
first, it is a commonly used algorithm for spam filtering.
Second, naïve Bayes is structured such that rich user
feedback can be integrated in a straightforward manner.
Third, we can readily generate rule-based explanations
from the naïve Bayes classifier. Our previous work [22] has
shown that rule-based explanations are the most easily
understood types of explanations. Our bar graph
visualization can be considered either a rule-based or a
keyword-based explanation, since the rules are defined
using keyword presence and absence. Fourth, when the user
modifies the weight on a keyword, naïve Bayes will set the
new value to be almost exactly the value specified by the
user. In contrast, techniques like user co-training [23]
assign a new value, which could potentially be quite
different from the user-assigned value. User co-training
assigns a value that is a combination of the user-assigned
value and the classifier's internal weight. With the bar
graph visualization used in this study, this behavior can be
frustrating to end users, as it makes the algorithm appear to
disobey the user's change.

In our visualization, naïve Bayes does in fact make a slight
modification to the user-assigned weight. We treat the user-

specified folder assignment for the current email as a new
training data point for the classifier. Thus, in addition to the
user-assigned weights, the classifier (and hence the
visualization) is also changed by the new data point formed
from the current email and the user-specified folder
assignment. This change was to make the classifier more
sensitive to user feedback in the interactive setting.

How Debugging Works
Figure 1 gives a bird's eye view of the prototype we built
following these principles. It consists of the usual email
client elements: a folder list (top left pane), a list of headers
in the current folder (top center pane), and the current
message (right pane). The two bottom panes contain the
textual answers (left) and interactive visualizations for
debugging (center).

If at some point the user wants to know why the program is
behaving in a certain way, she can ask any of the Why
questions through either the menu bar, or context-sensitive
menus by right-clicking on the object (such as a particular
word) she has questions about. For example, in Figure 1,
the user has just asked why this message is not filed in
Systems. The keyword bar graph shows the system's
opinion of the importance of each word to the Resumes
folder (dark pink), which is the current folder for this
message, versus importance to the Systems folder (light
blue). In the figure, the user is trying to debug the system's
behavior by decreasing the weight of the word "please" to
Systems.

In prior empirical work [23], we learned that users wanted
access to a rich set of information, possibly even the entire
set of keywords that the system has available. The keyword
bar graph provides this—all words are available using this
graph, and each can be manipulated. Users' changes to bar
graph entries cause the system to immediately recalculate
its predictions of all messages in the inbox. These changed
folder predictions are listed textually next to each message
header in the inbox, highlighting headers whose predictions
have changed. For every manipulation, the user
immediately sees both how the "source code" in terms of

Why does
<word> matter
to <folder>?

Why will this
message be filed
to <folder>?

Why won't this
message be filed to
<folder>?

Table 2: Visual explanations for three Why questions.

Figure 1: (Top left): A thumbnail view of the prototype. (Top
right): Blow-up of the visualization/debugging features. The

user has just decreased the importance of "please" to
Systems by dragging the blue (light) bar downward.

(Bottom): But the system still thinks the message belongs in
Resumes.

 3

importance of words has changed, and also how the
resulting program output changes.

Answering the "Why?" Questions
The questions "Why will this message be filed to X?" and
"Why won't this message be filed to X?" both require
dynamically generated answers that rely on support from
the underlying machine learning algorithm. Before
explaining how these answers are generated, we define the
following notation. An email message is represented as a
"bag of words", which converts the email message into a
Boolean vector W = (W1, …, Wm) in which Wi takes the
value true if the ith word of a vocabulary of m words is
present in the email message and false otherwise. The
vocabulary in our experiment consists of the union of the
words from the following parts of all the emails: the email
body, the subject line, and email addresses in the To, From
and CC parts of the email header. Stop words, which are
common words with little predictive value such as "a" and
"the", are not included in the vocabulary.

Answering: "Why will this message be filed in X?"
In previous work [22] we observed that end users
understood how the presence of keywords influenced the
classification, but they struggled with the concept of how
the absence of keywords influenced the classification. We
addressed this difficulty through the visualization of the
naïve Bayes classifier, shown in the leftmost image of
Table 2, in which the "weight" associated with each word
in the vocabulary is depicted as a bar which slides between
the two extremes of Required and Forbidden. For folder f,
this weight is the probability P(Wi = true | F = f) where Wi
is the random variable for the ith word and F is the random
variable for the folder. Since P(Wi = false | F=f) = 1.0-
P(Wi = true | F = f), the position of the bar can be
interpreted in two ways. The higher the top of the bar, the
more important the presence of the word is to the
prediction. Alternately, the lower the bottom of the bar, the
more important the absence of the word is to the prediction.

Answering: "Why won't this message be filed in X?"
If the current message is predicted to be filed under folder f,
the user can ask why it won't it be filed in folder f'. The
application answers this why question by displaying the
two-bar graph shown in the middle image of Table 2. The
two bars correspond to P(Wi = true | F = f) and P(Wi = true
| F = f') respectively. The purpose of this two-bar view is to
allow the user to compare and contrast the importance of
various words between the two folders. Furthermore, since
the dual bar view only allows weights associated with the
two folders f and f' to be manipulated, we can illustrate the
degree that an email "belongs" to either folder f or f' based
on the magnitude of P(F = f' | W1, …, Wm) and P(F = f |
W1, …, Wm) respectively. For instance, if folder f is the
originally predicted folder for the email and P(F = f' | W1,
…, Wm) > P(F = f | W1, …, Wm) after the user interacts
with the visualization, then the email will be filed under
folder f'. In the visualization, we can illustrate the degree to
which an email "belongs" to folders f and f' using the arrow
shown at the bottom of Figure 1.

THE STUDY
Using a prototype of the above approach, we conducted a
formative study. Our purpose was not to validate the
approach, but rather to investigate fundamental issues
relating to barriers and their impact on end users attempting
to debug a machine-learned program.

The study involved a dialogue-based think-aloud design, in
which two users verbally expressed their thoughts to each
other while collaborating on a task. This encouraged
participants to voice their reasoning and justifications for
actions via typical social communication with their
partners.

The participants consisted of 6 pairs of female and 5 pairs
of male students with an even distribution of GPA, years in
university, and email experience across gender. All
participants were required to have previous email
experience but could not have a computer science
background. In order to eliminate a lack of familiarity with
each other as a source of noise in our data, pairs had to
know each other prior to the study and sign up together.
Pairs also had to be same-gender, so that we could clearly
identify any gender differences that might arise.

We ran the study one pair at a time. Each session started
with the participants completing a questionnaire, which
asked for background information and gathered pre-session
self-efficacy data [6]. We then familiarized the pair with
the software and examples of classification through a 20-
minute hands-on tutorial. For the main experiment task,
participants were asked to imagine that they were co-
workers in a corporate department at Enron. Their
department included a shared e-mail account to provide
easy access to work communications that affected all of
them. The premise was that new e-mail software had
recently been installed, featuring the ability to learn from
the users and automatically classify messages into a set of
existing folders. They were told that their supervisor had
asked them to get messages from the Inbox into the
appropriate folders as quickly as possible, doing so in a
way that would help improve later classification.

We used the publicly available Enron e-mail data set in our
experiment. To simulate a shared mailbox, we combined
messages from three users (farmer-d, kaminski-v, and
lokay-m) that they had originally filed into five folders
(Bankruptcy, Enron News, Personal, Resumes, and
Systems). At the start of the experiment, each folder held
20 messages; these were used to initially train both the
classifier and the participants about how messages were to
be filed. The Inbox contained 50 messages for the
participants to work on.

The pair worked on the main experiment task for 40
minutes, with participants being asked to switch control of
the mouse after 20 minutes. We used Morae software to
capture video and audio of their session synchronized with
screen activity. We also logged their actions using our own
instrumentation. After the main task, participants

 4

individually filled out a post-session questionnaire
gathering their feedback and post-session self-efficacy.

DIALOGUE ANALYSIS METHODOLOGY
To analyze the dialogue, we developed two code sets
(Table 3), capturing barriers and debugging activities.
Regarding barriers, Ko et al. identified six types of learning
barriers experienced by novice programmers using a new
programming environment [11]. These barriers are
appropriate to our investigation because our participants,
like theirs, were problem-solving about how to make
programs work correctly and were inexperienced with the
provided facilities for debugging. The first five barrier
names and the definitions as they apply to our environment
are in Table 3. We did not use Ko et al.'s sixth barrier,
searching for external validation, because all problem
solving in our experiment was based on facts internal to our
environment. Regarding debugging activities, previous
research [7, 10] identified six common actions in fixing
bugs in programming environments. We applied the two of
these not involving data structuring or editing source code,
and also introduced a fault detection code. These codes are
also given in Table 3.

We then applied the codes to "turns". A turn consisted of
sentences spoken by a participant until his/her partner next
spoke. Speech by one participant that contained a
significant pause was segmented into two turns. Coding
iteratively, two researchers independently coded a 5-minute
random section of a transcript. We calculated similarity of
coding using the Jaccard index (dividing the size of the
intersection of codes by that of the union). Disagreements
led to refinements in coding rules, which were then tested
in the next coding iteration. Agreement eventually reached
82% for a 5-minute transcript section, and 81% for a
complete 40-minute transcript. Given this acceptable level

of reliability, the two researchers then divided up the
coding of the remaining transcripts.

Code Meaning
Design Barrier Doesn't know how, where, or whether to

give feedback. "Can we just click File It?"
Selection
Barrier

Knows what to do, but not which object to
change. "What kind of words should tell the
computer to [file this] to Systems?"

Coordination
Barrier

Doesn't understand how changes affect the
rest of the system. "Why... why it won't go to
Personal..."

Use Barrier Does not know how to determine the best
weight of words. "So is [this word]
'unimportant'?"

Understanding
Barrier

Doesn't understand system's feedback.
"Why is 'web' more forbidden for [the]
Systems [folder]?"

Fault Detection Noticing an incorrect folder choice by the
system. "It's going to [the] Systems [folder];
we do not want Systems."

Diagnosing Figuring out the specific cause of a detected
fault. "Well, 'e-mail' needs to be higher."

Hypothesizing Proposing a general solution for a detected
fault. "Let's move something else, and then
maybe it'll move [the e-mail] to Systems."

Table 3: Coding scheme used in this study.

RESULTS

Barriers Encountered
Participants ran into an average of 29 barriers during the
40-minute study (with a range from 7 to 66). Barriers were
equally likely to be encountered at the beginning and end of
the study. It is important to note, however, that everyone hit
barriers, and some encountered them very frequently,
underscoring the importance of addressing barriers in
fixing machine-learned programs.

As Figure 2 shows, the most frequent barriers were
Selection barriers (40.99% of all barriers encountered).
This type of barrier relates to the difficulty of finding the
right words or messages to modify to give feedback to the
system, for example:

P712: "Then 'news'? Well, they like team players.
Contributions? That would be more that you'd use for
news then Systems."

Coordination barriers also arose often (28.57% of all
barriers). Participants often wondered how the feedback
they were about to give would change system behavior or
why the system had responded to feedback as it did:

P732: "Resume? [user finds word, makes 'resume'
required] Why didn't it change it? How about university?"

The fact that Selection and Coordination barriers accounted
for the most observed barriers is confirmed by the
questionnaires, where 16 of 22 respondents (72%)
mentioned difficulty in determining which words were
important when fixing misclassified mail. The prevalence
of these types of barriers suggests the need for intelligent
user interfaces to be able to direct end users to the most
useful places to give feedback, such as which words will
have the strongest effect on message reclassification.

Participants ran into Design and Use barriers less
frequently (14.29% and 12.73%, respectively). While these
barriers should not be neglected, the predominance of
Selection and Coordination barriers suggests that end users
may have less trouble deciding on a strategy for how to
give feedback (Design and Use), than on where to give

0

20

40

60

80

100

120

140

Design Barrier Selection
Barrier

Coordination
Barrier

Use Barrier Understanding
Barrier

Figure 2: Number of barriers encountered across all

transcripts.

 5

feedback (Selection and Coordination).

0

2

4

6

8

10

12

14

16

Design Barrier Selection
Barrier

Coordination
Barrier

Use Barrier Understanding
Barrier

Figure 3: Average number of barriers per session
encountered by males (dark bars) and females (light bars).

Gender Differences in Barrier Encounters
Males and females did not experience the same number of
barriers: females encountered more barriers (average of
33.3 per session) than males (average 24.4 per session).
This difference was despite the fact that males talked more
(and thus had more opportunities to verbalize barriers) than
females, averaging 354.6 turns per session, compared to
288.1 for females.

Figure 3 shows the average barrier count per session for
intuitive clarity; the same differences were observed when
comparing the average counts per turn. Females
experienced more barriers in almost every category except
Coordination, where there was no difference, and
Understanding, where the situation was reversed. Selection
barriers, the most common barrier type, had a very large
difference: females averaged 14 per session, about 1.5
times more than the male average of 9. Design barriers, too,
exhibited a strong contrast, with the female average of 5.33
per session versus the male 2.8.

One reason for these differences may be that females
expected more problems, due to lower self-efficacy (a form
of self-confidence specific to the expectation of succeeding
at the upcoming task [1]). Females began the experiment
with lower self-efficacy than males, scoring an average of
38 vs. 42.1 for males (via a self-efficacy question set [6]).
Even with our small sample, this difference was significant
(Wilcoxon Rank-Sum Test: z=-2.64, p<.01). This is
consistent with similar self-efficacy differences for end
users engaging in other complex computer tasks [3, 9, 24].
Our results about differences in barriers is consistent with
this prior research in another aspect, too: these prior works
showed gender differences in both features used, and the
strategies by which end users tried to fix errors in
spreadsheets.

Another reason for the gender dissimilarity may be due to
differences in information processing. For example, work
on the selectivity theory of information processing [17] has
shown a number of differences in how males and females
process information. According to this theory, females are
more likely to work with information comprehensively,
whereas males are more likely to pursue the first few
portions of information and then move on. The following
quotes illustrate the tendency of female pairs to examine
several words at a time, versus males' propensity for
moving on as quickly as possible:

Female Pair
P1131: "So that's really important. And then, um,
probably 'updates' would be important. And then, um...
virus?"
P1132: "Yeah. And then, uh, 'login'."

Male Pair
P1211: "It's correct. It's learned something, eh."
P1212: "Um hmm."
P1211: "Lets go to the next message."

This theory is also consistent with our data, which revealed
that females worked with a larger set of words than males
did (106 unique words for females vs. 62 for males),
perhaps to perfect the algorithm's performance. Males may
have been more inclined to move on to the next message as
soon as they obtained the desired effect.

Barriers and Transitions
When a participant encountered a barrier, what happened
next? To answer this question, we investigated patterns in
barrier transitions, that is, determining the subsequent
barriers and activities to which a participant transitioned
after encountering each type of barrier. Barriers/activities
coded in participants’ verbalizations are simply states
between which they can transition. To calculate the
probability of each state (barrier or activity) following an
initial barrier, we divided the subsequent states by the total
number of states that followed the initial barrier. For
example, if Selection followed Design once and
Diagnosing followed Design twice, then the probability of
Selection following Design was computed as 1/(1 + 2) =
.33, or 33%, and the probability of Diagnosing following
Design was computed as 2/(1 + 2) = .66, or 66%. We use
these probabilities for intuitive clarity only. Our graphs
show the exact number of instances for completeness.
Despite these numerical summaries included for clarity,
note that the lack of preconceived hypotheses make
inferential statistics on these data inappropriate, and we do
not make them.

The distribution of transitions from Design barriers (Figure
4) was the most uniform of the barriers, especially for
females. Subsequent Coordination barriers were most
frequent, averaging 19.05% over all transcripts, but Design,
Selection, Fault Detection, Hypothesizing, and Diagnosing
each followed this barrier at least 10% of the time. Males,
however, followed Design barriers with some form of
debugging activity an average 70% of the time, versus
46.88% for females.

Selection barriers were followed by Diagnosing 40% of the
time (Figure 5). The next most-prevalent barrier was a
second Selection code (19.13%), suggesting that Selection

 6

barriers were either quickly overcome and led to
Diagnosing, or they cascaded, stalling participants. The
relatively high instance of Selection barriers stalling
participants suggests the need for machine-learned
programs to point out which words or features would be
most likely to change the program's behavior; we will
discuss how this might be done in the Challenges for
Machine Learning section. These participants, for example,
could have benefitted from this sort of help:

P732: "And what about 'interview'? Oh, we just did that,
so no. 'Working', maybe?" [finds word]
P731: "Well, no because 'working' could be used for
anything really."
P732: "True."
P731: "'Work', no."
P732: "What about... [scrolls left] 'scheduling'. No, that
could be News."
P731: "That could be News, too."
P732: "What about 'scientist'?"
P731: "That could be Personal."

Males had a higher tendency of Hypothesizing following a
Selection barrier than females, 26.67% to 11.76%. Recall
that Hypothesizing was coded when the pair discussed a
possible fix but didn't include a specific word, whereas
Diagnosing indicates that the pair specified the word they
intended to modify. Thus, males were more likely to follow
a Selection barrier with a general solution, while females
tended to first agree on a word to alter.

Like Selection barriers, Coordination barriers often led to
Diagnosing (30.95%) (Figure 6). Taken together with the
other two debugging actions, Fault Detection (14.29%) and
Hypothesizing (20.24%), this barrier was followed by a
debugging action 65.48% of the time. Males, however,

tended to follow Coordination barriers with more
Diagnosing than females (47.22% vs. 18.75%
respectively), whereas females followed them with more
Hypothesizing than males (29.17% vs. 8.33%). Essentially,
after having trouble coordinating changes to one area of the
machine-learned program with other sections of the
application, females frequently proposed a generic solution,
whereas males tended to fix specific things. This appears to
be yet another indication of the comprehensive problem-
solving strategy associated with females [17], providing
further evidence of the need to support both comprehensive
and non-comprehensive problem-solving strategies.

Finally, Use barriers were strongly tied with Diagnosing
(44.12%); all the other transitions were below 15%. It
seems that when a Use barrier was encountered, our
participants' response was to adjust their specific solution,
rather than move on to a different problem or generalize a
solution. This appeared to be equally the case for males and
females.

Gender Differences in Debugging Feature Usage
Previous researchers have reported gender differences in
usage of debugging features in spreadsheets [3, 9, 25], and
our data revealed that males and females used debugging
features for the learned email program differently as well.
Specifically, when interacting with the keyword bar graph
(which was their only explicit way of specifying logic
changes to the classifier), there were three differences
between males and females.

The first difference was identifying the fault. The primary
way to pursue a fault was to ask a "Why isn't this message
in this folder?" question, since that was the way to bring up
the bar graph showing the importance of words to both the

Figures 4 (top left), 5 (top right), 6 (bottom left), and 7 (bottom right): Number of transitions from barriers to other barriers and to
debugging activities. Light squares represent one instance by a female pair, dark squares represent one instance by a male pair.

 7

faulty and the desired folder (Figure 1, top right). Females
asked considerably more of these "Why isn't this message
in this folder?" questions than males did (average 12.16 per
session for females, 9.6 for males).

The second difference was in the comprehensiveness with
which males and females considered the state of the
machine-learned program. Specifically, scrolling through
the bar graph (in answer to the above why question)
allowed the current weights of words, respective to folders,
to be compared. Females scrolled through the bar graph
more than twice as much as males (average of 189.3
scrolling movements for females per session vs. 89 for
males), clearly demonstrating more comprehensive
consideration of the words and their weights.

The third difference was in explicitly debugging the logic,
i.e., adjusting the weights of the words. Logs of
participants' actions revealed that females made more edits
to words and their weights in the keyword bar graph than
males (average 38.83 per session for females, 34 for males)
in their debugging.

These differences in using specific features to effect
changes to the program are corroborated by what the
participants said about debugging: females’ verbalizations
included more Fault Detection (average of 14.33 per
session vs. 8.8 for males), more Hypothesizing (13.33 vs.
8.6) and slightly more Diagnosing (28.66 vs. 26.6) than
males. These differences were despite males’ greater
number of total verbalizations.

Males, on the other hand, focused more on filing messages
in the present, with less regard for debugging to improve
the future: they filed more messages away (average 15.4
per session) than females (average 11 per session), and
dragged more messages directly to folders (average 4.2 per
session for males, 2 per session for females).

There are several possible explanations for this behavior.
Females' interest in more of the words is consistent with
Meyers-Levy's work reporting females' greater tendency to
process more information [17]. Our own prior work has
also found gender differences consistent with this theory
when end users debug spreadsheets [24]. Females may
have also exhibited a greater responsiveness to social
norms and obligations, as one participant articulated:

P512: "But if the computer does not learn from this, then
the next group that comes in after us will have to do the
same thing."

An important difference between adjusting words via the
bar graph (done more by females) and filing or dragging
messages (done more by males) was reversibility; word
adjustments could be reset to their original values with the
click of a button, but, as was emphasized during the
tutorial, messages could not be moved once filed. This
created a risk related to filing that did not exist with
manipulating words. Our findings thus are consistent with
existing literature reporting that females are more risk

averse than males (discussed in [3]). This suggests the need
for features to lower perceived risk, such as the addition of
an "Unlearn" capability.

CHALLENGES FOR MACHINE LEARNING

Supporting The Why Questions
Can any machine learning algorithm provide informative
and efficiently computed answers to these or other "Why"
questions? Can a general "recipe" be used by any machine
learning algorithm to answer these questions? For the
"Why won't this message be filed to X?" question, the
strategy employed by naïve Bayes can be easily extended
to any other classifier. The "Why will this message be filed
to X?" question is somewhat more restrictive. Any linear
additive classifier of the form ,where wi is the ith

weight and fi is the ith feature, can be visualized as a bar
graph. Apart from naïve Bayes, many other machine
learning algorithms are linear additive classifiers, including
logistic regression, perceptrons, and linear support vector
machines. The interpretation of the bar, however, will
depend on the classifier, and the bar may not necessarily
behave as the slider described above. Also, the bar graph
visualization is more complicated to explain if the linear
additive classifier requires regularization to deal with
correlated features.

∑
i

ii fw

In general, machine learning algorithms vary greatly in
their comprehensibility and thus the bar graphs are not a
one-size-fits-all solution. For instance, classifications by
decision trees are visually understood while predictions
from neural networks are much more difficult to explain.
Furthermore, other machine learning algorithms are
capable of providing much more in-depth explanations and
can thus answer a greater range of "Why?" questions. As an
example, Bayesian networks provide a sophisticated but
computationally expensive mechanism for providing
detailed explanations of how different pieces of evidence
influence the final prediction made by the algorithm [13]. A
current challenge for machine learning is to develop
informative and efficiently computed explanations of
statistical machine learning algorithms.

Sensitivity Analysis
One of the difficulties with visualizing a text classifier is
the fact that there are approximately 16,000 features
involved, where each feature corresponds to a word in the
vocabulary. The sheer number of features makes finding a
desired word in the bar graph particularly cumbersome for
a user, even though we supported sorting by weight and by
alphabetical order. Furthermore, modifying the weight on
many of these words produces little or no change to the
final prediction.

To mitigate this problem, we plan to incorporate ideas from
sensitivity analysis, which is a technique used in statistical
modeling to determine the robustness of a model to
changes to its parameters [5]. Chan and Darwiche [5]
investigate the sensitivity of probabilistic queries on a

 8

Bayesian network in response to changes to a single
parameter in the network. The authors then develop bounds
on the effect of these changes to the query. In future work,
we will apply these bounds to the naïve Bayes classifier,
which is a special case of a Bayesian network. The bounds
will allow us to determine if a change to a parameter (i.e.,
the probability P(Wi | F)) has little or no effect on the
predicted folder. We can then reduce the number of
features displayed in the visualization by not displaying the
bars which cause insignificant changes to the final
prediction.

The Popularity Effect
Participants who concentrated on training the classifier to
recognize emails for one specific folder at a time
experienced a "popularity effect" in which the folder with
the largest number of filed emails dominated the classifier's
predictions for the rest of the emails in the inbox. This
popularity effect is primarily caused by the high
dimensional nature of the data, the relatively sparse training
data, and the class imbalance of the email folders. These
factors cause the classifier to overfit both the training data
and the rich user feedback for the smaller folders.

To illustrate this point, suppose the user employs such a
filing strategy. The dominant folder could be the Systems
folder, which has keywords such as "Windows" and
"McAfee" that are easily identified by the user. Once a
large number of messages have been filed to the dominant
folder and the classifier learns from this set of newly
acquired training examples, the distribution for the
dominant folder is accurately learned. However, the
classifier is poorly trained on the non-dominant folders. In
fact, the classifier overfits the training data for the non-
dominant folders, and the rich user feedback for these
folders may even exacerbate the overfitting. This
overfitting makes all emails seem unlikely to be classified
into the non-dominant folders, because they must match
exactly the under-smoothed distributions for these folders.
As a result, the classifier files many of the emails in the
inbox under the dominant folder.

Although this can be remedied by providing sufficient
training data for all folders, there remain some practical
challenges: Specialized email folders tend to contain small
numbers of emails, resulting in sparse training data for
email classifiers, and email is known to be "bursty," with
emails from a small handful of folders dominating the
inbox at certain times. Due to the imbalance in the number
of emails belonging to each folder, the popularity effect
thus remains a real-world problem.

IMPLICATIONS AND CONCLUSIONS
In this paper we took a fresh look at end-user interactions
with machine-learned programs. Efforts by end users to
change the program's logic can be viewed as debugging,
and taking this view, we developed a "Why-oriented"
approach to support end users debugging these programs.

Using this approach as a basis for our investigation, our
study revealed barriers faced by end users debugging
machine-learned programs, as well as challenges for the
design of the machine learning algorithms supporting such
programs. Our primary results were:

• Every participant encountered barriers while
debugging the learned program, demonstrating that
these barriers present real obstacles for end users
debugging in this domain.

• Selection and Coordination barriers were the most
frequent obstacles to debugging the learned program.
The sheer number of these instances strongly suggests
the value of providing end users with information
about where to give feedback to the machine-learned
program in order to debug effectively. Sensitivity
analysis may help to focus the end-user on where
changes should occur.

• Gender differences were present in the number of
barriers encountered, the pattern of barriers, and usage
of debugging features. These differences, and their ties
to theories explaining possible roots, suggest that
debugging tools for learned programs must support
both comprehensive and non-comprehensive
debugging strategies.

• Class imbalance can cause problems for end users
interacting with machine learning algorithms,
interfering with their preferred debugging strategies.

These results start us down a path to effectively supporting
end-user debugging of machine-learned programs.
Overcoming these barriers, both for the end user and the
machine, will be an important step towards rich, intelligent
guidance for intelligent user interfaces.

ACKNOWLEDGMENTS
We thank the participants of our study, along with Joe
Markgraf, Amber Shinsel, and Akshay Subramanian for
their assistance. This work was supported by NSF IIS-
0803487 and by the EUSES Consortium via NSF CCR-
0325273.

REFERENCES
1. Bandura, A. Self-efficacy: Toward a unifying theory of

behavioral change. Psychological Review 8, 2 (1977),
191-215.

2. Becker, B., Kohavi, R., and Sommerfield, D.
Visualizing the simple Bayesian classifier. In Fayyad,
U, Grinstein, G. and Wierse A. (Eds.) Information
Visualization in Data Mining and Knowledge
Discovery, (2001), 237-249.

3. Beckwith, L. Burnett, M., Wiedenbeck, S., Cook, C.,
Sorte, S., and Hastings, M. Effectiveness of end-user
debugging software features: Are there gender issues?
Proc. CHI (2005), 869-878.

4. Burnett, M., Cook, C., Pendse, O., Rothermel, G.,
Summet, J., and Wallace, C. End-user software
engineering with assertions in the spreadsheet

 9

 10

paradigm. International Conference on Software
Engineering, 2003, 93-103.

5. Chan, H. and Darwiche, A. When do numbers really
matter? Journal of Artificial Intelligence Research, 17
(2002), 265-287.

6. Compeau, D. and Higgins, C. Application of social
cognitive theory to training for computer skills.
Information Systems Research, 6,2 (1995), 118-143.

7. Davies, S.P. Display-based problem solving strategies
in computer programming, Proc. Wkshp. Empirical
Studies of Programmers, Ablex, (1996), 59-76.

8. Glass, A., McGuinness, D. and Wolverton, M. Toward
establishing trust in adaptive agents, Proc. IUI (2008),
227-236.

9. Grigoreanu, V., Cao, J., Kulesza, T., Bogart, C.,
Rector, K., Burnett, M., Wiedenbeck, S. Can feature
design reduce the gender gap in end-user software
development environments? Proc. VL/HCC 2008,
IEEE, (2008).

10. Ko, A. and Myers, B. Designing the Whyline: A
debugging interface for asking questions about
program behavior. Proc. CHI (2004), 151-158.

11. Ko, A., Myers, B., and Aung, H. Six learning barriers
in end-user programming systems. Proc. VL/HCC
2004, IEEE Computer Society (2004), 199-206.

12. Kononenko, I. Inductive and bayesian learning in
medical diagnosis. Applied Artificial Intelligence, 7,
(1993), 317-337.

13. Lacave, C., and Diez, F. A review of explanation
methods for Bayesian networks. The Knowledge
Engineering Review, 17, 2, Cambridge University
Press, (2002) 107-127.

14. Lieberman, H. (ed.) Your Wish is My Command:
Programming By Example, Morgan Kaufmann
Publishers, Inc (2001).

15. Little, G., Lau, T., Cypher, A., Lin, J., Haber, E., and
Kandogan, E. Koala: Capture, share, automate,
personalize business processes on the web. Proc. CHI
(2007), 943-946.

16. McDaniel, R. and Myers, B. Getting more out of
programming-by-demonstration, Proc. CHI (1999),
442-449.

17. Meyers-Levy, J. Gender differences in information
processing: A selectivity interpretation. P. Cafferata &
A. Tybout, (Eds) Cognitive and Affective Responses to
Advertising, Lexington Books (1989).

18. Myers, B., Weitzman, D., Ko, A., and Chau, D. H.,
Answering why and why not questions in user
interfaces. Proc.CHI (2006), 397-406.

19. Patel, K., Fogarty, J., Landay, J., and Harrison, B.
(2008). Investigating statistical machine learning as a
tool for software development. Proc. CHI (2008), 667-
676.

20. Poulin, B., Eisner, R., Szafron, D., Lu, P., Greiner, R.,
Wishart, D. S., Fyshe, A., Pearcy, B., MacDonnell, C.,
and Anvik, J. Visual explanation of evidence in
additive classifiers. Proc. IAAI, (2006).

21. Russell, S. J., and Norvig, P. Artificial Intelligence: A
Modern Approach. Upper Saddle River, NJ: Prentice
Hall. 2003.

22. Stumpf S., Rajaram V., Li L., Burnett M., Dietterich
T., Sullivan E., Drummond R., Herlocker J. Toward
harnessing user feedback for machine learning. Proc.
IUI (2007), 82-91.

23. Stumpf, S., Sullivan, E., Fitzhenry, E., Oberst, I.,
Wong, W.-K., and Burnett, M. Integrating rich user
feedback into intelligent user interfaces. Proc. IUI
(2008), 50-59.

24. Subrahmaniyan, N, Beckwith, L, Grigoreanu, V.,
Burnett, M., Wiedenbeck, S., Narayanan, V., Bucht,
K., Drummond, R, and Fern, X. (2008). Testing vs.
code inspection vs. ... what else? Male and female end
users' debugging strategies. Proc.CHI (2008), 617-626.

25. Vander Zanden, B. and Myers, B. Demonstrational and
constraint-based techniques for pictorially specifying
application objects and behaviors. Transactions on
Computer-Human Interaction, 2,4 (1995), 308-356.

26. Wagner, E., Lieberman, H. Supporting user hypotheses
in problem diagnosis on the web and elsewhere. Proc.
IUI (2004), 30-37.

	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	DEBUGGING OF LEARNED PROGRAMS
	Design of the Why Questions
	Design Principles for End-User Debugging
	Machine Learning Design Considerations
	How Debugging Works
	Answering the "Why?" Questions
	Answering: "Why will this message be filed in X?"
	Answering: "Why won't this message be filed in X?"

	THE STUDY
	DIALOGUE ANALYSIS METHODOLOGY
	RESULTS
	Barriers Encountered
	Gender Differences in Barrier Encounters
	Barriers and Transitions
	Gender Differences in Debugging Feature Usage

	CHALLENGES FOR MACHINE LEARNING
	Supporting The Why Questions
	Sensitivity Analysis
	The Popularity Effect

	IMPLICATIONS AND CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

