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ABSTRACT
The query-flow graph [Boldi et al., CIKM 2008] is an ag-
gregated representation of the latent querying behavior con-
tained in a query log. Intuitively, in the query-flow graph
a directed edge from query qi to query qj means that the
two queries are likely to be part of the same search mission.
Any path over the query-flow graph may be seen as a pos-
sible search task, whose likelihood is given by the strength
of the edges along the path. An edge (qi, qj) is also labelled
with some information: e.g., the probability that user moves
from qi to qj , or the type of the transition, for instance, the
fact that qj is a specialization of qi.

In this paper we propose, and experimentally study, query
recommendations based on short random walks on the query-
flow graph. Our experiments show that these methods can
match in precision, and often improve, recommendations
based on query-click graphs, without using users’ clicks.
Our experiments also show that it is important to consider
transition-type labels on edges for having good quality rec-
ommendations.

Finally, one feature that we had in mind while devising
our methods was that of providing diverse sets of recommen-
dations: the experimentation that we conducted provides
encouraging results in this sense.

1. INTRODUCTION
Query recommendations are an important tool that helps

search engines users in their information seeking activities,
also known as search missions [19]. Recommendations are
typically queries similar to the original one, and they are
usually obtained by analyzing the query logs, for instance,
finding recommendations by clustering of queries [28], or by
identifying frequent re-phrasings [3]. The main source of
information for building search assisting systems are query
logs.
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Web query logs describe how users interact with a search
engine. They are very large, very diverse (containing mil-
lions of different queries), heavy-tailed (containing queries at
different orders of magnitude of frequency), and noisy (con-
taining thousands of variants and spellings of the same in-
formation need). Distilling behavioral patterns from query
logs is a key step towards improving the service provided
by search engines and towards developing innovative web-
search paradigms. In particular, and this is the focus of this
paper, by analyzing query logs we can build rich models of
user searching activities, and use these models in applica-
tions aimed at improving the user web-search experience,
such as query recommendations.

One current research line we develop attempts to infer the
hidden semantics of user interactions with search engines
by extracting data from a query log in two steps. First,
we identify search mission borders by distinguishing query
transitions that are reformulations, i.e., queries with a sim-
ilar information need [24, 19], from query transitions that
represent a mission change. We tackled this in [8], where we
built a machine learning model for predicting the probabil-
ity that two subsequent queries are part of the same search
mission.

After identifying the search missions, the query reformu-
lations inside each mission can be classified into query re-
formulation types [26]. In particular, in our work [9] we
identified 4 query reformulation types (abbreviated QRT):
generalization, specialization, error correction, and parallel
move, and showed that accurate automatic classification of
QRTs is indeed possible. Learning automatically from a
human-labeled query log sample, we built a model for au-
tomatic classification of QRTs which exhibited a very high
accuracy, ≈ 92% discriminating among 4 different reformu-
lation types. Using such model we can annotate the edges
of the query flow graph with QRTs obtaining a richer model
of the users’ querying behavior.

In this paper we show applications of this annotated query-
flow graph for generating query recommendations. Our meth-
ods are essentially different versions of short random walks
on different slices of the query-flow graph. We performed
an extensive experimentation using the “Spring 2006 Data
Asset” distributed by Microsoft Research. Our experiments
show that other methods can match in precision (and often
improve) query-click based recommendations without using
clicks. Moreover our methods provide more diversity in the
result sets. Our experiments also show that transition prob-
abilities from one query to the next are not enough, and for
obtaining good recommendations it is important to filter out



queries that are not part of the same search mission, and to
add QRT labels to edges.

The next section presents related work. Section 3 sum-
marizes our previous results on the query-flow graph and
Section 4 presents the experimental framework we use. Fi-
nally, Section 5 presents our evaluation results and Section 6
some concluding remarks.

2. RELATED WORK
Query graphs. Baeza-Yates [2] identifies five different

types of query graphs. In all cases, the nodes are queries;
a link is introduced between two nodes respectively if: (i)
the queries contain the same word(s) (word graph), (ii) the
queries belong to the same session (session graph), (iii) users
clicked on the same URLs in the list of their results (URL
cover graph), (iv) there is a link between the two clicked
URLs (URL link graph) (v) there are l common terms in
the content of the two URLs (link graph). Baeza-Yates and
Tiberi [4] study a weighted version of the cover graph. Their
analysis provides information not only about how people
query but also about how they behave after a query and
the content distribution of what they look at. Moreover
the authors study several characteristics of click graphs, i.e.,
bipartite graphs of queries and URLs, where a query and a
URL are connected if a user clicked on the URL that was
an answer for the query. This framework is used to infer
semantic relations among queries and to detect multitopical
URLs, i.e., URLs that cover either several topics or a single
very general topic.

Query-document graphs (also known as query-click graphs)
are introduced by [6]. They are bi-partite graphs in which
the nodes in the one set are queries and the ones in the other
set are documents; an edge appears between a query q and
a document d if the user that issued the query, clicked on
the URL correspondent to d in the list of results. We note
that a bi-partite query-document graph can be turned into
a query-query graph by means of the following procedure,
described in [23]. Let G = (V,E) be a bipartite graph such
that V = Q ∪ D, E ⊆ Q × D, where Q is a set of docu-
ments and D a set of documents clicked for those queries.
Let w(i, j) be a weighting function for an edge (i, j) ∈ E, for
instance it can be the number of clicks there are for a query
Qi on a document Dj . Let

pij =
X
j∈D

w(i, k)

deg(i)

w(k, j)

deg(k)
,

now pij describes a Markov process in which the states are
the elements of Q

Query-flow graphs, introduced in [8], are graph represen-
tation of the interesting knowledge about latent querying
behavior: a directed edge from query qi to query qj means
that the two queries are likely to be part of the same “search
mission”. Such a graph could be enriched labelling each edge
with the query reformulation types types): generalization,
specialization, error correction, and parallel move [9]. Mod-
eling query reformulation types and characterizing query re-
formulation patterns is of extreme utility for understanding
and predicting user intents, in order to assist users in re-
trieving more effective information. Query-flow graphs are
presenting more in detail in Section 3.

A concept similar to our query flow graph, but in the
context of web browsing behavior, is introduced by Levene

and Loizou[21]: “Hypertext Probabilistic Automata” are au-
tomata where the arcs of the reachability relations are la-
belled with probabilities that are computed from statistical
information related to the frequency that users choose to
navigate trough two states. The work however is focused
on browsing behavior inside a Web site and not on query-
ing behavior. Borges and Levene later introduced an im-
proved method for measuring the ability of a variable-length
Markov model to summarize user Web navigation sessions
up to a given length [11].

Query recommendation. Query recommendation is a
core task for large industrial search engines. Most of the
work on query recommendation is focused on measures of
query similarity [32, 14] that can be used for query expan-
sion [5] or query clustering [5, 27]. A first attempt to model
the users’ sequential search behavior is presented by Zhang
and Nasraoui [32]: the arcs between consecutive queries in
the same session are weighted by a dumping factor d, and the
similarity values for non consecutive queries are calculated
by multiplying the values of arcs that join them. Instead,
Fonseca et al. [14] discover related queries with a method
based on association rules. Each transaction in the query
log is seen as a session in which a single user submits a se-
quence of related queries in a time interval. Their notion of
session is similar to the one we use in this paper.

Baeza-Yates et al. [5] study the problem of suggesting
related queries issued by other users and query expansion
methods to construct artificial queries. Their technique is
used to recommend queries that are related to the input
query but may search for different issues. The clustering
is based on a term-weight vector representation of queries,
obtained from the aggregation of the term-weight vectors
of the URLs clicked after the query. Wen et al. [27] also
present a clustering method for query recommendation that
is centered around four notions of query distance: the first
notion is based on keywords or phrases of the query; the sec-
ond on string matching of keywords; the third on common
clicked URLs; and the fourth on the distance of the clicked
documents in some pre-defined hierarchy.

Jones et al. introduced the notion of query substitution.
Similar queries can be obtained by replacing the query as a
whole, or by substituting constituent phrases [20]. Similar
queries and phrases are derived from user query sessions,
and they proposed models for query re-ranking based on
the similarity of the new query to the original query.

Antonellis et al. [1] generate query rewrites in the query-
click graph. The basic concept they use is similar to co-
citation: two queries are related if they reference the same
document. For scoring the query rewrites, they use a vari-
ant of SimRank [17], which is a generalized measure of co-
citation.

White et al. [29, 30] the query rewrites observed in a query
log are used to generate query recommendation. Given an
input query, they generate a set of candidates containing
(a) the top 100 queries that contain the original query as a
sub-string, and (b) the top 100 queries which followed the
input query. Then, each candidate query is then scored by
multiplying its smoothed overall frequency of following the
target query in the past sessions, using Laplacian smoothing.

Recommendations based on random walks. Craswell
and Szummer [13] describe a method based on random walks
on the query-click graph [6], that can be used to provide



query recommendations as follows: given the input query,
it computes the personalized PageRank [18] of all the other
queries and then picks the top ones as recommendations.
There are more details about this method in Section 4.3.
Fuxman et al. [15] experiment with a similar approach in
the context of finding related keywords for advertising.

Mei, Zhou and Church [23] instead use a computation of
hitting time: assume that Q0 is the input query: they start
setting h(Qi, 0) = 0 for all queries Qi except for the original
query Q0 which has h(Q0, t) = 1 ∀t ≥ 0, and then iterate
the following for a fixed number m of iterations:

h(Qi, t) =
X
j 6=i

pjih(Qj , t− 1) .

For a query Qi, what their process computes in h(Qi, t) is
the probability that a random walk arrives to node Qi within
t steps or less.

Query recommendation systems can also be personalized
by taking into account the user’s history. Zhang and Nas-
raoui [32] bias recommendations using the a user’s history
and introducing a “forgetting factor” which discounts older
queries to favor more recent ones. A similar approach is
used in [8] where a random walk with restart to the queries
in the history of the user is done, preferring recent queries
over older ones. As a general observation, recent works have
shown that not only the previous query, but the long-term
interests of users, are important for understanding his/her
information need [22, 25].

3. QUERY FLOW GRAPH
The query-flow graph [8] is a graph modeling user behav-

ioral activities and query relationships. Such a structure is
obtained aggregating information contained in large query-
logs in order to extract meaningful patterns. Given a query
log, the nodes of the query-flow graph are all the queries
contained in the log.

These query graphs are effective in helping to detect log-
ical sessions. Identifying the logical boundaries of users
search sessions is a compulsory step for understanding users
intents. A further step in this direction can be performed
building an accurate model for automatically classifying user
query reformulations into broad classes. An automatic query
transition classifier, introduced in [9], is used in the current
paper to annotate each edge of the query-flow graph with
one of the possible query reformulation types.

We have a graph G = (Q,E), with Q the set of queries,
E ⊆ Q ×Q query transitions. Let r : E → N represent the
number of times the transition was observed in the query log
and classified automatically as being part of the same search
mission, we use as weights

w(i, j) =
r(i, j)P

k:(i,k)∈E r(i, k)
.

Let T = {G, S, C, P} be the transition types generaliza-
tion, specialization, error correction and parallel move as
described in [9]. Let t : E → T be a transition type assign-
ment with t(i, j) representing the reformulation type inferred
between queries i and j.

We consider different slices of the original query flow-
graph, extracting only the edge belonging to one or more
transition types. In particular we use five different slices

named Queryflow-S, Queryflow-SP, Queryflow-SC, Query-
flow-SCP, Queryflow-GSPC.

Composed query graphs. Since the query-transition graph
is extremely sparse, the slices we consider are even more
sparse. For this reason, we experimented the possibility of
composing two or more graphs so to increase density. By
“composition”of two graphs with the same node set we mean
the multiplication of the respective adjacency matrices in the
semiring having multiplication as sum and maximization as
product. Essentially, after the product the weight associated
to an arc from q to q′ is the weight of the heaviest path of
length two going from q to q′, where the weight of a path is
the product of the weights of its component arcs.

In the experiments, we used three composed graphs: Query-
flow-(S2) (specializing twice), Queryflow-(SST ) (specializing
and then doing an inverse specialization) and Queryflow-
(SG), specializing and then generalizing. The intended us-
age of the latter two is that they should provide a type of
recommendation more varied than simple specialization.

4. EXPERIMENTAL FRAMEWORK

4.1 Dataset
Our experiments are based on the “Spring 2006 Data As-

set” distributed by Microsoft Research1. The data consists
of a query log excerpt with 15 million queries, most of them
in English, sampled over one month and including a query
and query-id, an anonymous session-id, a timestamp, and
the results (for each result, the position on the result page
and a timestamp is also provided). Part of the adult queries
was extracted and provided separately: we did not use it in
our experiments, though.

We encoded the data using the WebGraph framework [10]
(the framework has been originally built to represent web
graphs, but it turns out to be useful to represent succinctly
large graphs in general) and also the high-performance hash-
ing classes from the Sux4J project [7].

For creating the Query Flow Graph, we used the model
that we trained using a different dataset—a set of query pairs
(q, q′), extracted from a query log of the Yahoo! UK search
engine in early 2008. These query pairs were first used to
build a model [8] for segmenting users sessions into chains,
that is, topically coherent sequences of queries by one user.
In a following paper [9], we developed a model that made us
able to distinguish the type of the transition in a chain (i.e.,
specialization, generalization, correction, etc.).

4.2 Recommendation using query-flow graph
The query recommendation methods are based on the

probability of being at a certain node after performing a
random walk over a query graph. This random walk starts
in the node corresponding to the input query. At each step,
the random walker either remains in the same node with
probability 0.9, or follows one of the out-links with proba-
bility equal to 0.1; in the latter case, the links are followed
proportionally to w(i, j).

We did not use “random jumps” since, setting the random
jump probability to 0.1 or 0.2, we observed a worsening in
the results so we did not include it in the analysis of re-
sults. The self-loop probability was set following Crasswell

1http://research.microsoft.com/users/nickcr/wscd09/



and Szummer [13]. We increased the number of iterations
until we did not see any gains; we observed that a number of
iterations greater than 10 does not improve the results and
we omit those results. also given the large self-loop probabil-
ity a large number of iterations does not add much, anyways
much of the probability stays close to the original node. We
show the results for 1, 5 and 10 iterations.

We compare two different scoring methods. In the first
case the queries to present to the user are chosen based on
the personalized PageRank values obtained by the random
walk described above, this is the “absolute” scoring method
in Tables 4 and 5. An alternative scoring method ranks the
results based on the ratio between the values obtained in the
previous case and the PageRank values obtained by using no
personalization (starting at random at any node) and fixing
the random jump value to 0.15 and letting the algorithm run
until convergence; this is referred to as the “relative” scoring
method in the same tables.

4.3 Baseline for query recommendation
We implemented a query-recommendation system based

on the method by Crasswell and Szummer [13], which uses
a bipartite query-document graph. This query-document
graph is defined as G′ = (Q ∪ D,E′), E′ ⊆ Q × D with Q
the set of documents and D the set of pages. The edges
are symmetric, (i, j) ∈ E ⇒ (j, i) ∈ E. Let c′ : E → N
be the number of clicks with c′(i, j) = c′(j, i) describing the
number of clicks obtained by document j when shown as a
result of query i.

There are several alternatives for the transition probabil-
ities, we used the two different weighting schemes described
in [13]. The “forward’ weighting scheme corresponds to fol-
lowing edges proportionally to the number of clicks associ-
ated to them, it uses weights

wf (i, j) =
c′(i, j)P

k:(i,k)∈E′ c′(i, k)
.

The “backwards” weighting scheme uses different weights

wb(i, j) =
wf (j, i)P

k:(j,k)∈E′ wf (j, k)
.

In the paper introducing these weights, they observe that
the “backwards” weighting scheme provides better results
than the “forward” weighting scheme for their task of finding
relevant images for an input query. In our experimental
results we observe the same, with an even greater advantage
for the “backwards” weighting scheme as will be presented
below.

For generating the recommendation we proceed as above,
except that we used 6 or 12 iterations to do an even number
of steps and end the random walk in a query and not in
a document. We also did experiments with 24 iterations
that did not yield improvements over 12 iterations and are
omitted in the experimental section.

5. EVALUATION
This section presents the user-evaluation method and the

results obtained.

5.1 Assessment method
The evaluation of the recommendations produced by the

different systems was done in the following way. A set of 114

input queries having frequencies between 700 and 15,000 was
selected at random; we used these frequencies limit to avoid
very frequent queries (which are often navigational and for
which query recommendations are not useful) or very infre-
quent queries (for which in this dataset there will be no rec-
ommendations). Queries were very varied in nature, exam-
ples: “grey’s anatomy”, “juno”, “Maggie Gyllenhaal’, “cnn
news”, and“guitar tabs”. We discarded all the queries con-
taining a domain name.

Next, we generated the top 5 recommendations for each
query using each system, and pooled the results together;
this yielded on average 53.4 different recommendations per
query. Next, a group of 5 assessors entered a simple assess-
ment interface where each assessor was presented a random
query and then in sequence all the different recommenda-
tions for that query in random order, without knowing which
system(s) produced the recommendation.

The assessor was also able to see the search engine results
for the original query and the recommended query that was
being evaluated. The assessor was asked if the recommen-
dation was useful, somewhat useful or not useful, con-
sidering the original query. A very broad instruction was
given: a useful recommendation is a query such that, if the
user submits it to the search engine, it provides new results
that were not available using the original query, and that
agree with the inferred user intent of the original query. Of
course there is a great deal of subjectivity in this assessment
as the original intent is not known for sure by the assessor.

Table 1: Example assessments for query “cnn news”
Useful Somewhat useful Not useful

cnn world news abc7chicagonews CNN
msnbc news nba scores cnn.com
fox news cnnfyi verizon netmail

Table 1 shows a sample assessment for the input query
“cnn news”. In practice, recommendations that are con-
sidered useful are typically either specializations of parallel
moves in the sense of [26], while recommendations that are
considered not useful tend to be either trivial variants of the
original query, or completely unrelated queries.

In total, we received 6,093 assessments distributed as per
Table 2.

Table 2: Distribution of assessments, n = 6, 093
Assessment Probability

Useful 25.1%
Somewhat useful 11.6%
Not useful 62.1%
Can not assess 1.2%

The assessment task was described as difficult by the as-
sessors. We measured inter-assessor agreement on 560 over-
lapping query-recommendation pairs that were judged by
two different assessors. We considered three scenarios: A.
each label is a different category; B. labels “somewhat use-
ful” and “not useful” are together in a category; C. labels
“useful” and “somewhat useful” are together in a category.
Next we measured the observed agreement Pa and Cohen’s
Kappa statistic which compares the agreement expected by



chance Pc with the observed agreement using the formula
κ = Pa−Pc

1−Pc
.

Table 3: Inter-assessor agreement as a probability
Pa and in terms of Cohen’s Kappa κ, n = 560

Scenario Pa κ

A. Useful vs Sw.useful vs Not useful 68% 0.43
B. Useful vs (Sw.useful or Not useful) 86% 0.46
C. (Useful or Sw.useful) vs Not useful 77% 0.59

As shown in Table 3, the scenario C. is the best of the
three and shows a moderate amount of agreement between
the assessors (κ = 0.59). The relatively small level of agree-
ment can be compared with other similarly subjective web
evaluation tasks such as κ = 0.85 for web page type clas-
sification [16], κ = 0.72 for query type classification [31],
κ = 0.61 for link type classification [16], κ = 0.63 for web
spam classification [12], etc.

5.2 Results
Usefulness score. The Uscore column in Table 4 is the
probability that a recommendation issued by a system is
labeled as “useful” or “somewhat useful”. The column con-
cerning significance (p-value, omitted when over 0.1) con-
tains the probability of observing a score of Uscore or less
by chance, assuming that all the systems have the same ac-
curacy as the top one.

Small differences in p-value for systems having the same
Uscore are because the significance is computed considering
the number of valid assessments for each system among the
114 queries evaluated, excluding the “Can not assess” label
in Table 2. Lines are drawn in the table at p = 0.1, 0.05, 0.01.
Notice that we are here testing our systems against a very
strong null hypothesis, because only the top 5 recommenda-
tions are being considered, and many of them are correct; so
the probability of guessing among them is very high, even
at random.

In the recommendations generated using the query-flow
graph, the score decreases as we introduce more transition
types: specialization transitions seem to produce the most
useful recommendations (Queryflow-S), whereas adding par-
allel moves (Queryflow-SP), corrections (Queryflow-SPC),
and eventually generalization (Queryflow-GSPC, different at
p = 0.06) results in less useful recommendations.

The “absolute” scoring method works better than the “rel-
ative” scoring method for the queryflow-based recommenda-
tions at a significance of p = 0.04, and doing multiple iter-
ations instead of only one (which corresponds to taking the
maximum) is better at p = 0.06.

We also added a system named just “Queryflow” in Ta-
ble 4, without including any slice name: in this system the
weights are computed over all transitions, independently of
whether they were part of the same mission or not. This is
worse than the systems that selects only specializations and
counts only over transitions in the same mission at p = 0.01.

The recommendations based on the baseline (query-doc-
ument graph) have either the same performance as recom-
mendations using Queryflow-S, or a lower performance at
a significance of p = 0.07. In this case, the “backwards”
weighting scheme performs much better than the “forwards”
weighting scheme at p < 0.01. This was already noticed
in [13]: the gap, in our case, is even larger.

Table 4: Usefulness score for each system: probabil-
ity that a recommendation issued by the system is
useful or somewhat useful

Uscore p-value System Iter. Scoring

0.58 Queryflow-S 10 Abs.
0.58 Queryflow-S 5 Abs.
0.57 Queryflow-SP 1 Abs.
0.56 Queryflow-SP 10 Abs.
0.56 Queryflow-SP 5 Abs.
0.55 0.10 Queryflow-SPC 1 Abs.
0.55 0.06 Queryflow-GSPC 1 Abs.
0.55 0.06 Queryflow-S 1 Abs.
0.55 0.07 Queryflow-SPC 5 Abs.
0.55 0.06 Queryflow-SPC 10 Abs.
0.55 0.07 QueryDocument-Bwd 6 Rel.
0.55 0.06 QueryDocument-Bwd 12 Rel.
0.54 0.04 Queryflow-S 1 Rel.
0.54 0.03 Queryflow-S 10 Rel.
0.54 0.02 Queryflow-SC 5 Abs.
0.54 0.02 Queryflow-S 5 Rel.
0.54 0.02 QueryDocument-Bwd 2 Rel.
0.54 0.04 QueryDocument-Bwd 12 Abs.
0.54 0.02 QueryDocument-Bwd 6 Abs.
0.53 0.01 Queryflow 1 Abs.
0.53 0.01 Queryflow-GSPC 5 Abs.
0.53 0.01 Queryflow-GSPC 10 Abs.
0.53 0.01 Queryflow-SC 10 Abs.
0.52 < .01 Queryflow 5 Abs.
0.52 < .01 QueryDocument-Bwd 2 Abs.
0.52 < .01 Queryflow-SC 1 Abs.
0.52 < .01 Queryflow-SC 1 Rel.
0.51 < .01 Queryflow 10 Abs.
0.51 < .01 Queryflow-SC 10 Rel.
0.51 < .01 Queryflow-SC 5 Rel.
0.47 < .01 Queryflow-SP 1 Rel.
0.47 < .01 Queryflow-SP 10 Rel.
0.47 < .01 Queryflow-SP 5 Rel.
0.45 < .01 Queryflow-SPC 10 Rel.
0.45 < .01 Queryflow-SPC 1 Rel.
0.45 < .01 Queryflow-SPC 5 Rel.
0.44 < .01 Queryflow 10 Rel.
0.44 < .01 Queryflow 1 Rel.
0.44 < .01 Queryflow 5 Rel.
0.44 < .01 Queryflow-GSPC 10 Rel.
0.43 < .01 Queryflow-GSPC 1 Rel.
0.43 < .01 Queryflow-GSPC 5 Rel.
0.39 < .01 Queryflow-(S2) 1 Rel.
0.39 < .01 Queryflow-(S2) 10 Rel.
0.39 < .01 Queryflow-(S2) 1 Abs.
0.38 < .01 Queryflow-(S2) 10 Abs.
0.32 < .01 QueryDocument-Fwd 12 Abs.
0.32 < .01 QueryDocument-Fwd 6 Abs.
0.30 < .01 QueryDocument-Fwd 2 Abs.
0.28 < .01 Queryflow-(SG) 10 Rel.
0.28 < .01 QueryDocument-Fwd 6 Rel.
0.28 < .01 QueryDocument-Fwd 12 Rel.
0.28 < .01 Queryflow-(SG) 10 Abs.
0.27 < .01 QueryDocument-Fwd 2 Rel.
0.23 < .01 Queryflow-(SST ) 10 Abs.
0.23 < .01 Queryflow-(SST ) 10 Rel.



Figure 1 is a chart of the best performing variant of each
system.

Diversity score. Next we computed a measure of diver-
sity in the resulting set. This is done by taking each sam-
pled query, and each recommendation labeled as useful or
somewhat useful, and issuing that recommended query to
a search engine. Given that we are taking the top-5 rec-
ommendations per system, this generates a maximum of 25
URLs. The average Dscore in Table 5 is the average num-
ber of distinct URLs in this multiset across the 114 queries
evaluated which were not present in the result set for the
original query.

Significance is computed using the individual score (0 to
25) obtained by each system for each of the 114 assessed
queries; we assume scores have a normal distribution and
compute the probability of observing the scores we observe
or less, assuming that all systems have the same performance
as the top system (using a one-sided t-test). Lines are drawn
in the table at p = 0.1, 0.05, 0.01. We observe a change
in the relative position of different systems in the top half
of the table with respect to Table 4, indicating that this
measure is different from the measure based purely on the
labels associated to the recommended queries.

6. CONCLUSIONS
The query-flow graph annotated with query reformula-

tion types, can be used to generate query recommenda-
tions matching the ones obtained using query-click graphs.
This means that the information contained in the annotated
query-flow graph about consecutive queries in a session is as
useful for this task as the user’s clicks; given that both data
sources are independent, recommendations produced by a
composition of both methods are worth to be investigated
as future work.

When using the query-flow graph, we have found that it
is important to discard edges between queries in different
chains, even if they are frequent transitions. Also, allowing
only certain reformulation types (e.g.: only specializations,
or only specializations and parallel moves) is better than
using the entire graph. Finally, doing a few iterations is
better than doing one iteration (this is picking directly the
node connected by the edge of highest weight), and more
than 10 iterations in our setting did not add precision to the
results.

With respect to the evaluation methodology, the amount
of user assessments we obtained, over 6,000 in total, was
enough for drawing some conclusions but not enough for
others. A more fine-grained study would probably require a
substantially larger number of evaluations and assessors.

Acknowledgments: Aristides Gionis for helpful com-
ments, and Marco Rosa for help in the assessment.

Table 5: Diversity score of recommended queries:
distinct documents among the top-5 results for the
top-5 useful or somewhat useful recommendations

Dscore p-value System Iter. Scoring

13.49 Queryflow-S 10 Abs.
13.44 Queryflow-S 5 Abs.
13.20 Queryflow-SP 1 Abs.
13.04 Queryflow-SP 10 Abs.
12.99 Queryflow-SP 5 Abs.
12.84 Queryflow-SCP 1 Abs.
12.73 Queryflow-SCP 5 Abs.
12.70 Queryflow-GSPC 1 Abs.
12.70 Queryflow-SCP 10 Abs.
12.52 Queryflow-S 1 Rel.
12.42 Queryflow-S 1 Abs.
12.40 Queryflow-S 10 Rel.
12.38 Queryflow 1 Abs.
12.38 Queryflow-GSPC 5 Abs.
12.37 Queryflow-S 5 Rel.
12.33 Queryflow-SC 5 Abs.
12.33 Queryflow-GSPC 10 Abs.
12.28 0.10 QueryDocument-Bwd 6 Rel.
12.25 0.10 Queryflow-SC 10 Abs.
12.21 0.08 QueryDocument-Bwd 12 Rel.
12.21 0.08 QueryDocument-Bwd 12 Abs.
12.16 0.08 QueryDocument-Bwd 2 Rel.
12.11 0.06 QueryDocument-Bwd 6 Abs.
12.01 0.08 Queryflow 5 Abs.
11.97 0.05 QueryDocument-Bwd 2 Abs.
11.92 0.05 Queryflow-SC 1 Rel.
11.89 0.07 Queryflow 10 Abs.
11.77 0.04 Queryflow-SC 1 Abs.
11.64 0.03 Queryflow-SC 10 Rel.
11.60 0.03 Queryflow-SC 5 Rel.
11.13 0.01 Queryflow-SP 1 Rel.
11.04 0.01 Queryflow-SP 5 Rel.
10.94 0.01 Queryflow-SP 10 Rel.
10.62 < .01 Queryflow-SPC 1 Rel.
10.61 < .01 Queryflow-SPC 5 Rel.
10.56 < .01 Queryflow-SPC 10 Rel.
10.43 < .01 Queryflow 10 Rel.
10.39 < .01 Queryflow 1 Rel.
10.36 < .01 Queryflow 5 Rel.
10.28 < .01 Queryflow-GSPC 10 Rel.
10.25 < .01 Queryflow-GSPC 1 Rel.
10.08 < .01 Queryflow-GSPC 5 Rel.
9.25 < .01 Queryflow-(S2) 1 Rel.
9.21 < .01 Queryflow-(S2) 10 Rel.
9.17 < .01 Queryflow-(S2) 1 Abs.
9.00 < .01 Queryflow-(S2) 10 Abs.
6.68 < .01 Queryflow-(SG) 10 Abs.
6.63 < .01 Queryflow-(SG) 10 Rel.
5.75 < .01 QueryDocument-Fwd 12 Abs.
5.71 < .01 QueryDocument-Fwd 6 Abs.
5.69 < .01 Queryflow-(SST ) 10 Abs.
5.61 < .01 Queryflow-(SST ) 10 Rel.
5.49 < .01 QueryDocument-Fwd 2 Abs.
5.05 < .01 QueryDocument-Fwd 6 Rel.
5.04 < .01 QueryDocument-Fwd 12 Rel.
4.83 < .01 QueryDocument-Fwd 2 Rel.



Figure 1: Usefulness scores, best variant per system
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