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ABSTRACT

Click models provide a principled way of understanding user
interaction with web search results in a query session and a
statistical tool for leveraging search engine click logs to ana-
lyze and improve user experience. An important component
in all existing click models is the user behavior assumption —
how users scan, examine and click web documents listed in
the result page. Usually the average user behavior pattern
is summarized in a small set of global parameters. Can we
fit multiple models with different user behavior parameters
on a click data set? A previous study showed that the mix-
ture modeling approach did not lead to better performance
despite extra computational cost.

In this paper, we present how to tailor click models to user
goals in web search through query term classification. We
demonstrate that better predicative power could be achieved
by fitting two click models for navigational queries and in-
formational queries respectively, as evidenced by the like-
lihood and perplexity evaluation results on a subset of the
MSN 2006 RFP data which consists of 121,179 distinct query
terms and over 2.8 million query sessions. We also propose
search relevance score (SRS) as a flexible evaluation metric
of search engine performance. This metric can be derived as
summary statistics under any click model, and is applicable
to a single query session, a particular query term and the
search engine overall.
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1. INTRODUCTION

Researchers sought to understand user browsing and nav-
igation behaviors well before the dot-com era of the web,
usually through personal interview and questionnaire-based
survey (e.g., [12]). The first large-scale analysis of search en-
gine query logs to our knowledge dates back to 10 years ago,
carried out by Silverstein et al. [16], using over 285 million
sessions collected from all the search traffic of AltaVista dur-
ing 43 days in August and September 1998. What is missing
in this early study is the click data — among the ranked list
of search results which ones are clicked through.

Click data is now one of the most important and extensive
feedback signals from the WWW audience. And a number of
approaches have been proposed to leverage click logs to im-
prove the user experience of web search engines. For exam-
ple, Joachims [8] put forward an SVM algorithm to optimize
the ranking function using pairwise relevance judgement ex-
tracted from clickthrough as the input. A clicked web doc-
ument is considered more relevant to the query term than a
skipped one that appears above. Agichtein et al. [1] explored
a number of alternatives for incorporating user behavior fea-
tures into popular web search rankers such as RankNet [3].
Click data have also been applied to the evaluation of search
engine performance [4, 13].

However, the interpretation of user clicks is a non-trivial
task because many elements come into play in this decision
process. Previous eyetracking studies [9, 10] indicated that
clicks are biased as a form of absolute relevance judgement,
and clicking decision on a web document depends on both
the position (rank) and the context (other documents) of
the presentation. Richardson et al. [14] suggested the ezam-
ination hypothesis as a general solution to account for the
position bias, under which the chance of a click is decoupled
to two factors: the examination probability and the docu-
ment relevance. For example, a document that is ranked
at the bottom of the search result may not be clicked sim-
ply because few users would pay attention to it. Recently,
Craswell et al. [5] proposed the cascade hypothesis which as-
sumes that users sequentially scan each document in the list
of search results until reaching the first click, and the click-
ing decision on the document is made after examination and
before going to the next one in the list.
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to specify how examination and clicks at different positions
depend on each other. Given the click log which includes the
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Figure 1: The user model of DCM, in which ry, is the
document relevance of d;, and )\; is global parameter
for position i.

query term, a ranked list of web documents and click data
for each query session, model learning outputs document
relevance estimation with respect to the query term, as well
as a set of model parameters characterizing the underlying
user behavior. The estimation and learning algorithms have
to be efficient and incremental to be applied on real world
scenario with millions of new query sessions every day.

A common assumption in existing click models [6, 7] is
that query sessions are independent of each other and share
the same user behavior model, while in the real world users
may have different browsing strategies for different query
terms. In [6] a mixture-modeling approach was proposed
so that query terms could be clustered softly using an EM-
based iterative algorithm. However, despite the expensive
computational cost and extra algorithmic difficulty for in-
cremental update, fitting multiple models failed to provide
better performances than a single click model. On the other
hand, the authors were aware of two general categories of
query terms in existing literatures [2, 15]. Navigation queries
are generated when a user has a particular web site in mind
and only need to find a link to the final destination, whereas
the purpose of informational queries is to obtain information
about the query content. This difference in user goals leads
to different browsing and click patterns. And based on fea-
tures derived from click data, query terms could be classified
with good accuracy as demonstrated by Lee et al. [11].

In this paper, we present a simple, yet effective approach
of tailoring click models to user goals. We adapt the idea
in [11] to classify query terms, and demonstrate that with lit-
tle extra computation, fitting two click models achieves sig-
nificant gain in the model predicative power. Moreover, our
approach offers the first quantitative comparison of the dif-
ference between user examination behavior for navigational
and information queries, as well as other summary statis-
tics derived from the click models learned. In particular, we
propose the search relevance score as a flexible evaluation
metric of search engine performance, which is applicable to
different granularity levels such as a single query session, a
particular query term and the search engine overall.

The remainder of the paper is organized as follows. In
Sec. 2 we briefly introduce the recently proposed dependent
click model as the running example, and present algorithms
for parameter estimation and user goal identification. In
Sec. 3 we show how to derive the search relevance score.
Experimental evaluation is covered in Sec. 4, and the paper
is concluded in Sec. 5.

Figure 2: The first half of the state transition di-
agram of DCM. Numbers shown are the average
probabilities learned on the experimental data.

2. MODEL AND ALGORITHMS

The notation in this paper is similar to [7]. A query ses-
ston is initialized by a web search user when the query (or
query term) is submitted to the search engine. Query resub-
mission and reformulation is treated as independent query
sessions. Only the organic search results without ads, query
suggestions shown on the first page are considered as web
documents in the model. They appear in a ranked list where
a document in a higher position is followed by those in lower
positions. For a particular query session, documents in the
ranked list are denoted by {di,...,dn}, where M is the
length of the list. Each document d; is associated with a
document relevance rq; € [0,1]. Click models specify exami-
nation probabilities eq, ; and click probabilities cq, ; for each
position 1.

2.1 Dependent Click Model

The user behavior assumption of dependent click model is
depicted in Fig. 1. A user always examines the first position

€dy,1 = 1, (1)

and the probability of a click upon examination always equals
the document relevance as in the examination hypothesis

Cd;,i = €d;,iTi (1 <i< M) (2)
If there is no click at a position i < M, the user always con-
tinues to examine the next document d;11 as in the cascade
hypothesis. The probability of resuming the examination
after a click is A;:

€d;4q1,i+1 = (edi;i - Cdi»i) + Cdivi)\i (1 <i< M) (3)

The user behavior parameters in DCM are therefore A1, ..., Apr—1.

They are shared by all query sessions under the model.

The model can also be illustrated using a state-transition
diagram in Fig. 2. E; and C; correspond to the state of
examination and click at position ¢ respectively. The initial
state is E1 and there is an absorbing state representing the
end of the query session (not shown in the figure).

2.2 Estimation Algorithm

We follow the general procedure of maximum-likelihood
estimation. The log-likelihood for a query session whose
last clicked position is [

-1
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If there is no click in this session, then the log-likelihood is
. M
simply £ =37 log(1 —rg,).

Here we introduce an efficient learning algorithm which
maximizes the lower bound of log-likelihood in Eq. 5. Given
a query term, we keep the following three counts for each of
its document d:

e C¢: the number of query sessions d appears before the
last clicked position and is not clicked;

e C¢: the number of query sessions d appears before the
last clicked position and is clicked;

e C¢: the number of query sessions d is the last clicked
document.

Then the document relevance estimate is
Cs +Cf

=2 6
Ci+Cd +Cf ©)

Td
For more robust estimation, we add 1 to the numerator and
add 2 to the denominator for each document as pseudo-
counts to provide some smoothing.
Similarly we keep three global counts for each position &

Cs

Ni= 2
Cy+Ci

(I<i< M) (7

Therefore we need to keep 3 counts for each query-document

pair of interest, and a total of 3M counts for estimating the
user behavior parameters. To collect these counting statis-
tics, we only need a single pass through the log data. And
when new logs flow in, we similarly update the counts and
create additional ones for every new query-document pair
when necessary.

2.3 ldentifying User Goals

To classify each query term into one of the two general
categories of navigational queries and informational queries,
we first compute the number of clicks on each position and
sort them in descending order to obtain a click vector C' =
{c1,...,cm}. This vector characterizes how user clicks dis-
tribute over positions. We also record the time elapsed in
the query session before the first click happens. Following a
similar approach as in [11], we can derive a single numeric
feature based on these statistics and define a cut-off thresh-
old. In particular, we propose and implement the following
metrics:

M e, . C . .
e MeanClik: 21%1’7 the mean of click distribution.
i=1 i

o MedClk: min{m|) . ci > >, ci}, the median of
click distribution.

e AvgClk: the average number of clicks per query session.

e MedTime: the median of time (in second) spent before
the first click.

For every metric above, if the value is less or equal than
the threshold, then the query term is identified as a naviga-
tional query, otherwise, it belongs to the set of informational
queries. The cut-off can be set empirically to optimize the
evaluation score on the training set.

After we have identified the user goals for each query,
we are ready to fit two DCMs on the click log. The only
change that need to be made is that we have to keep two
sets of global counts for estimating user behavior parame-
ters, and update the counts according to the type of query
term. When we compute the log-likelihood and other sum-
mary statistics on the test set, our choice of user behavior
parameters also depend on whether the query is navigational
or informational.

3. SEARCH RELEVANCE SCORE

Given the learned document relevance and user behavior
parameters, the examination probabilities for each position
(1 << M) can be derived from Egs. 1~3 in Sec. 2.1:

i—1

€d; i = H (1 —7r4; + )\dej)- (8)

j=1

The search relevance score (SRS) is defined as the expected
examined document relevance, i.e., the average document
relevance weighted by the examination probabilities:
M M
SRS — Zi:l €d; il _ Zi:l Cd;,i (9)
Zij\i1 €d; i 21{1 €d;,i

The computation above obtains the SRS for a particular
query session. The score can also be aggregated for each
query term by adding together the numerators (click prob-
abilities) and denominators (examination probabilities) in
Eq. 9 for all its query sessions respectively and doing a di-
vision. Similar aggregation procedure could be applied over
all query terms to obtain the search engine score.

Other interesting summary statistics can also computed
under DCM, for example, the expected last examined posi-
tion, also known as examination depth, is given by

S M e, ira, (1= Xi) + Meay, m

Zf\ifl ed;,itd; (1 — i) + edpr,m
(10)

Examination Depth =

4. EXPERIMENT

The data set comes from the MSN 2006 RFP data. Usu-
ally each search result page contains 10 documents. Query
sessions with clicks after the 10th position and with less than
10 documents listed are discarded. Also, only query sessions
with at least one click are kept for better data quality since
clicks on ads and query suggestions are not logged in the
data. For each query term, we order its query sessions by
time and split them equally into the training set and the test
set. The query frequency has to be at least 3 in both sets.
After these preprocessing, there are 121,179 distinct query
terms. The training set contains 1.52 million query sessions,
and the test set contains 1.21 million query sessions, with
statistics summarized in Table 1.

In this query log, we don’t know the identity of the doc-
ument when it is in the search result and it is not clicked,
therefore we only compute the relevance of each position as



Table 1: A Summary of the Test Data Set.

Query Freq | # Terms # Sessions Avg # Click
3~9 74,649 329,567 (25.3%) 1.281
10~31 15,072 242,073 (18.6%) 1.233
32~99 3,871 203,805 (15.7%) 1.175
100~316 1,072 179,975 (13.8%) 1.117
317~999 298 156,839 (12.1%) 1.091
>1000 83 188,169 (14.5%) 1.064

Table 2: Comparison of Different Approaches of Tai-
loring Click Models to User Goals. Percentage of
navigational queries is shown in the second column.
Approach | Cut-off LL
MedClk 1 -1.6804(4.0%)
MeanClk 2.0 -1.6826(3.7%)
AvgNClk 1.2 -1.6901(3.0%)
MedTime 6.0 -1.6948(2.5%)
Baseline N/A -1.7192

Perplexity
1.2303(1.3%)
1.2306(1.2%)
1.2308(1.1%)
1.2315(0.8%)
1.2333

well as the user behavior parameters during model train-
ing. The running time for model training is 150 seconds
on a UNIX server with eight 3.0GHz cores and 16GB main
memory.

We compare the average log-likelihood and perplexity re-
sults on the test data to measure model fitness. Log-likelihood
(LL) is defined as the log probability of observed click events
under the learned click model. The optimal LL value is 0
and the improvement of ¢1 over ¢ is reported as (exp({1 —
l2) — 1) x 100%. Perplexity is defined to capture click pre-
diction quality for each position in a query session indepen-
dently. Perplexity p; = 27 (Cilogzait(1=Ci)loga(1=0:)) if (7 is
the actual binary click event as position ¢ and ¢; is the model
prediction. The optimal value is 1 and the improvement of
perplexity value p1 over p2 is reported as (p2 —p1)/(p2 —1) X
100%. Note that average perplexity values are computed us-
ing geometric mean since it is not in log scale and smaller
perplexity value indicates higher prediction quality.

Table 2 lists the evaluation results. Median of click distri-
bution, as a robust statistics, is the best measure in fitting
two click models, and leads to a 4% improvement over the
baseline in log-likelihood, as well as a 1.3% better perplex-
ity values. The larger margin in log-likelihood is expected
because multiple models could better capture click depen-
dencies for heterogenous user browsing and click patterns,
whereas the perplexity for individual positions, especially
the top few, will be less sensitive.

Figure 3 depicts the clear difference in the examination
and click distribution derived by the two models under the
MedClk approach. Probability curves of the navigational
model are much steeper than its informational counterparts,
and the decreasing rates are largest at top positions, whereas
the click probability curve of the informational model im-
ply a close-to-exponential decay with a factor of 0.75. For
each click model, the gap between its examination and click
curves in Fig. 3 correspond to the average document rele-
vance for each position. So we expect that top-ranked search
results in navigational queries are generally more relevant
than informational queries, which leads to higher search rel-
evance scores. And in fact users usually have a higher ex-
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Figure 3: Examination and click probability distri-
butions over the top 10 positions for informational
queries and navigational queries.
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Figure 4: Average Search Relevance Score (SRS) for
navigational queries and informational queries.

pectation on the relevance of navigational queries than in-
formational queries. A few additional summary statistics for
the two models (“Nav” and “Inf” in short) are as follows:

Summary Statistics Nav | Inf

Expected First Clicked Position | 1.34 | 2.46
Expected Last Clicked Position | 1.47 | 3.52
Examination Depth 1.48 | 3.61

We compute search relevance scores using Eq. 9 for each
query term and plot how these scores vary with query fre-
quency (the number of corresponding query sessions) in Fig. 4.
For each query type, solid lines represent all query terms
except the 100 most frequent ones, and dash lines indicate
that data points are limited. Both curves are smoothed with
Gaussian kernels. As expected, navigational queries gener-
ally have higher scores than informational queries. It is in-
teresting to see that trends for two types of queries are in
opposite direction. Most popular navigation queries achieve



best quality scores, partly because the search engine might
tweak their rankings for some head queries to place the best
document on the top. On the other hand, SRS curve for
informational queries goes down as query terms are more
popular. There is not an easy answer to explain this effect
and it might be interesting to investigate further and test
some conjectures. For example, there might be potential bi-
ases introduced by query resubmission (as suggested by one
of our anonymous reviewers) or by the fraction of ignored
no-click sessions.

5. CONCLUSION AND DISCUSSION

In this study, we show that by tailoring click models to
user goals, better performance can be achieved by fitting
different click models for navigational queries and informa-
tional queries. Moreover, we provide a quantitative com-
parison of user behavior using summary statistics derived
from click models learned. And we propose the search rele-
vance score to evaluate search engine performance at differ-
ent granularity levels.

We also tested a number of alternatives in our experi-
ments. For example, we tried to combine the user goal clas-
sification of query terms from different metrics by simple
voting, however, the MedClk method remains the winner.
We also implemented soft query clustering using mixture of
Gaussian for MeanClk and AvgClk features, but this did not
lead to better log-likelihood. It is also possible to fit com-
pletely different click models (e.g., a UBM and a DCM) for
different query categories, but we suspect that the results
would not outperform the best of the two.

A hidden assumption in the derivation of SRS in Sec. 3
is that document impression, the identity of all documents
in the search result, is already known. And examination
probabilities are computed a priori without knowledge of the
click events. This represents the average user behavior under
the particular click model. Therefore, if we want to derive
SRS for a particular user, a better alternative is to compute
the posterior probabilities given the actual click sequences.
This type of scores could be helpful for personalized search.

We also plan to carry out similar studies on other click
models. In DCM, user behavior parameters do not come
into relevance estimation, i.e., no A appears in Eq. 6. But
this observation can not be generalized to other click mod-
els such as user browsing models. Since document relevance
generally depends on user behavior parameters, we expect
that tailoring these click models to user goals could also pro-
vide more accurate relevance feedbacks. Another direction
to go is studying potential applications of SRS. In partic-
ular, we could update the score using real-time click logs
and plot a SRS curve over time. Anomalies in the aver-
age quality may be used to trigger a bug report for further
investigation.
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