
-iii-

Some Comments on "Pitfalls in Prolog P rog ramming"

W F Clocksin
Computer Laboratory

University of Cambridge
Corn Exchange Street
Cambridge CB2 3QG

England.

In their useful article "Pitfalls in Prolog Programming", Ng and Ma [1] discuss
some ways that novice programmers can be confused while learning Prolog. They
suggest that the confusions result from certain properties of Prolog, in particular
the way that it diverges from the "ideal" of programming in pure logic. In fact, I
suggest that Ng and Ma are attributing to Prolog powers that it simply does not
have, and that confusions are usually the result of the novice's misplaced
confidence in his abilities to reason about programs.

The Real Pitfalls

Ng and Ma motivate their article with the statement that, "If a user wants to write
a Prolog program just according to his logical reasoning, he will probably fall into
an unexpected trap of the language". Ng and Ma seem to be saying that the
"logical reasoning" of the user is always valid, and if the user falls into a trap, then
it is Prolog's fault. Whether or not the user's logical reasoning is always valid, the
"ideal" of programming according to Ng and Ma is to "...reduce the gap between
human reasoning and the machine's processing mechanism to the minimum".
After considering several examples, Ng and Ma conclude that, "...programming in
Prolog is not as simple as a direct transformation of the human-oriented
reasoning." I believe there are three problems with the view taken by Ng and Ma:

1. It is wrong to assume that the user's reasoning is logical.

3. It is wrong to assume that "human oriented" reasoning, whether logical or
not, can be directly translated into a program.

2. It is wrong to assume that the purpose of Prolog is to correctly execute
directly translated "human oriented" reasoning.

The (mistaken) view -- that the logical reasoning of a programmer can be
translated directly into a Prolog program that correctly executes the
programmer's intention -- seems to be a prevailing undercurrent in much recent
discussion about Prolog. How did this come about? From second-hand popular
accounts of Japan's Fifth Generation programme? By uninformed sales pitches of
purveyors of Prolog systems? Whatever the origin of this folk myth, it certainly
did not come from the only reference [2] cited by Ng and Ma.

The Examples Revisited

I shall briefly discuss each example raised by Ng and Ma.

1. f a c t o r i a 1. The f a c t o r i a 1 program as given by Ng and Ma cannot possibly
be expected to compute inverses. The real pitfall is to assume that all programs
contain their own inverses. This is not true even in pure logic, particularly where
arithmetic is involved.

SIGPLAN Notices V21 #12, December 1986

http://crossmark.crossref.org/dialog/?doi=10.1145%2F15042.15047&domain=pdf&date_stamp=1986-12-01

-112-

2. co]] ect_1 i st. Ng and Ma want the two versions to compute the same
answer, but they don't. In fact, their reasoning is faulty, and cannot be corrected
even by an appeal to pure logic. A list is ordered even in pure logic. The problem
with their co]] ect] istsis asimple conceptual bug that can appear in any
program ranging from assembly language to pure logic. It is also worth
mentioning that the point of this example has nothing to do with the extralogical
status of the r e t r a c t goal used in c o I] e c t_] i s t. The r e t r a c t goal can be
replaced with some logically pure generator of results: Ng's and Ma's (faulty)
argument is not affected, and my reply is still valid.

3. n e x t I e v e I. It appears that Ng and Ma don't like having to find the u n i o n to
create a new list. There are several points to make here. First, Ng and Ma think
that "Prolog does not allow the instantiation of a group of elements at the head of a
list at the same time", and this is why u n i o n is needed. This could mean several
things. Prolog (and logic) allows variables to be instantiated to lists. But this
gives a list of lists, which is not desired in this program. Prolog (and logic) allows
pairs of variables to represent "difference lists". This technique could be used
here, (and is often used to obvi ate an explicit use of c o n c a t e n a t e). If it is
required to remove duplicate son nodes, then the requirement here is for a true
union. Even a pure logic program would need a union in that case.

4. i n s e r t s o r t. Prolog's comma connective is not the same as a logical "and".

5. adj acen t. Here a program for searching a directed acyclic graph is given, but
Ng and Ma complain that it cannot search non-directed cyclic graphs. Again this
is not a Prolog problem but a conceptual problem. One problem illuminated by
this example is "hopeful naming". Naming some relation by the name a d j ace n t
and then complaining that the result does not adequately represent reflexivity is
like defining the program

i n t e l l i g e n t (A , [A I T]) .
i n t e l l i g e n t (A , [B I T]) :- i n t e l l i gen t (A ,T)

and then being disappointed because it does not behave intelligently. Ng and Ma
show how to correct their graph searcher, and correctly conclude that the problem
is really due to implicit assumptions which are not stated by their original
program. Their corrected program explicitly represents the various logical
assumptions required to represent their original intent. It is therefore not
surprising that Ng and Ma notice an "incongruity between the human reasoning
and the programming". But this is not a problem with Prolog. It is a problem
concerning the fluency with which they are reasoning about their requirements.

6. f i n d a 1 1. It is true that Prolog makes available extralogical features. Ng and
Ma complain that the user's time is spent dealing with the programming issues
caused by extralogical features, instead of exploiting the logic of the problem.
When Ng and Ma correctly conclude that "the non-programmer is required to have
also programming knowledge and not only the possession of logical reasoning
power", we must consider two consequential questions. First, it is reasonable to
expect "non-programmers" to write programs? And, after what we have seen, can
Ng and Ma really trust their "logical reasoning power"?

-113-

Conclusions

Many people, even programmers, do not have enough experience in thinking
logically and carefully enough to expect that their every requirement can be easily
translated into a correct program. This should not come as a surprise. This has
nothing to do with whether some programming language (say Prolog) contains
more or fewer extralogical features. Indeed, programming in pure logic does not
make the job easier: it is more demanding of human reasoning, as there are even
fewer implicit assumptions to guide design decisions.

References

[1] K.W. Ng and W.Y. Ma. Pitfalls in Prolog Programming, SIGPLAN Notices
21(4), 75-79, April 1986.

[2] W.F. Clocksin and C.S. Mellish, Programming in Prolog, Springer-Verlag,
1981.

