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Abstract

In a virtualized environment, device drivers are often mm i
side a virtual machine (VM) rather than in the hypervisor,

1. Introduction

In a virtualized environment it is desirable, for reasons of
safety and reduction in software engineering effort, to run

for reasons of safety and reduction in software engineering device drivers inside a virtual machine (VM) rather than in

effort. Unfortunately, this approach results in poor perfo

the hypervisor. By running the drivers in a VM, a bug in the

mance for I/O-intensive devices such as network cards. Thedriver does not compromise the hypervisor or other VMs.

alternative approach of running device drivers directlyhia
hypervisor yields better performance, but results in tsslo
of safety guarantees for the hypervisor and incurs addition
software engineering costs.

In this paper we present TwinDrivers, a framework which
allows us tosemi-automaticallycreate safe and efficient
hypervisor drivers from guest OS drivers. The hypervisor
driver runs directly in the hypervisor, but its data resides
completely in the driver VM address spaceSaftware Vir-
tual Memorymechanism allows the driver to access its VM
data efficiently from the hypervisor running in any guest

context, and also protects the hypervisor from invalid mem-

ory accesses from the driver. Aupcall mechanism allows
the hypervisor to largely reuse the driver support infrastr
ture present in the VM. The TwinDriver system thus com-

Furthermore, it avoids having to (re)implement the entire
driver support infrastructure in the hypervisor. Insteade
can simply re-use the driver support infrastructure alyead
present in the guest operating system. This strategy is used
in the Xen virtual machine environment [3] and in L4 [10].
The drawback of this approach is loss of performance.
Since the device driver is located in a different driver VM,
and thus a different address space than the guest VM, ex-
tra context switching overhead is incurred in invoking the
device driver and in interrupt handling. Thus, for instance
it has been reported that network performance in Xen is
a factor of 3 to 4 lower than native Linux performance
[11, 12, 15].
The alternative to this approach is to run the device driver
directly in the hypervisor. This approach gives better perf

bines most of the performance benefits of hypervisor-basedmance because it avoids context switches for calls between
driver approaches with the safety and software engineeringthe hypervisor driver and the guest VM. Unfortunately, this

benefits of VM-based driver approaches.
Using the TwinDrivers hypervisor driver, we are able to

approach requires the entire driver and its support libtary
be either developed anew for the hypervisor, or to be ported

improve the guest domain networking throughput in Xen by from an existing operating system. Both approaches incur a

a factor of 2.4 for transmit workloads, and 2.1 for receive

significant software development effort. In addition, ths

workloads, both in CPU-scaled units, and achieve close to proach also leaves the hypervisor vulnerable to bugs in the

64-67% of native Linux throughput.

Categoriesand Subject Descriptors  D.4.8 [Operating Sys-
temg§: Performance

General Terms Performance, Measurement
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device driver.

This paper tackles the tradeoff between performance on
the one hand and safety and reduction in coding effort on
the other hand. Our goal is to combine the performance
benefits of the hypervisor-based driver approach with the
safety and software engineering benefits of the VM-based
driver approach.

We take a driver developed for a guest operating system,
such as Linux, and waemi-automaticallyproduce from
it, by binary rewriting, a driver thaefficiently and safely
runs in the hypervisor. At runtime, two instances of the
driver are run at the same time: The original one, which
we call the VM instance, runs in a VM. The derived one,



which we call the hypervisor instance, runs in the hypemviso  (dom0), which provides device 1/O services for guest do-
The hypervisor instance takes care of performance-ckitica mains (guest VMs). Figure 1 shows a high-level picture of
operations of the device driver. For instance, for a network the network driver architecture in Xen. Guest domains are
card driver, this includes transmitting and receiving pask provided with afrontendvirtual network interface, which is
The VM instance takes care of the other operations such asconnected to the physical interface (NIC) driver in the driv
device configuration, management, error handling, etc. domain through a networkridge and abackendinterface.
Although there are two separate instances of the driver Transmit requests from the guest domain and NIC interrupts
running, there is only a single instance of the driver data, result in switches to the driver domain to invoke the device
residing in the VM address space. The hypervisor instance driver. More details of the Xen architecture can be found in
accesses only the driver and VM data structures in the VM, [7].
and does not access any hypervisor data structures. Frem thi
simple rule derives theafetyof the approach: The hypervi- Driver Domain Guest Domain
sor instance cannot access, and therefore cannot coreipt th
hypervisor data structures. Bridge
Although the driver data is located in the VM address
space, the hypervisor instance can access this data while ru / \
Bacl

ning in any guest VM context by using an address translation
mechanism calle§oftware Virtual MemorySVM). This al-
lows the hypervisor to invoke its driver instance while run-
ning in any guest context without switching address spaces. 1/0 Channel
This is the key to achieving goqeerformance T

Keeping only a single copy of the data in the VM address Physical NIC '
space also allows the hypervisor instance to invoke thedriv Xen VMM
support routines in the VM for operations on these data
structures. This is done through apcall mechanism from
the hypervisor to the VM. Thepcall approach avoids the
implementation in the hypervisor of the entire set of driver
support routines. Instead, the hypervisor only implements
small set of performance-critical support routines nedded
achieve good performance. This is the key to reducing the
software engineering effotd support the hypervisor driver
instance.

We have implemented the ideas described above in the
TwinDrivers system. Our implementation is targeted at the
Xen hypervisor and Linux network drivers, but we believe
the ideas are generally applicable. We have used our binary,
rewriting system to twin the Intel e1000 driver. The Twin-
Drivers system allows us to improve the Xen guest domain
networking throughput in CPU-scaled units by a factor of
2.4 for transmit workloads, and by a factor of 2.1 for re-
ceive workloads. The resulting throughput is also within 64
to 67% of native Linux throughput. o

The outline of the rest of this paper is as follows. Sec- 3. Principles
tion 2 provides some background on the Xen 1/O system. We discuss the design and principles underlying the Twin-
Section 3 presents the principles underlying the TwinDidve ~ Drivers approach in the context of the Xen VMM, using the
approach. Section 4 presents in more detail the design of theexample of a network interface card driver. Figure 2 shows
TwinDrivers approach, and Section 5 presents our current the overall architecture of the TwinDrivers approach. Twin
implementation. Section 6 presents our performance esult Drivers uses two driver instances, one running in dom0 and

for network 1/0. Section 7 discussed related work. Section 8 One running in the hypervisor, but only one instance of the
presents our conclusions. driver data, residing in domO.

‘end Interface| Virtual Interface

NIC Driver

Figure 1: Xen I/O Architecture

The ‘hosted’ driver architecture incurs a significant per-
formance overhead for guest domains, which has been stud-
ied in [15, 21, 12]. The biggest overhead is incurred due to
the frequent context switches between the driver domain and
guest domains for driver invocation and interrupt handling
which results in increased TLB and cache misses [12]. There
are additional overheads as well, incurred because of the ex
pensive bridging andrant tableoperations in the driver do-
main [15]. The overall performance impact of these over-
heads is a reduction in the network performance of Xen guest
domains by a factor of 3-4 [11, 15].

In contrast, in a hypervisor-based driver model, the device
driver executes directly in the hypervisor, and thus avties
context switches on device invocation.

3.1 Two Driver Instances

2. Background on Xen I/O We take a device driver from the Linux driver domain, and
The Xen VMM uses the so called ‘*hosted’ virtual machine rewrite the binary to produce a driver that can execute in the
model in which device drivers are run in a ‘driver domain’ hypervisor. At runtime, two instances of the driver are rtin a
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Figure 2: TwinDrivers Architecture

the same time: the original VM driver instance runs in domO,
and the derived hypervisor driver runs in the hypervisor.
We first load the VM driver into the domO kernel where it
performs the initialization of the NIC and the driver data
structures. After the initialization is complete, we lodut
hypervisor driver into the Xen hypervisor. TwinDrivers gse
this driver for performing the performance-critical sermia
receive operations on the NIC.

We develop a new paravirtual driver for guest domains,
which interfaces with the Xen hypervisor through a hyper-
call interface and allows it to invoke the hypervisor driter
transmit and receive packets on its behalf. No context $witc
is incurred in invoking the hypervisor driver from the guest
context.

The VM driver instance continues to run in domO to pro-
vide support for all other NIC operations which are not per-
formance critical. These include reconfiguring NIC parame-
ters usingethtool-like tools, doing periodic error checks
on the NIC using timers, collecting and reporting device
statistics, etc. Keeping the VM driver instance running in
the driver domain for these functions allows us to restrict
the hypervisor interface to the driver to just the transmi a
receive functions, and avoids the need to port existing-user
space tools (such asthtool) to use the new hypervisor
driver instead of the VM driver.

3.2 Singlelnstance of Driver Data Structures

In the TwinDrivers architecture, although there are two in-
stances of the driver running, there is only a single instanc

into the hypervisor driver during binary rewriting of the VM
driver.

The SVM mechanism is the key to combiniafficiency
and safetyin the hypervisor driver. By allowing the hy-
pervisor instance to access the domO driver data structures
from any guest domain context, expensive context switches
are avoided on driver invocation, and higlkerformances
achieved. By restricting all memory accesses from the hyper
visor instance to the domO address spaedetyis achieved
and the hypervisor is protected from memory corruption
bugs in the driver.

A third advantage of keeping a single copy of all data in
domO address space is that it allows the hypervisor instance
to reuse driver support routines present in the domO kernel.
The driver support routines form a large body of code in the
VM (Linux) kernel, and it requires significant engineering
effort to provide identical support routines in the Xen hgpe
visor in order to run the domO drivers [10].

However, since the driver data resides in the domO ad-
dress space, the hypervisor instance can reuse the drjyer su
port routines in the VM using ampcall mechanism. Thap-
call mechanism allows the hypervisor to avoid having to im-
plement the majority of the driver support routines which ar
invoked only infrequently by the driver. Instead, the hygper
sor implements only a small set of performance-criticalsup
port routines which are needed for good performance. The
upcall mechanism thus allows us to reduce #uodtware en-
gineering efforheeded to support the driver while retaining
the performance benefits.

We now describe these mechanisms in more detail in the
following sections.

4. Detailed Design
4.1 Software Virtual Memory

Software Virtual Memory (SVM) is the key mechanism that
enables the hypervisor driver instance to access the driver
data residing in dom0 address space. SVM uses a combina-
tion of runtime virtual address translation and page remap-
ping to allow memory accesses to the dom0 address space
from the hypervisor without a context switch, and to prevent
invalid access to the hypervisor address space.

At the core of the SVM mechanism isSoftware trans-
lation table (st1b) which maps from virtual memory page
addresses in domO address spacaappedvirtual page ad-
dresses in the hypervisor address space. mhppedpage
address in artlb entry is a hypervisor page which maps

of the driver data structures residing in the domO addressto the same physical page as the corresponding domO0 page
space. The hypervisor driver instance accesses the sharedddress.

domO driver data structures for all its operations.
We introduce a new mechanism call8dftware Virtual
Memory (SVM) that allows the hypervisor instance to ac-

To produce the hypervisor driver, every instruction which
references memory locations in the original VM driver is
rewritten to make use of SVM to perform the memory access

cess the domO data structures from any guest domain ad-{except for stack-relative memory references). Thus, &t ru
dress space. Software Virtual Memory is a runtime addresstime, every memory access to dom0 address space from the

translation and protection mechanism which is incorparate

hypervisor driver instance is first translated using héb



page. It then fills in thest1b table with the new translation

movl #(r_sre), kr_dest entry. Subsequent accesses to this dom0 page are translated
directly from thestl1b table.? Entries in thestlb table
Figure 3: Indirect memory reference in original code are thus dynamically filled in as memory accesses to dom0

address space are made by the hypervisor driver instance.

' leal %(r_src), %r1 In our implementation, we use antlb hashtable with 4096

2. movl Yril, D) entries, mapping up to 16MB of domO virtual memory.

3. andl Oxfff££000, %ril The fast path of the SVM-based memory access replaces

4. movl %hri, %r3 one memory instruction in the original code with ten instruc

5. andl 0xfff000, hri tions in the rewritten codé.While this may seem prohibitive

6. shrl $9, hri at first, in practice its impact on overall performance is muc

7. cupl stlb (%rl), hr3 smaller. Firstly, in a typical driver, only roughly 25% ofeth

8. jne -L_slow_path . instructions reference memory, and are rewritten to use SVM

9. xorl 4+stlb(hrl), hr2 (we measured this for some network drivers). Secondly, in a

10. movl (hr2), hr_dest

typical network-intensive workload, the device drivereifs
incurs roughly 10-15% of the total overhead. As we show in
Figure 4: Rewritten code using SVM section 6, the overall performance impact of using an SVM-
based device driver is quite small.

table into anappedddress, and the memory access is made The stlb based SVM Memory access 1S not used for
stack-relative memory accesses (i.e., it is used only twstra

using the translated address. Attempts to access the hyper:

visor address space by the driver are detected and preventelft€ heap memory access and not stack memory access).
because thet1b table does not contain valid mappings for This is because the hypervisor driver instance uses a gepara

hypervisor addresses. On such an illegal memory access bftaCk of it_s own "? the hypervisor address space, and over-
the driver, it is aborted. flow on this stack is prevented by the use of guard pages.

Figures 3 and 4 give an example of how rewriting works,
using an example (figure 3) of an indirect memory reference
instruction which loads the value at the memory location The hypervisor uses the upcall mechanism to reuse the
in r_src into the registerr_dest. Figure 4 shows how the  driver support routines present in dom0. An upcall is a syn-
rewritten code translates the address usingsttb table chronous, cross-address-space function invocation and re
and uses the translated address to load the value. turn mechanism. Upcalls are used by the hypervisor to link

The st1b table acts as a hashtable storing translations infrequently called support routines from the driver to the
from domO virtual page addresses to thappediirtual page corresponding routines in the driver VM using special stub
addresses in the hypervisor. In lines 1 to 6, the lower 12 bits routines in the hypervisor. On a call to a stub routine by the
of the domO page address (for a 32 bit System) are used as alh]yperVisor driver, the stub routine first saves the pararBete
index into thest1b table. In line 7, we check if the indexed  Of the call and then initiates arpcallinto the driver domain
st1b entry for the domO page is valid, i.e., if the page has by sending a special synchronous virtual interrupt to domO.
been previous|y mapped into the hypervisor address Spacéf the Support routine is invoked while the driver is running

4.2 Upcallsfrom the hypervisor into domO

(and there are no hash collisions). If so, #b entry is in a guest domain context, a synchronous context switch to
used to compute the final translated address and this addresd§0omo is done first. Additionally, before the virtual inteptu
is used for the memory reference (|ines 9 and 10) is sent to domO, the stub routine also switches from the hy'

If the st1b translation entry for the virtual address ac- Pervisor stack to an ‘upcall’ stack. This is because, in the
cessed is not valid (line 8), control is transferred to a slow Xen hypervisor, the state of the hypervisor stack is notdave
path lookup routine. If thet1b lookup failed because of a  On transition to the guest domain.
hash collision, the slow-path routine looks up a hash chain ~ An upcall handler is registered in the driver domain to
and fills in the correct mapped virtual page address. receive Upca” requeStS via SynChronOUS virtual inteﬂ'upt

If, however, the lookup failed because the virtual address recovers the upcall parameters, sets up the stack anderegist
was being accessed for the first time, the slow-path routine Parameters, and then invokes the driver support routine. On
checks the permissions of the memory access and, if the
access is permitted (i.e., the memory page belongs to domOZActuaIIy, two consecutive domO pages are mapped into therwigor for

dd . h h . f h eachstlb ‘miss’. This is because the Intel instruction set permitaligmed
address space), it creates a new hypervisor mapping for t ememory accesses, SO a memory access may straddle two pages.

domoO ?ddress' It aIIQcates anew hyperwspr virtual page, an 3 Additional scratch registers are needed for computing thiess transla-
maps it to the physical page corresponding to the accessedion, which may require spilling some registers to memong ean increase
the length of the fast path. However, we avoid the cost ofisgitegisters
1We discuss how the instruction rewriting works for more cdiogied x86 most of the time by doing a register liveness analysis tordete the set of
instructions in section 5. free registers available at each instruction.




return from the driver support routine, the upcall handler Routine name Description
saves the return values of the routine and ‘returns’ to thie st __netdevalloc_skb allocate skbuffs
routine via a hypercall. The stub routine eventually resurn dev kfree skb any free skbuffs
to the hypervisor driver with the support routine’s return netif_rx receive network packets
values (possibly after doing another domain switch back to dmamapsingle map DMA buffer
the guest domain). dmamappage map DMA page

For the upcall mechanism to work correctly, the environ- dmaunmapsingle unmap DMA buffer
ment in which the driver support routine is called from the dmaunmappage unmap DMA page
upcall handler in domO must be identical to the environ- _spin.trylock acquire spinlock
ment in which it is called from the hypervisor driver. The  _spin.unlockirgrestore| release spinlock, restore interrupts
call environment of the routine comprises of three compo- eth.typetrans process MAC header

nents: the heap, the stack and the registers. The heap envi-

ronment is identical in the two invocations because there is Table 1: Functions called frequently from the e1000 network
a single driver data instance which resides in dom0 addressdriver

space. The register values for the two calls are made iden-
tical by the upcall mechanism. Although the stack parame- . , ,
ters passed are identical in the two cases, the stack addresBrévent other routines in the domo kernel from accessing
is different. This could be problematic, for instance, iéth these buffers.

hypervisor driver passes addresses of its stack .varialsles ay4 Synchronization

parameters to the domO support routines. In this case, the )
domO support routine would try to dereference a hypervi- Con_current access to th(_a shared d(_a\ta instance fro_m the hy-
sor driver stack address and would cause a protection fault.Pervisor and VM driver instances introduces the issue of
One possible solution would be to use instruction emulation Synchronization. Fortunately, this is easily resolvedthié

to trap and emulate the access from the dom0 support rou-0riginal driver is compiled for an SMP environment, then it
tine to the hypervisor driver stack, after making approeria already uses the correct synch.ronllzatlon pnmmves t@gsc
validity checks. In practice, since it is uncommon to pass shared data. These synchro_mzatlo_n operations continue to
stack variables by reference, we have not encountered theVork correctly for the hypervisor driver instance sinceythe
stack dereference problem for any upcall to driver support operate on atomic synchronization variables which are also

routines from network drivers. Thus, currently we have not Shared between the hypervisor and VM driver.
implemented the proposed solution. Disabling interrupts is a common synchronization mech-

anism used when sharing data structures between the de-
vice driver and the operating system. Since the original VM
4.3 Support routinesin the hypervisor driver runs inside domoO, the domO kernel masks and un-
Upcalls can be expensive because they potentially involve amasks avirtual interrupt flag instead of the real CPU in-
context switch and transition to the driver domain. To avoid terrupt flag, when it wants to prevent the driver interrupt
the cost of an upcall on invocation of every driver support handler from running. Thus, the hypervisor must respect the
routine called by the driver, the hypervisor provides imple Vvirtual interruptflag of the domO0 kernel before invoking the
mentations of some support routines which are frequently interrupt handler of the hypervisor driver. This is ensulogd
called during the execution of performance-critical parts invoking the hypervisor driver interrupt handler routimed
the driver. For a typical driver, the set of such routines is a schedulable ‘softirg’ context, instead of directly in timéer-
small fraction of the total number of support routines thrata  rupt context.
called by the driver. . i )
For instance, table 1 lists the Linux driver support rou- 45 Safety of Derived Hypervisor Driver
tines that are called during error-free execution of thagra  The SVM mechanism ensures memory safety of the derived
mit and receive routines of the Intel e1000 driver. There are hypervisor driver. Since every heap access from the hyper-
only 10 such functions, compared to the 97 routines called visor driver is translated before the access is made, ivali

by the e1000 driver for all its operations. accesses to the hypervisor address space, or to other domain
The support routines which are implemented in the hy- memory, are detected and prevented by SVM.
pervisor make use of thetlb translation table explic- Although the derived hypervisor driver is secure against

itly while accessing driver data in domO address space. the most common kind of driver bugs, namely memory cor-
For support routines that need to allocate and free mem-ruption bugs, it still suffers from some safety issues that a
ory in the dom0 heap, such asnetdev_alloc_skb and already present in the current Xen driver domain architec-
dev kfree_skb_any, we use a preallocated pool of buffers ture. Specifically, since the network driver has full, privi
from domO heap which are reserved for use by the hyper- leged access to the network interface, a buggy or malicious
visor routines. We use a simple reference counter trick to driver can set up illegal DMA transfers that allow it to read



from or write to memory regions it is not allowed to access. the VM driver, either by disassembling the VM driver bi-
This is a safety violation that already exists with the cotre  nary, or, if the driver source is available, by directly com-
Xen driver domain model, where the domO driver has priv- piling the driver into assembly. Since we work with Linux
ileged access to the NIC. A complete solution to this prob- drivers, which are available in source form, we take the lat-
lem requires the use of an IOMMU that can be programmed ter approach.

to restrict the memory regions accessible from the network  This VM driver assembler file is fed into an assembler-
card. level rewriting tool, which generates the hypervisor assem

There are some additional unsafe situations that are notbler file as output. Conceptually, assembler-level rengiti

currently handled in the TwinDrivers framework. However, is equivalent to binary rewriting, although working at tre a
these can be handled using existing mechanisms. We desembly level significantly simplifies the implementation of

scribe some of these below. parsing and code generation. The hypervisor assembler file
] generated is eventually compiled into the hypervisor drive
45.1 Stack Corruption binary.

Currently, the SVM memory protection mechanism is ap-  The rewriting tool performs a set of transformations to
plied only to heap accesses, and not for stack-relative ac-incorporate the SVM mechanism into the hypervisor driver.
cesses. This is done because the hypervisor driver does noFor memory reference instructions in the VM driver, the
require address translation in order to access its hypmrvis transformation applied is described in section 4.1. We now
stack. However, this mechanism is not sufficient to prevent describe the transformations for other x86 instructiorthé
stack corruption errors. For instance, a buffer overflovoerr VM driver that reference memory in more complex ways.

in the hypervisor driver can cause the driver to return to an

invalid address, which is a security violation. 5.1.1 Stringinstructions

, The St§Ck corrupthn problgm can be addressed by US"The x86 instruction set contains a number of ‘string’ instru
ing SVM-like mechanisms to insert checks in the hypervi- tions that can be used to perform string operations on blocks

sor driver to ensure the safety of stack-relative memory ac- of contiguous data in memory, such as copying, string com-

cesses. These checks are r_equwed only f_orthose memory acbarison, etc. Examples of such instructions inclute's,
cesses that cannot be statically determined to be safe. For

) . “cmps, lods, stos, scas, etc. These instructions take as
Instance, accesses to _constant .o.ffsets from the staclepoint operands the source and/or destination memory address, and
can b_e potentially statically verified. For the .small num_ber an implicit length operand. For instance, thep; movs in-

of \_/a_rlable-offset accesses from t_he stack pointer, _acmhll struction copies:cx bytes of data from source addressi
validity checks would need to be inserted. Alternativehg t

bl : | flow | X 50 b ved usi to destination addressii.
problem of control flow integrity can also be solved USING  \yhen translating such instructions to use the SVM mech-
techniques similar to those used in XFI [5].

anism, it is not sufficient to simply translate the source and
destination address operands. This is because the string
. operands of these instructions may span multiple pages,
The TwinDrivers framework does not currently handle non- | hereas thest1b translations for the string addresses may

memory related errors in the hypervisor driver. Forins@nc 4t hecessarily map the contiguous domO pages containing
if the hypervisor driver goes into a deadlock or an infinite o string to contiguous hypervisor pages.

loop, it can prevent the hypervisor from regaining control. g ‘for translating string instructions, we generateecod
Such resource hoarding bugs can be prevented by mechaghat |o0ps over the entire string in chunks of page lengtt, an
nisms similar to those used, for instance, in VINO [16]. The ¢ the string instruction on the individual string churtkatt

VINO extensible kernel makes use of timeouts to limit the are guaranteed to lie within a single page. Within the loop

duration of execution of the extension code. Similar mecha- o4y the regular address translation mechanism is used for
nisms can be used to limit the execution time of the hypervi- o starting string source and destination addresses.
sor driver.

Another category of bugs that is not currently handled
. . . . e 512
is the use of privileged instructions, such as modifying the _ _ _ . ,
page tables to corrupt the system. These kinds of bugs can! "€ x86 instruction set allows routines to be ‘indirectly
be detected and prevented by static inspection of the drivercalled by specifying the address of the routine as a register

45.2 Non-memory related errors

Indirect calls

code during binary translation. memory operand. For example, the instructioall %eax’
makes an indirect call to the routine whose address is given
5. Implementation in the eax register. Since all data is shared between the

hypervisor driver and the VM driver (including the values of
function pointers), the address of the indirectly calleatime
The hypervisor driver is created by binary rewriting of the in the hypervisor driver actually points to the routine i th
VM driver. In the first step, we produce the assembly file of VM driver.

5.1 Deriving thehypervisor driver



Thus, for indirect calls, the address of the called VM in the hypervisor driver. It needs to know the driver entry
driver routine is first translated to the address of the corre points for the transmit and interrupt routines, and alsoesom
sponding hypervisor driver routine, and then the actudl cal additional parameters that the driver expects to be passed
is made. Similar to thet1b table for memory addresses, on each invocation (such as a pointer to the Limgxdev
an stlb_call table caches translations from VM-driver structure for the transmit routine). This information ispad
routine addresses to hypervisor-driver routine addresses to the hypervisor from the dom0 process which initiates the
In order to translate from VM-driver routine addresses to driver loading.
hypervisor-driver routine addresses the first time, we need
to know the correspondence between the original driver's 9-3 Invoking the hypervisor driver
code addresses and the translated driver's code addresseThe hypervisor transmits and receives packets on behalf of
Although this information can be generated while creating the guest domains by invoking the transmit and interrupt
the hypervisor driver from the VM driver, overall, this ap- handler routines of the hypervisor driver respectivelyeTh

proach is quite cumbersome. guest domains interface with the hypervisor driver using a
We reduce the complexity of translating from the VM  new paravirtualized network driver.
driver's addresses to the hypervisor driver's addressessby For all invocations of the hypervisor driver, all paramster

ing the same rewritten driver for both the VM driver instance passed to the driver must be valid heap addresses in dom0
and hypervisor driver instance. For running the rewritten address space. Thus, all packet buffesis buff structures
driver as the VM driver, thest1b table for the VM driver in Linux) allocated to the hypervisor driver reside in dom0
instance is filled with identify mappings. Thus, the VM address space, and are also persistently mapped into hyper-
driver instance continues to use its original data addeesse visor address space using telb mapping mechanism.
and functions correctly as before, except that it runs ke litt For transmit operations from guest domains, the hypervi-
slower. sor acquires a pre-allocate# _buff in domO address space,
Using this approach, the code addresses in the VM driver copies the header of the guest packet (up to the first 96
and the hypervisor driver always differ by a constant offset bytes) into thesk_buff header, and chains together the rest
for all routines, and thus address translations between theof the guest packet using the page fragment pointers in the
two can be done in a simple manner. sk_buff (using pre-allocated page frames from dom0). It
then invokes the hypervisor driver transmit routine witk th
domOsk_buff parameter.

The rewritten h_ypervisor_driver is loaded into the Xen ad- The DMA transfers set up by the hypervisor driver work
dress space using a modified ELF loader. correctly because the hypervisor implementation of the
During loading, all data references in the hypervisor in- pya mapping functionsdma_map_single anddma_map_page

stance (i.e., the drivers data symbols and the ‘imported’ (atyrn the correct guest machine page addreéses.

Linux data symbols) are resolved to the corresponding sym-  por receive operations, the hypervisor calls the driver in-
bol addresses of the driver and Linux variables in the dom0 terrupt routine on receiving an interrupt from the NIC. Net-
address space. This is done with the help of the module ok packets are received by the hypervisor driver into domo
loader in the domO kernel, which saves the necessary drivergy, vuffs which are persistently mapped into the hypervi-
relocation information at the time the original driver is ggr The hypervisor demultiplexes the received packetsbas
loaded into the domO kernel. This ensures that all hyper- gp the destination MAC address, and queues the packet to
yisor driver data references point only to memory locations ipe appropriate guest domain. When the guest domain is
in domO address space. scheduled next, the hypervisor copies the packets intatgues

Hypervisor driver calls to external driver support rousne  §omain buffers, and raises a virtual interrupt to notify the
are also resolved in a special way. Calls to support routines gyest domain paravirtual driver.

which are implemented in the hypervisor itself are resolved
to the hypervisor’'s implementation. For other driver suppo 6. Evaluation

routines which are not implemented by the hypervisor, the )

driver calls are resolved to ‘stub’ routines in the hypeovis ~ 6-1  Experimental setup

A separate stub routine is provided for each unimplemented We have implemented TwinDrivers in Xen-3.2.1 (change-
driver support routine. The mapping between the stub rou- set 16485) running Linux version 2.6.18.8 in domO and in
tine number and the corresponding support routine in domO the guest domains. We evaluate the network performance
is saved by the loader. At runtime, when the stub routine of a guest domain using TwinDrivers, comparing it with
is invoked, it initiates a cross-address-space call to tre ¢

responding domO routine using thgcall mechanism de-  *Alternatively, the hypervisor makes use of thieysicalto_machinemap-
scribed in section 4.2 ping table in the domO0 kernel to map from physical page fraai¢ke skb
. o .. . . in domo to the correct machine page frames in guest domahis.\Way,

The hypervisor needs some additional information for e pma mapping driver functions can be even invoked usingallp and

actually invoking the transmit and interrupt handler roag would still work correctly.

5.2 Loadingthe hypervisor driver




the performance of an unoptimized Xen guest domain, Xen

dom0, and native Linux. We evaluate the performance for 8500 ' ' Throughput ——=

two workloads. Our first workload uses a netperf [1] like mi- 3000 b o

crobenchmark to measure the transmit and receive network 4 —

performance in guest domains. Our second workload con- g 2500 1 |

sists of a web server serving concurrent HTTP requests for =

files from a SPECweb99 [2] like file-set. Ez o000 b ]
The testbed consists of a 3.0 GHz Intel Xeon server ma- 2

chine equipped with five Intel Pro1000 Gigabit Ethernet g soo b |

cards. This machine is connected to five client machines (3.0 :

GHz Intel Xeon) equipped with one Intel Pro1000 Gigabit 2 o0 b |

Ethernet card each. é

6.2 Microbenchmark Results 900 o) fr T

The microbenchmark workload measures the maximum 0

TCP streaming throughput achievable over a small set of domU domU-twin dom0  Linux

TCP connections. In the experiments (both transmit and
receive), the server machine is connected to each client
machine using a separate TCP connection over a differ-
ent NIC. The experiment measures the maximum aggregate
TCP throughput (transmit or receive) the server can achieve
using all five NICs. CPU saturation. The performance of the TwinDrivers guest
Figures 5 and 6 show the transmit and receive perfor- domain (domU-twin) is 3902 Mb/s with full CPU saturation,
mance of a Xen guest domain using TwinDrivers (“domU- Wwhich is within 83% of the domO performance, and is within
twin”) and compare it with the performance achieved in an 64% of the native Linux performance, in CPU-scaled units.
unoptimized guest domain using standard Xen networking  The performance of the unoptimized guest domain (domU)
(“domU”), the driver domain (“dom0”), and a native Linux itself is only 1619 Mb/s at 100% CPU saturation. Thus,
system (“Linux”). For the domU-twin configuration, all 10 compared to the unoptimized guest domain, the TwinDriver
functions required for fast-path operation of the hypeswis ~ guest domain achieves a performance improvement of a fac-
driver (see table 1) were implemented in the hypervisor, and tor of 2.41.
no upcalls were made. For the receive benchmark (figure 6), the native Linux
performance is 3010 Mb/s at full CPU saturation, and the

Figure 6: Receive Performance for netperf Benchmark

6000 , , , , Xen domO0 performance is 2839 Mb/s. The performance of
Throughput —— the TwinDrivers guest domain (domU-twin) is 2022 Mb/s
5000 | S at full CPU saturation, which is roughly 71% of the domO
2 _ — performance, and close to 67% of the native Linux perfor-
= mance.
g 4000 [ The performance of the unoptimized guest domain is only
% 928 Mb/s at 100% CPU saturation. Thus, the TwinDrivers
32 3000 - S R I — guest domain improves upon the guest domain performance
£ by a factor of 2.17.
E 2000 b | Figure 7 shows the breakdown of packet processing over-
@ head for the transmit workload in the four systems. This pro-
g file was obtained with the microbenchmark running only on
o000 - [ | ] a single Gigabit NIC. Thus, the relative numbers obtained
here differ a little from the throughput results. We show the
0 CPU overhead in terms of cycles per packet incurred in four

domU domU-twin dom0  Linux categories: the dom0 kernel (dom0), the guest domain kernel
(domU), the Xen hypervisor (Xen) and the network driver

Figure 5: Transmit Performance for netperf Benchmark ~ (€1000). For the native Linux case, we show the Linux ker-

nel overhead in the domO kernel.

For the transmit benchmark (figure 5), the native Linux The unoptimized guest domain per-packet overhead is
system saturates all 5 NICs to achieve an aggregate throughmore than twice the overhead of the TwinDriver guest do-
put of 4690 Mb/s while using only 76.9% of the CPU, while main (21159 cycles/packet vs. 9972 cycles/packet). Most of
Xen domO achieves a throughput of 4683 Mb/s with full this overhead is incurred in invoking domO (8394 cycles/-
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Figure 7: CPU cycles per packet for transmit workload Figure 8: CPU cycles per packet for receive workload

packet) and in the additional hypervisor overhead for dwitc ~ FOr both the transmit and receive workloads, the overhead
ing and transferring packets between the guest and driverincurred by running a binary rewritten driver instead of a

domain [15]. The TwinDrivers guest avoids both these over- native driver is relatively small. The rewritte_n driver =N
heads by directly invoking the hypervisor driver. slower by a factor of roughly 2 to 3, but, the impact of this

Compared to native Linux, both the dom0 and the Twin- slowdown on the overall overhead of the guest domain is

Drivers guest incur the virtualization overhead of runnimg ~ "elatively low, less than 15%.
top of a hypervisor (1184 cycles/packet for dom0, and 1726
cycles/packet for domU-twin). In the TwinDrivers configu- Web Server Workload

ration, there is additional overhead relative to dom0 in two We now compare the performance of the guest domain using
main areas: the overhead of running a rewritten driver in- TwinDrivers with the original guest domain, domO and a
stead of native driver (2218 cycles/packet vs. 960 cycles/- native Linux system, for a web server workload. In this
packet), and the additional hypervisor overhead of the hype experiment, the server machine runs Kmotweb server, a
call interface between the paravirtual driver and the hyper bare-bones, lightweight web server developed as part of the
visor driver. Overall, the TwinDrivers guest incurs roughl  Capriccio project [18]. It serves a static set of files getesta

20% higher overhead than domO. from the file size distribution specified in the static conten
Figure 8 shows a similar breakdown of the overhead for part of SPWECweb’99 [2]. Since we are only interested in
the receive workload. the network performance, we use a file-set consisting of only

Here again, the unoptimized guest domain incurs almost a single directory. This entire file-set fits in memory andsioe
twice the per-packet overhead as the TwinDrivers guest do- not stress the disk 1/0 subsystem.
main (35905 cycles/packet vs. 20089 cycles/packet), and The workload for the web server is generated by running
most of this overhead is incurred in invoking domO (14384 httperf [14] on a set of client machines. Requests are gen-
cycles/packet) and in additional hypervisor overheads. By erated in an ‘open’ loop, and responses from the server are
invoking the hypervisor driver directly, the TwinDrivers discarded if they are not received within a certain timeout.
guest avoids most of these overheads. Figure 9 compares the performance of the web server run-

Compared to dom0 and native Linux performance, the ning in the guest domain using TwinDrivers (“domU-twin”),
TwinDrivers per-packet overhead is quite large (20089 cy- the original guest domain (“domU”), domO (“dom0”), and a
cles/packet vs. 14308 and 11166 cycles/packet). Part®f thi native Linux system (“Linux”). The figure plots the aggre-
can be explained as the overhead of running the rewritten gate throughput of responses received by all httperf dient
driver (2445 cycles/packet vs. 972-1422 cycles/packet), b (in Mb/s) as a function of the total connection request rate
a large part of the TwinDriver receive overhead is incurred issued by the clients. In the figure, all configurations could
in the hypervisor itself (6514 cycles/packet). More det@dil  not be tested to the same request rate because some con-
profiling shows that most of this overhead (3525 cycles/- figurations could not sustain high connection rates, ansl thu
packet) is incurred in copying the packet from the hypemviso effectively ran at a lower connection rate even when a higher
driver to the guest domain driver. rate was requested.
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Figure 9: Web Server Workload Figure 10: Transmit throughput as a function of number of
upcalls

The overall trends seen in the web server workload are

similar to the trends seen for the microbenchmarks. The g yery small development effort compared to the effort that
maximum throughput achieved by the native Linux config- \yould be needed to support the entire driver support inter-
uration is is 855 Mb/s. domO achieves a peak throughput of t5.e

712 Mb/s. The original Xen guest domain achieves a peak
throughput of 269 Mb/s, which is only 31% of the native
Linux performance. The TwinDrivers guest domain achieves 7. Related Work
a peak throughput of 572 Mb/s, which is a more than factor Device drivers have received an enormous amount of interest
of 2 improvement over the unoptimized guest domain per- from the research community, and space constraints limit us
formance, and is roughly within 67% of native Linux perfor- to only a sampling of the most related work.
mance. As mentioned in the introduction, our work builds on the
notion of running device drivers in a virtual machine [7, 10]
6.4 Cost of Upcalls but we go beyond that work in allowing safe execution of
To achieve good performance in the hypervisor driver, up- the performance-critical parts of the driver in the hypsovi
calls to driver support routines must be avoided during the The idea of executing device drivers in user-level procgsse
performance critical parts of the driver. Table 1 shows that [9] is similar, and we project that it can benefit from our
for the Intel e1000 driver, there are 10 driver support rou- techniques as well.
tines that are called on the fast path. Figure 10 shows howthe The VMware ESX server [20] runs selected drivers in the
transmit performance of a TwinDrivers guest domain drops hypervisor by porting the drivers and their support rousine
when not all the necessary upcalls are implemented in theto the VMM. Not only does this involve significant develop-
hypervisor. ment effort, it also leaves the hypervisor vulnerable tosbug
The X axis shows the number of performance-critical in the driver. Our work ensures that the rewritten hypervi-
support routines for which the hypervisor has to make an sor driver executes safely in the hypervisor. Additionally
upcall. When no upcalls are made (first bar), transmit perfor since the number of driver support routines needed to run
mance is 3902 Mb/s. As soon as the hypervisor has to makethe error-free performance-critical path in the driver é&w
even one upcall per driver invocation, the performance slrop small, the software development costs of our approach are
to 1638 Mb/s (second bar). The performance drops progres-significantly smaller.
sively as more and more upcalls are needed, until finally it ~ Reusing drivers developed for one environment in a new
drops to 359 Mb/s when all but the network receive function environment is a difficult task. In the Flux OSkit [6], driver
(netif_rx in Linux) are implemented as upcalls. sources are ported from the original OS into a new OS by re-
implementing the entire driver-kernel API support library
The kernel driver support library is a large and poorly docu-
The 10 driver support routines listed in table 1 were imple- mented body of code. Reimplementing this library requires
mented in the Xen hypervisor. The entire implementation a deep understanding of the internals of the original OS, and
took 851 lines of commented C code and header files. This iscan be a a source of subtle bugs. The issues arising from the

6.5 Engineering Effort



semantic differences between the old and new OS environ-allows us, for instance, to leave all of the support function

ments are discussed in detail in [10]. ality for the error handling code in the transmit and receive
Numerous attempts have been made to reduce the vulnerparts of the network driver out of the hypervisor.
ability of the kernel to device driver crashes, without gpin A number of recent efforts have focused on ways to im-

all the way to running the device driver in a virtual machine prove networking performance in virtual machines, using ei
[17, 19]. These approaches typically constrain memory ac- ther software [11, 13, 15], or hardware [21] mechanisms.
cesses by the drivers to prevent wild writes that corrupt the The software techniques proposed include using packet ag-
kernel data structures, either by erecting address spaee ba gregation techniques [11, 13], interrupt coalescing [&5,
riers or by checking memory accesses. In our approach, weto reduce per-packet processing overheads in the Xen net-
avoid any vulnerability of this nature as a by-product oflea  work I/O architecture. We believe these techniques are com-
ing all the driver data structures in the VM address space plementary to our approach, and can be used in the Twin-
and not allowing the driver any access to the hypervisor data Drivers architecture to yield additional benefits. Hardevar
structures. techniques [21] involve using virtualization-aware netko

A number of research efforts have looked at mechanisms interfaces which can be directly accessed from guest do-
to safely extend operating system functionality with third mains, yielding better performance and scalability. Wik
party extensions [4, 16]. The SPIN extensible kernel [4] hardware approach offers improved performance, it does so
guarantees safe execution of extension code by requiringat the cost of tying down the guest VM to a specific NIC,
that the kernel and all extensions be written in a type-safe and does not address the safety issues associated with run-
language (Modula-3). In contrast, the TwinDrivers apploac ning drivers in the hypervisor.
does not requires extensions to be written in any particular
language, and works with existing compiled driver binaries .
The VINO extensible kernel [16] uses software fault isola- 8. Conclusions
tion [19] as its safety mechanism. It does not require a trans We presented TwinDrivers, a framework which allows us to
lation mechanism such as SVM, because the extension excreate safe and efficient hypervisor drivers from guest OS
ecutes in the same address space as the kernel. In contrasgrivers. The derived drivers run directly in the hypervisor
TwinDrivers uses SVM to implement both a protection and and execute the performance-critical operations of the de-
a translation mechanism, and this is required because the device on behalf of guest domains, such as transmitting and
vice driver data is located in an address space thatis eliffer ~ receiving packets for network cards.
from the hypervisor address space. TwinDrivers uses binary rewriting to ensure memory

We borrow from the Microdrivers project [8] the idea of ~safety and efficiency in the hypervisor driver. The Software
running performance-critical parts of the driver in theker Virtual Memory mechanism allows the hypervisor driver
nel/hypervisor and other parts in user-space processes oit0 efficiently access its data in the VM address space, while
in a virtual machine. Many differences, however, exist be- protecting the hypervisor address space from memory access
tween the two approaches. First, our hypervisor instance from the driver. The upcall mechanism allows the hypervi-
cannot corrupt the hypervisor data structures, while the pa Sor to implement only a small set of performance-critical
of the Microdrivers that runs in the kernel has the potential Support routines to run the driver, reducing the software en
of crashing the kernel. Methods like those used in SFI [19] gineering costs.
or Nooks [17] have to be used to reduce this vulnerability, =~ We used TwinDrivers in the Xen virtual machine envi-
potentially leading to extra performance overhead. Second ronment to create a hypervisor driver which can be directly
the Microdrivers approach requires manual annotations for invoked by Xen guest domains. Using the hypervisor driver
all kernel and driver data structures that can be shared be-improves the Xen guest domain networking performance by
tween the user-space and kernel-space driver. These anno2 factor of 2.4 for transmit workloads, and by a factor of 2.1
tations are necessary because Microdrivers use explicit da for receive workloads. The resulting transmit performance
marshaling to keep the (separate) data structures of the keris within 64% of native Linux performance, and the receive
nel and user driver consistent with each other. In contvest, ~ performance is within 67% of Linux performance.
use a single copy of all data structures mapped at different
virtugln addrgsses in. the hypervisor.ar)d the VM, providing References
us trivially with consistency and obviating the need for mar
shaling and annotations. Thus, no driver-specific knowdedg
or engineering effort is required in out approach; our frame
work works with unmodified binary drivers. Third, unlike  [2] Specweb’99 benchmarkttp://spec.org/web99.
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