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Abstract

Transactional Memory (TM) is being studied widely as a new tech-
nique for synchronizing concurrent accesses to shared memory data
structures for use in multi-core systems. Much of the initial work
on TM has been evaluated using microbenchmarks and applica-
tion kernels; it is not clear whether conclusions drawn from these
workloads will apply to larger systems. In this work we make the
first attempt to develop a large, complex, application that uses TM
for all of its synchronization. We describe how we have taken an
existing parallel implementation of the Quake game server and
restructured it to use transactions. In doing so we have encoun-
tered examples where transactions simplify the structure of the pro-
gram. We have also encountered cases where using transactions
occludes the structure of the existing code. Compared with exist-
ing TM benchmarks, our workload exhibits non-block-structured
transactions within which there are 1/0 operations and system call
invocations. There are long and short running transactions (200—
1.3M cycles) with small and large read and write sets (a few bytes
to 1.5MB). There are nested transactions reaching up to 9 levels
at runtime. There are examples where error handling and recov-
ery occurs inside transactions. There are also examples where data
changes between being accessed transactionally and accessed non-
transactionally. However, we did not see examples where the kind
of access to one piece of data depended on the value of another.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—~Parallel programming

General Terms Design, Experimentation, Measurement

1. Introduction

Many researchers are studying the use of transactional memory
(TM [18]) as a mechanism for writing concurrent applications. It
is frequently argued that programming abstractions based on TM
simplify the design of shared-memory data structures when com-
pared with programming abstractions based on mutual exclusion
locks.
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However, as we discuss in Section 2, there are very few applica-
tions that use TM. Many research results are either based on simple
microbenchmarks (e.g. skip lists and red-black trees [11, 17]), or
they are based on application kernels ([7, 12, 26, 35, 36]). These are
valuable workloads for tuning TM implementations. However, be-
cause they are reasonably small, and because they have often been
developed by TM researchers, they do not necessarily reflect how
TM would be used in larger settings, or by programmers who are
not aware of how TM is implemented.

In this paper we discuss our experience in building Atomic
Quake, a multi-player game server in which we tried to use TM
for all of the synchronization between threads. By studying a large,
real, application we aim to gain insights into many of the choices
that researchers are considering when designing programming ab-
stractions based on TM. For example, whether or not strong atom-
icity is required [1, 4, 5, 23, 29], whether TM is useful for failure
atomicity as well as synchronization, how frequently open nest-
ing [24] or transactional boosting [16] are useful, which kinds of
library calls, system calls, or 1/O are used in transactions [6]. Our
work also provides further data on typical sizes of transactions; how
long they run for, how many distinct locations they access, and so
on. This is useful for determining possible capacities for bounded-
size hardware implementations of TM, or for motivating the adop-
tion of unbounded designs [9, 10, 27, 30].

Our starting point for Atomic Quake is a lock-based parallel
implementation of the Quake multi-player game server [2]. We de-
scribe the structure of the original application in Section 3. In de-
veloping Atomic Quake we took the extreme approach of using
TM for all of the synchronization requirements. The resulting im-
plementation comprises 27 400 lines of C code in 56 files. In the
current code we have identified a total of 61 atomic blocks, mostly
on the critical path of the application. Inside these atomic blocks
there are 1/O operations and system calls. There are long and short
running transactions (200-1.3M cycles) with small and large read
and write sets (a few bytes to 1.5MB). There are nested transaction
reaching up to 9 levels at runtime. There are examples where error
handling and recovery occurs inside transactions. There are also ex-
amples where data changes between being accessed transactionally
and accessed non-transactionally. However, we did not see exam-
ples where the kind of access to one piece of data depended on the
value of another.

In Section 4 we share our experience by giving examples from
the Quake source code of cases where transactions fit well, and
cases where they fall short. We discuss the challenges of replacing
the lock based synchronization with transactions and, in particular,
the challenges when trying to preserve the program logic and the
original granularity of the critical sections.



Although our main focus is on programming examples, we also
discuss the performance of Atomic Quake (Section 5). We have
used the publicly-available Intel C++ STM Compiler (Prototype
Edition 2.0). This lets us gather statistics about the transactions —
for example, the distribution of their read/write set sizes and the dis-
tribution of their execution times. However, since we are working
with a prototype compiler, our overall performance results should
be seen as preliminary. In particular, because of problems when
compiling our examples, we have had to disable optimizations. Ear-
lier results have shown that TM-specific static analyses can signif-
icantly affect the performance of programs using TM [3, 15, 33],
and so overall execution times are unlikely to be representative of
a production implementation.

Nonetheless, despite using transactions ubiquitously for syn-
chronization, our statistics show that we get less than 26% aborts on
a 8-thread server configured to use a small game map. The results
show a wide range of transaction sizes; many small transactions,
with a number of long-running transactions. This emphasises the
importance, when designing hybrid hardware/software TM imple-
mentations, to balance the need to avoid overhead on short-running
transactions (to optimize the common case) while still supporting
longer running transactions.

We discuss future work and conclusions in Section 6.

2. Related Work

STMBench7 [12] is a transactional version of the OO7 bench-
mark [8]. STMBench?7 is implemented in both Java and C++ pro-
gramming languages. There are lock-based and TM-based versions
of the benchmark available for both languages. The Java imple-
mentation uses annotations to identify transactions. The C++ ver-
sion uses explicit function calls to access an STM library. Trans-
actions in STMBench7 contain recursive calls. However, they do
not include 1/0 operations, or privatization patterns. The bench-
mark has large data structures that are accessed in operations of
varying length. However, even the short operations’ transactions
are reasonably long and would not fit in typical hardware caches
for HTM. Consequently, STMBench7 is useful for evaluating
HTM-virtualization techniques but not so suitable for evaluating
bounded-size HTMs.

STAMP [7] is a suite of applications written to use TM. The
independent applications in the suite are algorithm Kkernels with
different characteristics in terms of how long they spend run-
ning inside transactions, how large those transactions are, and how
likely concurrent transactions are to conflict with one another. The
STAMP applications can be configured for use with HTM (in which
only the start and end of each transaction is identified in the source
code), or for use with STM (in which case the shared memory ac-
cesses are also made explicit). The STM configuration therefore
models the behavior of a compiler that can avoid the use of STM
on memory accesses to thread-local locations. The structure of the
atomic sections is simple — without nested transactions, privatiza-
tion patterns, system calls, 1/O, and error handling. STAMP does
not provide lock based implementations of the applications, al-
though the behavior of variants using a single global lock, in place
of transactions, has sometimes been studied [1].

SPLASH-2 [35] is a suite of highly parallel applications which
have subsequently been adapted to use TM for synchroniza-
tion [25]. In general, the SPLASH-2 applications involve short,
infrequent, critical sections. These make up a small proportion of
the overall execution time.

The Haskell STM Benchmark suite [26] is a collection of pro-
grams, ranging from small synthetic workloads (e.g. contended ac-
cess to a shared counter), to applications written by programmers
who were not STM researchers (e.g. a parallel solver for Su Doku
puzzles). Although the Haskell STM API is similar to library-based
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STM APIs in imperative languages, the core functional parts of
these benchmarks are very different from current mainstream lan-
guages. It would be difficult to rewrite them in a language like C#
or Java.

WormBench [36] is a configurable synthetic application im-
plemented in an extension to C# that provides block-structured
atomic sections. By controlling WormBench’s input configuration,
it can be made to resemble the transactional behavior of an existing
application, or to create a runtime scenario that stresses a particular
aspect of the underlying TM system.

TMunit [13] is an extensive framework for testing and evalu-
ating STM libraries. It provides a domain specific language for
writing unit tests. These tests can specify particular interleavings
of threads in order to recreate problematic scenarios — e.g. when
there is a non-transactional access to a memory location that oc-
curs concurrently with a transactional access to the same location.
TMunit can also generate test workloads by analyzing traces from
the lock-based execution of a parallel program. Transactional work-
loads generated by TMunit run on top of an interpreter that makes
direct calls to an STM library.

Although WormBench and TMunit are useful to study and de-
bug the performance issues in different TM implementations, they
cannot illustrate the practical use of transactions, or the strengths
and weaknesses of different programming language constructs
based on TM.

3. QuakeOverview

In this section we discuss the existing parallel implementation [2]
of the Quake game server [19] on which we base our work.
Multi-player Quake games use a client-server model in which
the server has ultimate control over all the events that happen in
the game; clients connect to the server and interact with each other
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Figure 2. Mapping game volume into areanode tree (adapted
from [2]). The tree shows the relationship between areanodes. The
diagrams on the right show the areanodes’ spatial relationship.

solely by sending requests to the server and receiving responses.
There are two types of client request message: session-management
operations (e.g. connect, disconnect) and interaction with the game
world (e.g. move, shoot). For our research, we are primarily inter-
ested in the second type of message since processing them places
the most significant load on the server.

3.1 Parallel Quake Server

The parallel Quake game server operates as a single multi-threaded
process using barriers, locks, and condition variables for synchro-
nization. The game executes in a series of rounds, known as frames.
Each frame comprises three distinct phases: updating the physical
simulation of the game world (U), reading and processing client re-
quests (RP) and sending responses to clients (S). Server-wide bar-
riers occur between each phase. The U phase is single threaded
(executed by a designated master thread). The RP and S phases are
executed in parallel by multiple threads. Figure 1 shows this struc-
ture and indicates, approximately, the relative time spent in each
phase.

The server uses a configurable number of worker threads. This
number is independent of how many clients connect to the server.
However, in any particular game, each client is statically assigned
to a specific worker thread. During the update phase, each of these
worker threads waits in the main loop until it receives a request
from a client. The first thread that receives a request is designated
the master thread for that frame. The master thread executes the
U phase. During the U phase, other threads may receive request
from their own clients. Those threads that have received requests
by the end of the master thread’s work are said to participate in the
frame. These threads proceed to the RP phase. It is possible that
other threads have not received any requests while waiting. These
threads remain waiting until the next U phase, even if they receive
requests in the meantime.

During the RP phase, each thread proceeds to read from a buffer
of incoming requests from its clients. Every client request is pro-
cessed independently in the SV_ExecuteClientMessage function
which incrementally builds the new frame as a reply message. After
a thread has processed all of its client requests, it waits at a second
barrier for the other threads to finish their own work. When all the
threads are synchronized they enter the S phase.

During the S phase, threads send responses to the clients from
which they received requests. The master thread sends responses to
clients from which no request was received. At the end of S phase,
threads wait at a final barrier until all of the responses have been
sent.

3.2 Shared Data Structures

The threads in the parallel Quake server make concurrent ac-
cesses to three different data structures: (i) per-client reply-message
buffers, (ii) a common global state buffer, and (iii) game objects.

The reply-message buffers are used to accumulate all of the
pending messages that are to be sent to a client during the reply
phase. These messages can originate from other clients (e.g. a
text message between two players), as well as originating from
the server (e.g. to provide information about the connection or
disconnection of other players). Since multiple threads can write
client’s message buffer, the thread access to every message buffer
is synchronized with locks, one per buffer.

The second kind of shared data structure is the global state
buffer. This is updated during the U-phase and the RP-phase. This
buffer contains data that needs to be sent to all clients, regardless of
whether or not the server received a request from that client during
the current frame. During the reply phase, each thread participating
in the current frame uses this buffer to update the message buffers
of its complete set of clients. The master thread performs this
operation for clients belonging to threads that are not participating
in the current frame. During the U-phase the global state buffer
is accessed only by the master thread, and so there is no need
for concurrency control. However, during the RP-phase, multiple
threads may attempt to update the global state buffer at the same
time. During this phase the global state buffer is guarded with a
single lock.

The third kind of data structure are the game objects themselves.
These represent the players and other entities on the game map. A
complicated fine-grained locking scheme is used to control access
to the game objects. Before executing an action, a worker thread
identifies the list of the objects on the map that the player is likely
to interact with and locks them to prevent concurrent access.

The data structure that the server uses to maintain information
about the location of each object on the map is a balanced binary
tree with depth 5 (including the root node) called the areanode
tree. Nodes in the tree are known as areanodes. Each areanode
represents a part from the entire 3D volume of the game. The
children of an areanode represent two equally sized volumes that
are obtained by dividing the volume represented by their parent
with a vertical plane on either the X or Y axis. This division
proceeds recursively, alternating between the two axes. All the
areanodes in the same depth are a refined representation of the
entire game volume. Moreover, each areanode has a list of the
objects that are located in the volume that it represents. An object
is associated with the highest areanode that completely contains it.

Figure 2 illustrates this structure. The root node of the tree
is labeled Al and represents the entire 3D volume in the game.
Its children, A2 and A3, represent the two equally sized volumes
obtained after partitioning the entire game volume with a vertical
division plane on the Y axis. The triangle object is not crossing any
division plane and it is in the list of objects associated with the A14
leaf only. The circle object intersects with the plane that divides A3
therefore it is put in the list of objects associated with A3, but not
A6 or A7.

A region-based locking scheme is used for concurrency con-
trol [22, 32]. To ensure exclusive access to the objects that a player
interacts with, threads lock regions of the map prior to processing
a request.

If an object is wholly located in a leaf of the areanode tree then
a lock on that entire arenode is used (e.g. a thread requiring the
triangle in Figure 2 would lock A14). If an object is not wholly
located in a leaf then a lock on the object itself is used; this is
acquired by temporarily holding a lock on the areanode holding the
object, then locking the object, and finally releasing the areanode
lock (e.g. a thread requiring the circle would temporarily lock A3).



switch(object->type) { /* Lock phase */
KEY: lock(key_mutex); break;
LIFE: lock(life_mutex); break;
WEAPON: lock(weapon_mutex); break;
ARMOR: lock(armor_mutex); break

};

00N U WN -

pick_up_object(object);

10 switch(object->type) { /* Unlock phase */

11 KEY: unlock(key_mutex); break;

12 LIFE: unlock(life_mutex); break;

13 WEAPON: unlock(weapon_mutex); break;
14 ARMOR: unlock(armor_mutex); break
15 };

(a) Original implementation

1 atomic {
pick_up_object (object);

w N

}

(b) Implementation with TM.

Listing 1. Per-type locking of objects.

4, Using Transactionsin Quake

In this section we discuss the ways in which we re-structured the
parallel Quake game server to use transactions. In summary, on a
fully loaded server, about 98% of the request processing part in RP
phase (Figure 1) executes in transactions, and the request process-
ing part as a whole constitutes about 63% of the total execution
time. There are 61 different atomic blocks. Almost all atomic
blocks contain function calls. On average the static call graphs for
the atomic blocks are 4 levels deep and contain 20-25 functions.
Dynamically, transactions are nested up to 9 levels deep, with some
atomic blocks occurring in recursive functions. All in all the pro-
cess of developing Atomic Quake from the original parallel imple-
mentation took 10 man months.

We first introduce the programming abstractions provided by
the compiler that we have used (Section 4.1). We then show how,
using transactions, we can drastically simplify the structure of ac-
cesses to the core areanode data structure (Section 4.2). We also
present cases where a basic transactional model is less effective:
non-block-structured critical sections (Section 4.3), condition syn-
chronization (Section 4.4), 1/0 within transactions (Section 4.5),
error handling within transactions (Section 4.6), and cases where
data changes between transactional and non-transactional accesses
(Section 4.7).

4.1 Language Extensionsfor TM

We used Prototype Edition 2.0 of the Intel C++ STM compiler [20].
This extends the C and C++ language with keywords __tm atomic
and __tm_abort, and with attributes tm_callable, tm_pure, and
tm_unknown that can be applied to function definitions.

The __tm_atomic keyword marks a block of code to be executed
using transactions. The implementation provides exactly-once se-
mantics in which the block is attempted until it commits success-
fully. For brevity, in code examples in this paper, we write atomic
in place of the full keyword. Memory accesses within an atomic
block are performed through an STM library and, when optimiza-
tions are enabled, the compiler tries to remove redundant accesses
(e.g. when accessing provably thread-local data). The implementa-
tion provides a form of weak atomicity [5]: there is no concurrency
control between concurrent transactional and non-transactional ac-
cess to the same data.

1 /* Start locking leafs*/

2 lock(tree.root);

3 stack.push(tree.root);

4 while (!stack.is_empty()) {

5 parent = stack.pop();

6 if (parent.has_children()) {

7 for (child = parent.first_child();
8 child != NULL; child.next_sibling()) {
9 lock(child);

10 stack.push(child);

11 }

12 unlock(parent) ;

13 }

14 } /* End locking */
16 <move or shoot>

18 /* Start unlocking */

19 if (tree.root.has_children()) {

20 lock(tree.root);

21 stach.push(tree.lock) ;

22 } else {

23 unlock(tree.root);

24 }

25 while (!stack.is_empty()) {

26 parent = stack.pop();

27 for (child = parent.first_child();

28 child != NULL; child.next_sibling()) {
29 if (child.has_children()) {
30 lock(child);

31 stack.push(child) ;

32 ¥

34 else { // This is a leaf

35 unlock(child);

36 }

37 ¥

38 unlock(parent) ;

39 }

40 /* End unlocking */

Listing 2. Stack-assisted fine-grain locking.

The __tm_abort keyword is an explicit way to abort a transac-
tion; execution continues after the atomic block involved.

The tm_callable attribute instructs the compiler to create a
transactional version of the function, using the STM library as in an
atomic block. The tm_pure attribute indicates that a function can
be used without requiring a special TM implementation. It is used
on side-effect-free functions like sin and cos. The tm_unknown
annotation indicates that the function has unknown side effects. The
implementation switches to irrevocable mode [34] if a tm_unknown
function is called: only one transaction can be in irrevocable mode
any one time. If a function is not annotated then it is assumed to be
tm_unknown.

We declared math library functions to be tm_pure (Since their
results depend only on their input parameters). We manually re-
implemented string manipulation routines so that they could be
declared tm_callable (since their results depend on input data in
the heap, which could have been modified by a calling transaction).

4.2 Where Transactions Fit: Complex Shared-Memory Data
Structures

In our work, TM was most effective at simplifying parallel code
that had previously used fine-grain locking. Listing 1(a) shows a
code fragment where an object is first locked based on its type and
then passed to a function that operates on it. The corresponding
example is trivial with transactions (Listing 1(b)).

Other lock-based examples are more complicated, particularly
when it is necessary to lock part of a collection of objects. In
this case the programmer has to keep track of (i) the objects that
might be accessed, (ii) the locks associated with these objects, and
(iii) the order of acquiring locks to avoid deadlock. Again, when



1 for (i=0; i<sv_tot_num_players/sv_nproc; i++){

2 <statementsi>

3 LOCK(cl_msg_lock[c - svs.clients]);

4 <statemnts2>

5 if (!c->send_message) {

6 <statements3>

7 UNLOCK(cl_msg_lock[c - svs.clients]);

8 <statements4>

9 continue;

10 T

11 <stamemnts5>

12 if (!sv.paused && !Netchan_CanPacket (&c->netchan)) {
13 <statmenets6>

14 UNLOCK(cl_msg_lock[c - svs.clients]);

15 <statements7>

16 continue;

17 ¥

18 <statements8>

19 if (c->state == cs_spawned) {
20 if (frame_threads_num > 1) LOCK(par_runcmd_lock);
21 <statements9>
22 if (frame_thread_num > 1) UNLOCK(par_runcmd_lock);
23 T
24 UNLOCK (cl_msg_lock[c - svs.clients]);
25 <statements10>

(a) Original implementation

1 bool first_if = false;
2 bool second_if = false;
3 for (i=0; i<sv_tot_num_players/sv_nproc; i++){

4 <statementsi1>
5 atomic {
6 <statemnts2>
7 if (lc->send_message) {
8 <statements3>
9 first_if = true;
10 } else {
11 <stamemnts5>
12 if (!sv.paused && !Netchan_CanPacket (&c->netchan)){
13 <statmenets6>
14 second_if = true;
15 } else {
16 <statements8>
17 if (c->state == cs_spawned) {
18 if (frame_threads_num > 1) {
19 atomic {
20 <statements9>
21 ¥
22 } else {
23 <statements9>;
24 }}r1r1t}
25 if (first_if) {
26 <statements4>;
27 first_if = false;
28 continue;
29 ¥
30 if (second_if) {
31 <statements7>;
32 second_if = false;
33 continue;
34 }
35 <statements10>
36 }

(b) Implementation with TM.

Listing 3. Non-block-structured critical sections.

using transactions this becomes more straightforward because, for
correctness, it is necessary only to identify the part of the code that
has to execute atomically.

Listing 2 shows a simplified example from the parallel lock
based version of Quake, implementing the region-locking tech-
nique from Section 3.2. The logic for acquiring locks uses support-
ing data structures such as stack. In addition to this logic, Quake
uses a form of lightweight simulation whenever a player moves or
shoots: the locations in the virtual world that the player/bullet will
pass through are identified, and then the areanodes that represent
these locations are locked. This form of fine grain synchronization
is simplified when using transactions because the transaction logs
implicitly track the objects involved, and the ability of the imple-
mentation to roll-back transactions replaces the use of an explicit
simulation in the application.

4.3 Non-Block-Structured Critical Sections

Although TM is effective for managing the core operations on the
areanode structure, we encountered many problems when attempt-
ing to use it ubiquitously in the game server.

One frequent source of problems was that, unlike existing TM
benchmarks, critical sections were rarely block-structured. Con-
sequently we could not simply replace a LOCK operation with
“atomic {”and an UNLOCK operation with “}”. Listing 3(a) shows
an example with unstructured LOCK and UNLOCK operations. Such
examples cannot be rewritten to use block-structured transactions
without understanding the logic in the code; in more complex ex-
amples locks are acquired in one function and released in another.

In this example, the sections that complicate the use of block-
structured transactions are <statements4> and <statements7>.

We restructured the example as shown in Listing 3(b), introducing
two additional variables, and moving these sets of statements to the
end of the critical section. This approach increases the complexity
in the control-flow logic in the function and, of course, it is specific
to this kind of example in which the post-unlock operations are
readily available in the same function.

The example would become more complicated if there were
similar conditional blocks, or if new variables were declared in
<statements4> or <statement7>. In such cases the declaration of
those variables would have to be moved so that they are in scope
when the statements are executed; the interaction with (e.g.) C++
destructors may add further complications.

This example shows a particular case where block-structured
transactions do not work well. However, providing language sup-
port for non-block-structured transactions introduces fresh prob-
lems: rolling back a transaction may require stack-frames to be
re-built, and a caller must be aware that a callee might commit a
running transaction. (In other work, this kind of approach has been
explored in conjunction with annotations for which functions may
contain commit operations [21]).

Of course, if this application was written from scratch the devel-
oper might use a single atomic block starting at line 3 and ending
at line 24 in Listing 3(a).

4.4 Condition Synchronization

In the parallel Quake server, conditional synchronization is used to
implement the barriers shown in Figure 1. The STM compiler we
use does not provide primitives for this kind of case, and so we have
retained a lock-based barrier implementation.



pthread_mutex_lock(mutex) ;

<statementsi>

if (!condition)
pthread_cond_wait(cond, mutex);

<statements2>

pthread_mutex_unlock(mutex) ;

OO WN -

(a) Original implementation

atomic {
<statementsi1>
if (!condition)
retry;
<statements2>

OO WN -

}

(b) Related implementation using retry

Listing 4. Condition-synchronization.

However, even with support for condition synchronization via
retry [14], the implementation of barriers is another case where
the lock-based code cannot be directly converted to use TM. The
problem, as has been observed before [28], is that two atomic
blocks would be needed: one to publish the arrival of a new thread
at the barrier, and the second to block if necessary. The naive
translation from Listing 4(a) to Listing 4(b) would be incorrect.

45 1/0 and Irrevocability Inside Transactions

There are two situations in which irrevocability is used in Atomic
Quake. First, if a transaction calls a library function that is not
marked tm_pure Or tm_callable then the transaction becomes
irrevocable no matter what the library function does. Second, there
are examples where genuine /O operations are attempted within
transactions.

We encountered several examples of the first kind. In par-
ticular, many of the transactions in Atomic Quake use thread-
private data that is accessed through the pthread_setspecific
and pthread_getspecific operations. Listing 5 provides an ex-
ample. Here, the application-defined thread_id is stored in a
thread-private data area. However, when a function called inside
an atomic block (e.g. PR_ExecuteProgram) makes a call to the
pthread_getspecific API then the transaction implementing
that function becomes irrevocable. This limits scalability because
at most one transaction can run at any given time.

An ad-hoc workaround for examples like this is to declare
functions like pthread_getspecific as tm_pure because it does
not matter whether they are executed multiple times if a transaction
is rolled back.

In our initial version of Atomic Quake almost all the transac-
tions included the possibility of executing genuine 1/O operations,
e.g. printing debug messages when a player connects, or is killed.
Using tm_pure is not appropriate here: the message would be re-
printed if the atomic block were to be re-executed. Furthermore,
it is not clear whether the 1/0 function would see tentative updates
that its transactional caller had made, or whether it could be invoked
by an invalid transaction. Where possible we handled such cases by
hoisting the 1/0 out of the atomic block. An alternative would be
a keyword such as __tm_waiver [25] to identify non-transactional
code. However, as with using tm_pure, care would be needed over
its exact semantics.

4.6 Error Handling Inside Transactions

When restructuring the source code to use transactions, there were
many places where error cases are detected within transactions. In
some, it was considerably easy to do so but in others the existing
language extensions fell short. All the time we tried to adhere to the

1 void SV_Impact() {

2 atomic {

3 PR_ExecuteProgram() ;

4 ¥

5 1}

6

7 __attribute__((tm_callable))

8 void PR_ExecuteProgram() {

9 int thread_id = pthread_getspecific(THREAD_KEY);
10 /* Continue based on the value of thread_id */
11 return;

12}

Listing 5. Access to per-thread data with pthread_getspecific.

approach that the compiler developers provided for the C++ which
is to try to commit when error happens and then handle the error.

For example, Listing 6(a) shows a function that has to han-
dle a critical system error. Our transactional solution is given in
Figure 6(b). We took the calls to Sys_Error function outside the
atomic block. Inside the transaction on the condition where error
occurs, we save the type of the error in a local variable error_no
and use break that ends the for loop and reaches to the end of
the transaction. Then based on the value of the error_no we call
the proper error handling function. Things get more complicated
when function Z_CheckHeap is called inside another transaction.
In this case, we will need to call Sys_Error function outside the
outermost transaction. To be able to do so, we need a mechanism
such as commit handlers to dynamically tell what to be done as a
compensating action by providing relevant arguments to the han-
dler function. For now we ignored the complicated cases like this
by just letting the runtime switch to irrevocable mode.

It is worth discussing what would happen if the transaction is
re-executed and during the subsequent execution of the transaction
the observed error does not manifest. In this case there might be
two situations: (i) the error was repaired or (ii) we lost detecting a
hidden bug that would leave the program in undefined state. Based
on this simple example, we reach to a conclusion that error handling
in transactional code require deeper analysis and primitives helping
to detect and recover from errors.

In the Quake code there are patterns of error handling that
would greatly benefit from the failure atomicity. Listing 7 shows
an example code fragment from part of the implementation of the
request dispatcher function. In lines 18 and 25 the PR_RunError
is called. This prints a stack trace and terminates the process. In
this particular case the code from lines 2 to 26 can be wrapped
in an atomic block and, instead of calling PR_RunError, it could
abort the transaction. The abort would restore the original values
of the global state stored in pr_global_array and pr_global and
the execution would continue from line 27 at the end of function.
The effect of this usage would be that client’s request would not be
processed as if they were lost on the network and the server will
continue running. There are many similar uses like this but failure
atomicity cannot be applied to all of them because it is important
that the execution of the program can proceed safely.

4.7 Privatization

In TM research, the term privatization has been used to describe
cases where data changes from being accessed using transactions,
to being private to a given thread and being accessed directly [31].
Such idioms are problematic when using implementations of STM
with weak atomicity: in some cases it is possible for the implemen-
tation to continue accessing locations transactionally (e.g. from a
transaction that has experienced a conflict but not yet rolled back),
concurrently with the direct accesses [11, 31, 33]. It is unclear
whether such STM implementations should be treated as incorrect,
or whether such inputs should be treated as a form of data race.



1 void Z_CheckHeap (void)

24

3 memblock_t *block;

4 LOCK;

5 for (block=mainzone->blocklist.next;;block=block->next){
6 if (block->next == &mainzone->blocklist)

7 break; // all blocks have been hit

8 if ( (byte *)block + block->size != (byte *)block->next)
9 Sys_Error("Block size does not touch the next block");
10  if ( block->next->prev != block)

11 Sys_Error("Next block doesn’t have proper back link");
12 if (!block->tag && !block->next->tag)

13 Sys_Error("Two consecutive free blocks");

14

15 UNLOCK;

16 }

(a) Original implementation

1 void Z_CheckHeap (void) {

2 memblock_t *block;

3 int error_no = 0;

4 atomicq{

5 for (block=mainzone->blocklist.next;;block=block->next){
6 if (block->next == &mainzone->blocklist)
7 break; // all blocks have been hit

8 if ((byte *)block + block->size !=

9 (byte *)block->next; {

10 error_no = 1;

11 break; /* makes the transactions commit */
12 ¥

13 if (block->next->prev != block) {

14 error_no = 2;

15 break;

16 ¥

17 if (!block->tag && !block->next->tag) {
18 error_no = 3;

19 break;
20 ¥
21 }
22 }
23 if (error_no == 1)

24 Sys_Error ("Block size does not touch the next block");
25 if (error_no == 2)

26  Sys_Error ("Next block doesn’t have proper back link");
27 if (error_no == 3)

28 Sys_Error ("Two consecutive free blocks");

29 }

(b) Implementation with TM.

Listing 6. Error handling.

We encountered two kinds of privatization examples in Atomic
Quake. However, each is a benign form of privatization that is cor-
rectly handled by typical STMs. The first example is the global state
buffer that accumulates data for sending to all clients. The buffer
changes between being exclusively accessible by the master thread,
to being shared via transactions, to being shared in read-only mode.
Each change is punctuated by a barrier, as in the examples of Spear
etal. [31].

The second kind of example involves data being allocated in-
side a transaction, and then accessed directly by the thread that per-
formed the allocation. Listing 8 shows an example. In the example,
the function Z_TagMalloc allocates a memory block which is then
initialized after the transaction.

5. Experimental Results

In this section we discuss the performance of Atomic Quake in
terms of its run-time performance (Sections 5.1-5.2), and workload
characteristics of the transactions is uses (Section 5.3).

1 void PR_ExecuteProgram (func_t fnum, int tId){
2 f = &pr_functions_array[tId] [fnum];

4 pr_trace_array[tId] = false;

5 exitdepth = pr_depth_array[tId];

6 s = PR_EnterFunction (f, tId);

7 while (1){

8 s++; // next statement

9 st = &pr_statements_array[tId][s];

10 a = (eval_t *)&pr_globals_array[tId] [st->al;
11 b = (eval_t *)&pr_globals_array[tId] [st->b];
12 c = (eval_t *)&pr_globals_array[tId] [st->c];

13 st = &pr_statements[s];

14 a = (eval_t *)&pr_globals[st->al;

15 b = (eval_t *)&pr_globals[st->b];

16 c = (eval_t *)&pr_globals[st->c];

17 if (--runaway == 0)

18 PR_RunError ("runaway loop error");

19 pr_xfunction_array[tId]->profile++;

20 pr_xstatement_array[tId] = s;

21 if (pr_trace_array[tId])

22 PR_PrintStatement (st);

23}

24 if (ed==(edict_t*)sv.edicts && sv.state==ss_active)
25 PR_RunError ("assignment to world entity");
26 T

27 }

Listing 7. Using failure atomicity to recover from critical errors.

5.1 Experimental Methodology

For our experiments we modified the implementation by ensuring
that all worker threads participate in every frame. We did this by
modifying the barrier between the U and RP phases (Figure 1) to
wait until all of the worker threads have received a packet from
at least one of their clients. This ensures that all worker threads
participate in the frame, and consequently it increases contention
during the RP phase. This change lets us execute the RP phase in
parallel with one client per worker thread; otherwise, we would
have needed several hundred clients.

We test workloads with 1..8 clients, each running on a different
commodity PC. The clients replay a pre-recorded trace of player
actions, without human intervention. We use a fixed 1-room train-
ing map in order to encourage conflicts. We collect overall results
from a run of 1000 interactions with each client, starting from a
point when all of the clients have connected. The statistics about
transaction sizes are collected by the STM library from the whole
program’s execution. Our results show the mean of 4 runs.

We run the server on Dell PE6850 machine with 4*2-core x64
Intel Xeon processors with 32KB L1 I-Cache and 32KB L1 D-
Cache private per core, 4MB L2 shared between the two cores
on each die, 8MB L3 shared between all eight cores, and 32GB
physical memory. The installed operating system was Suse 11.0.
We use Prototype Edition 2.0 of the Intel C++ STM Compiler.

Our performance results must be seen as preliminary for three
reasons. First, the prototype compiler was not able to generate
transactional clones of some of the methods that we had marked
tm_callable. This meant that any transactions calling these meth-
ods had to switch to irrevocable mode, limiting scalability. Second,
we needed to compile the programs with optimizations disabled
(-00) because the compiler failed when optimizing some of the
methods. Earlier work has shown that [3, 15, 33], STM-specific
optimization can make a substantial difference to performance. Fi-
nally, we encountered problems at runtime when executing code
fragments similar to those shown in Listing 5. The problem is
that pthread_getspecific returns an uninitialized value which
is subsequently de-referenced. The cause of the problem is not yet
clear; it happens non-deterministically, and even in single-threaded
runs. We have worked around the problem by passing thread id
values manually between functions.



void* buffer;
atomic {

buffer = Z_TagMalloc(size, 1);
}
if (!'buffer)

Sys_Error ("Runtime Error: Not enough memory.");

else

memset (buf, 0, size);

0N O WN -

Listing 8. Privatization example.

5.2 Scalability and Performance Results

We evaluate three different implementations: STM, LOCK and
STM_LOCK. In STM critical sections are implemented with trans-
actions. In LOCK the critical sections are implemented with a
global re-entrant lock. STM_LOCK combines both, using the
global lock for concurrency control, but retaining the use of STM
within critical sections. The difference between STM_LOCK and
LOCK illustrates the straight-line overhead of using STM, so we
can distinguish it from the scalability lost by aborted transactions.
We also plot the IDEAL scalability (i.e. the scalability that would
be achieved if there was no lock or STM overhead) to easily com-
pare the different synchronization implementation across an upper
bound.

With single-threaded executions we see 4x-5x overhead from
LOCK to STM_LOCK. To a large extent this is likely to be due to
needing to disable compiler optimizations.

We measured the throughput of the server with 1..8 threads,
expressing the throughput in terms of the number of client request
messages processed per second. In Figure 3 the throughput of each
Quake version is normalized to itself when ran with a single thread.
Because all the threads start to process the client requests at the
same time, we can assume that measured results will match those
when the server is 100% loaded — the requests’ queue is not empty.
In our diagram the LOCK version scales nicely up to 8 threads,
but STM and STM_LOCK based versions scale up to 4 threads
and at 8 threads are saturated. With two threads all versions scale
following the ideal speedup curve as STM_LOCK even achieves
super-linear speedup which we relate to two reasons: (i) the STM
library at times performs a global initialization or cleanup which
takes constant time with any number of threads or (ii) because
when the two threads execute the same code segment in parallel
the instruction cache misses of the one thread happen to be hits for
the second and thus less time spent in waiting a cache line to be
brought from memory to the L2. With 4 threads the LOCK and
STM_LOCK scale again well, but the STM versions show poor
scalability because there are retrying transactions and the time to
process a request increases. With 8 threads the server is saturated
and the performance of the STM version degrades and is worse
than when running with 2 threads due to the many aborts. Because
of the STM library instrumentations, executing the critical section
in STM_LOCK takes longer which causes more threads to serialize
on critical section when running with 8 threads and thus being less
scalable than LOCK. Based on the last observation we notice that
the scalability of the transactional version is limited by the aborts,
whereas the lock based version by the serialized execution of the
critical sections. The map that we used in the game session is small
and represents high-conflict scenarios where the players interact
with each other all the time. Unfortunately, because of the issues in
the tool set that we used, we could not run experiments with larger
maps. Also, it is noteworthy to say that the transactional Quake
server may perform better if not fully loaded which may result in
fewer conflicts because of non-interleaved execution of the critical
sections.

Scalability
9.00
8.00 x
7.00

6.00 //:/’

500 /4://' 5-STM

4.00 ~#A—STM_LOCK
3.00 . —o—10CK

2.00 ""‘___;Afgf" .
1.00

—»—|DEAL

Normalized Throughput (reqs/sec)

0.00
1 2 4 8
Threads #
Figure 3. Scalability and speedup.
Threads | Transactions Aborts Irrevocable Tx
Num %
1 36667 0 0.00% 17
2 75824 241 0.42% 31
4 166 000 2612 1.58 % 85
8 477519 | 76771 | 25.50% 237

Table 1. Transactional characteristics.

5.3 Transactional Characteristics

Table 1 summarizes the characteristics of the transactions executed
in Atomic Quake. Very few transactions become irrevocable, given
our care to use tm_pure annotations. With 2 threads there are
almost no aborts, but the abort rate increases exponentially with
the number of threads. The high rate of aborts and consequently
wasted computation time is the reason why the Atomic Quake
server (STM) scales poorly. Since conflicts have such a significant
impact on performance, this is also a signal that more research
should be done on conflict avoidance, detection and resolution in
STM libraries.

Table 2 shows a summary of the read and write sets for all
the transactions. These results confirm typical assumptions about
the prevalence of reads over writes inside transactions. The mean
transaction sizes show that many of these transactions could be
implemented in hardware that supports a few hundred transactional
accesses. However, the high maximum sizes show that there are
some larger transactions with read sets up to 1.5MB and write sets
up to 344KB.

Table 3 shows per atomic block statistics obtained from a single-
threaded execution of Atomic Quake. We omit entries for atomic
blocks that were not executed in our test workload (e.g. walking in
water).

A small number of atomic blocks make up the bulk of the
transactional workload. These are located in functions in the critical
path of the RP phase. The second group of transactions execute
much less frequently; e.g. they include an example where the server
sends a message to a client that has expended all their weapons. It
is worth noting that the most frequently executed atomic block is
a simple read-only non-nesting example which seems amenable to
hardware implementation in a hybrid implementation.

6. Conclusion

In this paper we have described our experience porting the parallel
Quake game server to use TM for all of its synchronization.

This is, of course, a somewhat extreme undertaking and not
necessarily the way that we would recommend structuring a large



Threads ] Read Set (bytes) ] Write Set (bytes) ]
Min | Avg Max Total | Reads [ Min | Avg Max Total | Writes
1 8 | 490 53566 18214226 83% 0 98 11161 3639952 17%
2 8 | 540 172508 40907 196 83% 0 115 47784 8737623 18%
4 4| 575 181740 95505 459 81% 0 131 52032 | 21737915 19%
8 4 | 798 | 1591946 | 381290019 81% 0 | 183 | 352640 | 87837969 19%

Table2. Read and write set sizes.

program if developing it from scratch. As we showed in Section 4,
there are some places where transactions substantially simplify the
implementation of the server (e.g. the areanode tree), but there are
other places where simple block-structured atomic sections are not
a good fit (e.g. where there is complicated control-flow logic, and
error handling).

Aside from the areanode structure, it is interesting to consider
which of these programming problems are best tackled by introduc-
ing additional programming constructs, and which are best treated
as problems that should be solved with traditional locking.

Our results from Section 5 show that, given care over a few
examples like pthread_getspecific, it is possible to run most
transactions in this workload without falling back to catch-all
schemes like irrevocability. It is surprising, to us, that despite that
coarse granularity of the transactions we use, we see an abort rate
of less than 26% with 8 clients.

In future work we anticipate examining the performance of
the transactions in Atomic Quake in more detail, once profiling
tools are available to pinpoint the reasons for transactions being
aborted. We also plan to compare the performance of the imple-
mentation with other alternatives and, in particular, to compare it
with a separately-developed transactional implementation that we
are building from the original single-threaded implementation.

The Atomic Quake implementation and benchmark driver
scripts will be made available at http://www.bscmsrc. eu.
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