
Achieving 10 Gb/s using Safe and Transparent
Network Interface Virtualization

Kaushik Kumar Ram§ ∗ Jose Renato Santos‡ Yoshio Turner‡ Alan L. Cox§ Scott Rixner§

‡HP Labs §Rice University

{kaushik@rice.edu, joserenato.santos@hp.com, yoshio.turner@hp.com, alc@rice.edu, rixner@rice.edu}

Abstract

This paper presents mechanisms and optimizations to reduce the
overhead of network interface virtualization when using the driver
domain I/O virtualization model. The driver domain model pro-
vides benefits such as support for legacy device drivers and fault
isolation. However, the processing overheads incurred in the driver
domain to achieve these benefits limit overall I/O performance.
This paper demonstrates the effectiveness of two approaches to re-
duce driver domain overheads. First, Xen is modified to support
multi-queue network interfaces to eliminate the software overheads
of packet demultiplexing and copying. Second, a grant reuse mech-
anism is developed to reduce memory protection overheads. These
mechanisms shift the bottleneck from the driver domain to the guest
domains, improving scalability and enabling significantly higher
data rates. This paper also presents and evaluates a series of opti-
mizations that substantially reduce the I/O virtualization overheads
in the guest domain. In combination, these mechanisms and op-
timizations increase the maximum throughput achieved by guest
domains from 2.9 Gb/s to full 10 Gigabit Ethernet link rates.

Categories and Subject Descriptors D.4.8 [Operating Systems]:
Performance—Measurements

General Terms Design, Measurement, Performance

Keywords virtual machine, virtualization, performance analysis,
I/O, networking, device drivers.

1. Introduction

Several virtual machine monitors—including Xen, L4, and Mi-
crosoft Hyper-V—use the driver domain model to virtualize I/O
devices [8, 11, 16]. The driver domain is a virtual machine that runs
a largely unmodified operating system. Consequently, it is able to
use all of the device drivers that are available for that operating sys-
tem. This greatly simplifies the complexity of providing support for
a wide variety of devices in a virtualized environment. In addition,
the driver domain model provides a safe execution environment for

∗ This work was performed while Kaushik Kumar Ram was an intern at HP
Labs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’09, March 11–13, 2009, Washington, DC, USA.
Copyright c© 2009 ACM 978-1-60558-375-4/09/03. . . $5.00

physical device drivers, enabling improved fault isolation over al-
ternative models that locate device drivers in the hypervisor. How-
ever, while the driver domain provides several benefits, it also in-
curs significant performance overheads [14, 15]. For example, with
a 10 Gigabit Ethernet (10 GbE) network interface, a guest domain
running Linux on Xen can only achieve 2.9 Gb/s of throughput,
whereas native Linux can achieve above 9.3 Gb/s (effectively line
rate) on the same machine.

Direct I/O access has been proposed by many in order to elim-
inate the overheads of software-based I/O virtualization and close
the gap with native I/O performance [12, 17, 18, 19, 20, 24]. Di-
rect I/O access allows virtual machines to directly communicate
with specially-designed I/O devices. These devices perform the ap-
propriate packet multiplexing/demultiplexing among virtual ma-
chines. This allows virtual machines to achieve near native I/O
performance. However, direct I/O solutions sacrifice fault isolation
and device transparency. In particular, direct I/O requires device-
specific code in the guest domain which has several negative conse-
quences. It increases guest image complexity, reduces guest porta-
bility, and complicates live guest migration between systems with
different devices. Therefore, I/O virtualization solutions that pre-
serve the benefits of the driver domain model while minimizing its
performance overheads are still needed.

The leading sources of overhead under the driver domain model
in Xen are packet copying, packet demultiplexing and memory pro-
tection for I/O operations [21]. In Xen, received packets must be
copied between the driver domain and the guest domain. The net-
work interface card (NIC) places incoming packets into driver do-
main buffers. The driver domain must then demultiplex the received
packet, determining to which guest it is destined. It then copies the
packet into a buffer owned by that guest. In order for that packet
copy to take place, the driver domain must have access to mem-
ory that belongs to the target guest. In Xen, guests must grant the
driver domain access to such a buffer. This grant mechanism main-
tains protection among virtual machines, but is expensive, as the
hypervisor must validate ownership of the memory buffer involved
in the grant.

Previous work has argued that these copying, demultiplex-
ing and memory protection overheads can be eliminated, in part
through the use of a new generation of commodity NICs that sup-
port multiple transmit and receive queues for packets [21]. This
paper fully realizes that vision, contributing a complete design and
implementation of multi-queue NIC support for the driver domain
model in Xen. This multi-queue NIC support eliminates packet
copying between the driver domain and guest domains by allocat-
ing each guest domain its own queue on the multi-queue NIC. The
driver domain then posts to each queue buffers that are owned by
the associated guest domain. This allows the NIC to demultiplex
packets and to transfer them directly to the guest domain’s mem-
ory.

VMware has also implemented support for multi-queue NICs in
VMware ESX server [3]. As with multi-queue support in Xen, this
allows packet multiplexing and demultiplexing to be performed on
the NIC and eliminates a copy to the guest domain. However, ESX
server hosts device drivers directly in the hypervisor, so the driver
has access to all of the guest’s memory. In contrast, a driver in the
driver domain must be explicitly granted access to memory buffers
in the guest domains.

To address this grant overhead in the driver domain model,
this paper also introduces a novel grant reuse mechanism based
on a software I/O address translation table. This mechanism takes
advantage of the temporal locality in the use of I/O buffers to nearly
eliminate the overhead of Xen’s grant mechanism.

The combination of multi-queue NIC support and a grant reuse
mechanism maintains the advantages of the driver domain model
while significantly reducing its cost. The efficient use of a multi-
queue NIC to eliminate packet demultiplexing and copying over-
heads leads to a 69% reduction in CPU cycles in the driver do-
main. The use of a software I/O translation table with grant reuse
leads to a 53% reduction in the remaining CPU cycles in the driver
domain. These optimizations shift the networking bottleneck from
the driver domain to the guest domain. Moving the bottleneck to
the guest enables the system to take advantage of multiple cores
available in modern systems more effectively. Multiple guests can
thereby achieve significantly higher aggregate data rates.

Finally, this paper describes several optimizations that substan-
tially reduce the I/O virtualization overheads in the guest domain.
These optimizations lead to a 30% reduction in CPU cycles in the
guest domain. With all optimizations, the throughput of a single
CPU guest is increased from 2.9 Gb/s to 8.2 Gb/s. When running
two or more guests, the total throughput reaches the full 10 GbE
line rate.

The rest of the paper is organized as follows. Section 2 reviews
necessary background information about Xen’s I/O architecture.
Section 3 describes multi-queue NICs and how they can be used
to eliminate packet copying and demultiplexing overheads. Sec-
tion 4 presents the design of our software I/O translation table and
grant reuse mechanisms. Section 5 presents experimental results
that demonstrate reduced packet processing costs in the driver do-
main as a consequence of the proposed mechanisms. Section 6 an-
alyzes the costs in the guest domain, and based on this analysis
proposes and evaluates a series of additional optimizations to im-
prove guest domain efficiency. Section 7 analyzes the impact on
the achievable throughput of all of the optimizations proposed in
the paper. Finally, Section 8 discusses related work, and Section 9
summarizes our conclusions.

2. Xen Networking Overview

In Xen, driver domains are privileged domains that have direct
access to hardware devices and perform I/O operations on behalf
of unprivileged guest domains [8]. A driver domain runs a Linux
kernel with standard device drivers. Each hardware device can be
assigned to a single driver domain, and multiple driver domains can
control different hardware devices.

The driver domain model has two main advantages when com-
pared to an alternative I/O model where device drivers are hosted
in the hypervisor. First, they allow the use of legacy device drivers
available for standard OSes such as Linux, minimizing the cost to
develop and mantain new device drivers for the hypervisor. In addi-
tion, driver domains provide a safe execution environment isolating
device drivers from the hypervisor and guest domains. This ensures
that most device driver bugs are contained in the driver domain and
cannot corrupt or crash other domains or the hypervisor. Although
driver domain crashes can still affect guest domains due to unavail-
able I/O service, this is a more tolerable failure mode and usually

Figure 1. Xen’s driver domain architecture

only lasts a short period of time since I/O service can be rapidly
restored by simply rebooting a faulty driver domain.

Figure 1 illustrates the operation of the driver domain to enable
guest domains to send and receive network traffic over a NIC. The
driver domain includes a standard Linux physical device driver
for the NIC, an Ethernet bridge, and a back-end driver (netback)
that interacts with a guest front-end driver (netfront). A different
netback interface is created for each guest operating system that
the driver domain supports.

When network packets are received by the NIC, the NIC will
raise an interrupt. While the NIC’s device driver in the driver do-
main may directly access the NIC, all interrupts in the system must
first go through the hypervisor. The hypervisor receives the inter-
rupt, determines that the NIC is owned by the driver domain, and
then generates a virtual interrupt for the NIC’s device driver in the
driver domain. The device driver receives the virtual interrupt, pro-
cesses the packets received by the NIC and sends them to the Eth-
ernet bridge. The Ethernet bridge demultiplexes the packet based
on its Ethernet address and delivers it to the appropriate netback
interface. The netback driver then sends the packet to the netfront
driver in the guest domain over an I/O channel. The netfront driver
then delivers the packet to the guest operating system as if it had
come directly from the NIC. The process is basically reversed to
send packets from the guest domains.

The I/O channels allow communication between the front-end
and back-end drivers using an event notification mechanism and a
ring of requests and responses in memory that is shared between
the domains. Netfront posts I/O requests pointing to I/O buffers in
guest memory. Netback uses these requests either to send a trans-
mitted packet to the NIC (or to another guest) or to copy a received
packet into a guest I/O buffer. It finally sends a response on the cor-
responding I/O channel when the I/O operation is completed. The
event notification mechanism enables netfront and netback to trig-
ger a virtual interrupt in the other domain to indicate new requests
or responses have been posted.

In order to enable driver domains to access guest I/O buffers
in a safe manner without compromising the isolation properties of
the driver domain model, Xen provides a page sharing mechanism
known as the grant mechanism. The grant mechanism allows a
guest to control which memory pages are allowed to be accessed
by the driver domain. In addition, the grant mechanism allows the
driver domain to validate that the I/O buffer belongs to the guest and
that the page ownership does not change while the I/O is in progress
(page pinning). Thus the grant mechanism serves two purposes. It
ensures that the I/O operation does not access memory not owned
by the guest and limits the set of guest pages that the driver domain
can access. Currently, guest domains limit the pages available to the

driver domain to only those containing buffers currently being used
for I/O. This limits the amount of guest memory that is exposed
to the driver domain to the minimum necessary, preventing bugs
in device drivers from corrupting guest memory containing either
code or data structures.

The guest uses a grant table shared with the hypervisor to
indicate to which pages the driver domain has been granted access.
Before sending a request on the I/O channel the front-end driver
finds a free entry in the grant table and fills it with 1) the page
address of the I/O buffer, 2) the driver domain id, and 3) the access
permission (read-only or read-write) depending on whether the
buffer is used for transmission or reception. The guest writes the
grant reference (i.e. the index in the grant table) associated with
the I/O buffer in the request posted on the I/O channel. Using this
grant reference the back-end driver issues a hypercall that requests
the hypervisor to map the guest page in its virtual address space.
The hypervisor reads the guest grant table to validate the grant and
also checks if the specified page belongs to the guest. It then pins
the page and finally maps it in the driver domain address space.
The driver domain can then access the guest buffer to perform the
I/O operation. When the I/O is completed the page is unmapped
using another hypercall before sending a response back to the
guest. When netfront receives the response the grant is revoked
by removing it from the grant table. Consequently the page can
no longer be accessed by the driver domain. The guest operating
system can then safely reallocate the memory to a different part of
the kernel for non-I/O purposes.

For the receive path Xen provides a grant copy operation which
maps the page, copies the packet and unmaps the page in a single
hypercall reducing the cost of the grant mechanism.

In Xen, there are three major sources of overhead that limit net-
work performance [21]. First, there are substantial packet demul-
tiplexing overheads. Each received packet must first traverse the
Ethernet bridge to arrive at the appropriate back-end driver. Second,
there is an additional data copy required to copy a received packet
from driver domain to guest memory. And third, there are substan-
tial overheads associated with the grant mechanism. The repeated
issue and revocation of page grants to the driver domain from the
guest domains leads to prohibitive overheads. In addition to the hy-
percall overhead, pinning and mapping the page are also expensive
operations associated with each grant.

3. Multi-queue NICs

Packet demultiplexing can be offloaded from the driver domain to
the NIC. This can dramatically reduce the per-packet overhead in
the driver domain.

Typically, modern NICs include a queue of data buffers to be
transmitted and a queue of available buffers to use for received
data. A NIC’s device driver communicates with the NIC almost
exclusively through these queues. NICs with multiple sets of these
queues (”multi-queue NICs”) have emerged to improve networking
performance in multicore systems. These NICs can demultiplex in-
coming traffic into the multiple queues based on a hash value of
packet headers fields. These devices support Microsoft’s Receive
Side Scaling architecture and Linux’s Scalable I/O architecture.
The basic idea is to allow each core exclusive access to one of the
sets of queues on the NIC. This will allow each core to run the
NIC’s device driver concurrently without the need for additional
synchronization. The use of multi-queue NICs in this manner in-
creases the achievable parallelism within the network stack of the
operating system, enabling more effective use of multiple cores for
networking.

More recently multi-queue NICs have been extended to allow
demultiplexing into different queues using the packet destination
MAC address or VLAN tags (e.g. Intel’s 82598 10 GbE con-

troller [6]). This capability enables multi-queue NICs to be used
for virtualization where each network interface queue can be dedi-
cated to a specific guest. The NIC is able to identify the target guest
domain for all incoming network traffic by associating a unique
Ethernet address with each receive queue corresponding to the ap-
propriate guest domain. The NIC can then demultiplex incoming
network traffic based on the destination Ethernet address in the
packet to place the packet in the appropriate receive queue, elimi-
nating the need for processing these packets in the software bridge.
To multiplex transmit network traffic, the NIC simply services all
of the transmit queues fairly and interleaves the network traffic for
each guest domain. While these NICs are currently available in the
market, the drivers to support them are still being developed.

One benefit of using multi-queue NICs in this fashion is the
elimination of the traffic multiplexing overheads within the driver
domain. Another benefit is the elimination of copying between
the driver domain and the guest domain. As each queue handles
network traffic for a single guest, it is possible for the driver domain
to direct the NIC to transfer data directly to/from memory owned
by that guest domain. The guest domain need only grant the driver
domain the right to use that physical memory. By appropriately
posting buffers into receive queues, the driver domain can then
direct the NIC to transfer packets from each queue directly to the
corresponding guest domain’s memory.

Since the number of RX queues on the multi-queue NIC is lim-
ited, only a bounded number of guest domains can take advantage
of the dedicated RX queues. Additional guest domains fall back
on a shared RX queue which is created by default when the multi-
queue NIC is brought up in the driver domain.

4. Grant Reuse

As discussed in Section 2, guest domains in Xen grant the driver
domain access to network buffers for each network I/O operation.
Once the I/O operation completes, the grant is revoked. This ap-
proach provides memory protection and allows the guest to repur-
pose network buffers to other parts of the kernel after network I/O
operations have completed. However, the need to map and unmap
guest domain buffers into the driver domain address space on each
I/O operation has high processing overhead that limits I/O perfor-
mance.

When using a multi-queue NIC, packets are transferred directly
into guest memory by the NIC itself. Therefore, in this case the
driver domain does not have to access guest memory and does not
need to map guest buffers into its address space. The driver do-
main still must verify that the buffers actually belong to the guest
and that they have been pinned by the hypervisor. This is neces-
sary to ensure that the backend driver only performs I/O operations
using memory that is owned by the guest and that the page does
not change ownership until the operation is complete. Section 4.1
presents a new I/O translation table mechanism that satisfies these
requirements for memory protection and avoids mapping and un-
mapping guest buffers in the driver domain.

To avoid the high processing cost in the guest domain of issuing
and revoking a grant for each I/O operation, Section 4.2 presents
a new mechanism for reusing grants. This mechanism operates
in conjunction with the I/O translation table to provide a pool
of reusable I/O buffers in the guest domain. Memory protection
overhead is greatly reduced by allowing grants and I/O translation
table entries for buffers in the pool to be kept active across multiple
I/O operations.

4.1 I/O Translation Table

We propose an I/O translation table mechanism that allows the
driver domain to ensure that I/O pages belong to the correspond-
ing guest and have been pinned by the hypervisor without having

Figure 2. Grant Reuse Architecture

to map them. An I/O translation table is shared with the hypervisor
and can be directly accessed by the driver domain to allow efficient
validation of packet buffers. It is indexed by the same grant refer-
ences used to index the grant table in the guest domain. When the
guest domain grants the driver domain access to a network buffer,
in addition to updating its grant table, the guest issues a grant hy-
percall. The hypervisor then updates the associated I/O translation
table entry with the corresponding page address after validating and
pinning the page. The guest domain then passes a grant reference
to the driver domain as usual. In the original Xen grant mechanism
the driver domain would make a hypercall with the grant reference
to map and pin the page. In contrast, with use of the I/O translation
table the page pinning has already been performed from the guest
domain and the page does not need to be mapped into the driver
domain’s address space. Therefore, the driver domain avoids the
hypercall and instead simply consults the I/O translation table to
determine the machine address of the buffer. This address can be
given directly to the NIC for packet transfer. Since the only way
the guest domain can update the I/O translation table is via the hy-
pervisor, the driver domain can trust that all entries belong to the
corresponding guest and are pinned.

There is one I/O translation table for every guest-driver domain
pair in the system. As shown in Figure 2, the table actually consists
of two subtables: a buffer address subtable and a status subtable.
The buffer address subtable contains physical addresses (PA) and
the status subtable indicates the status (ST) of the buffer (i.e.,
whether or not the address is currently being used by the NIC). The
subtables are separated because the driver domain only has read
access to the buffer address subtable, while it has write access to the
status subtable. This prevents the driver domain from inadvertently
corrupting the buffer address subtable.

When the driver domain initiates a network operation using a
grant reference, it increments the appropriate entry in the status
subtable. When the operation completes, it decrements the entry
in the status subtable. The hypervisor consults the status subtable
when a guest tries to revoke a grant. If the status subtable indicates
the granted memory is currently being used by the NIC, the hy-
pervisor will not allow the grant to be revoked. This replicates the
behavior that was previously accomplished by pinning and unpin-
ning the memory buffer in the driver domain via a hypercall.

With the I/O translation table in place, the driver domain can
directly read the buffer addresses from the table and safely use
them for I/O operations without incurring the overhead of grant
hypercalls. On the other hand the guest domains have additional
overheads due to grant hypercalls to pin and unpin pages. But this

overhead can be minimized by reusing grants over multiple I/O
operations.

4.2 Reusing Grants

Given the desire to protect guests’ memory from accidental cor-
ruption by the driver domain, it is important to only grant access
to memory used as network buffers. However, immediately revok-
ing the grant to a network buffer only provides minimal additional
protection. Instead, it would be far more efficient to keep the grant
active as long as the memory remains a network buffer in the guest
operating system. In this way, grants can be reused for future net-
work transfers and the cost of pinning and validating the grant can
be amortized over multiple I/O operations. Once the guest decides
to repurpose the memory, the grant can then be revoked and re-
moved from the I/O translation table.

A pool of dedicated network I/O buffers was created in order to
facilitate the effective reuse of grants. The network buffers were al-
located from the pool when needed for I/O operations and returned
to it afterwards. The socket buffer allocator in the guest operating
system was modified in order to accomplish this. The I/O buffer
pool was implemented as a new slab cache which was created and
managed using the existing slab allocator in the Linux kernel. The
slab cache guarantees that the memory associated with the network
buffers will not be used for any other purpose until the kernel ex-
plicitly shrinks the cache to free memory and the pages are removed
from the slab cache.

The guest OS also had to be modified to keep track of the grants
associated with a network buffer page and to issue hypercalls to
populate the I/O translation table. When an I/O buffer is allocated
from the pool, netfront checks to see if there is already a grant
reference associated with that buffer. If there is, then the existing
grant reference is reused, eliminating the need for a hypercall to pin
the granted page. If there is not a grant reference associated with the
buffer, then netfront creates a new grant and makes a hypercall to
pin the page. The hypervisor then simply validates the buffer and
inserts an entry in the I/O translation table with the machine address
of the buffer. In either case, the driver domain need not make any
hypercalls to validate the buffer.

When the guest removes a buffer from the I/O buffer pool, it
makes a hypercall to unpin the page. The hypervisor then removes
the entry from the I/O translation table. The guest then revokes
the grant and can safely use the buffer elsewhere in the kernel as
the driver domain will no longer have access to it. This typically
happens when the slab cache is shrunk to reclaim memory. The
hypervisor ensures that a page in use by the NIC is not unpinned,
preventing the page to change ownership if the guest is not well
behaved.

Note that in the common case, I/O buffers will frequently be
reused. In this case, the grant overhead is negligible, since only a
single hypercall is needed the first time the guest domain grants the
driver domain access to the buffer.

While grant reuse can also be done without an I/O translation
table [21], this approach suffers from significant overheads and
delays when the guest domain needs to revoke the grant. Before the
guest domain can remove a buffer from the I/O buffer pool, it must
interact with the driver domain over the I/O channel to ensure that it
unmaps the buffer. However this might be unacceptable in certain
situations of severe memory pressure in the guest which cannot
wait for a handshake with another domain that may not even be
running at the moment. The I/O translation table allows the guest
to revoke grants without any handshake with the driver domain, as
long as the buffer is not in use by an I/O operation.

Although in the current implementation the driver domain can-
not perform any packet filtering or monitoring operation since guest
buffers are not mapped in its address space, this is not a fundamen-

Figure 3. Packet Processing Cost: Multi-queue and Grant Reuse

Class Description associated source code

driver native device driver drivers/net/ixgbe/*
and netfront in guest drivers/xen/netfront/*

netback Xen backend driver drivers/xen/netback/*
network Linux network general net/*
bridge Linux network bridge net/bridge/*
mm Linux memory manage-

ment
mm/*

mem* memory copy/set in
Linux

arch/x86 64/lib/memcpy.S

arch/x86 64/lib/memset.S
Linux-grant Linux grant table func-

tions
drivers/xen/core/gnttab.c

User copy Packet copy to user
buffer

arch/x86 64/lib/copy user.S

Linux other other functions in Linux numerous
Xen grant Xen grant table func-

tions
xen/common/grant table.c

Xen all other Xen functions
not in grant table

numerous

Table 1. Classes grouping Linux and Xen functions profiles

tal limitation of the design. Modern multi-queue NICs also support
packet header splitting which allows packet headers and payload
to be placed in different buffers. Using this capability, the driver
domain can use its own local buffers to receive packet headers
and then perform packet filtering or monitoring operations, while
still placing the payload directly into guest memory. Packet head-
ers would need to be copied from driver domain to guest memory,
but this should not add significant overhead since headers are small
(e.g. 66 bytes for typical TCP packets).

5. Multi-queue and Grant Reuse Evaluation

This section presents experimental results evaluating the perfor-
mance impact of multi-queue NICs and the grant reuse mechanism.

5.1 Experimental Setup

Our experiments are run on two HP Proliant DL380-G5 servers
connected directly by a 10 gigabit multimode fiber cable. Each
server has two 2.33 GHz Intel Xeon E5345 CPUs (two quad-core
CPUs) with 20 GB of memory, and a 10 GbE Intel Oplin 82598EB
NIC.

The netperf TCP stream microbenchmark (www.netperf.org)
is used in the experiments to generate network traffic. The perfor-
mance evaluation focuses on the network receive path which has
significantly higher overhead than the transmit path in the current

Figure 4. Packet Processing Cost in Driver Domain: Multi-queue
and Grant Reuse

Xen implementation. The sendfile option to netperf is enabled to
ensure that the transmit side of the connection is not the bottleneck.

We use a recent Xen unstable1 distribution along with paravir-
tualized Linux domains using linux-2.6.18-xen2, and both use x86
64-bit mode. The system is configured with one guest domain, and
one dedicated driver domain in addition to the privileged domain 0.
The driver domain and the guest domain are each configured with
2 GB of memory and a single virtual CPU (to eliminate potential
multi-CPU guest scheduling issues). Except when noted, the vir-
tual CPUs of the guest and the driver domain are pinned to cores of
different CPU sockets ensuring they do not share the L2 cache.

For native Linux experiments (hereafter referred to simply as
“Linux”) we use the same kernel version and similar config options
as used in the paravirtualized Linux kernel. We also limit the kernel
to use a single CPU and restrict the amount of memory to 2 GB
to make the comparison between Xen and Linux as similar as
possible.

We use OProfile [14] to determine the number of CPU cycles
used in each Linux and Xen function when processing network
packets. Given the large number of kernel and hypervisor functions
we group them into a small number of classes based on their high
level purpose as described in Table 1.

5.2 Multi-queue and Grant Reuse Results

Figure 3 compares the number of CPU cycles per packet consumed
in the guest domain and in the driver domain for different config-
urations. The first bar shows the CPU cost for original Xen (Xen
Orig) to process network packets on the receive side of a TCP con-
nection; while the last bar shows the CPU cost for Linux. Original
Xen has significantly higher cost than Linux, which is consistent
with previous results. Moreover the driver domain has significantly
higher cost than the guest itself. Most of this overhead is due to
packet demultiplexing cost, extra data copies needed to move the
packet from driver domain memory to guest memory, and the cost
of the Xen grant mechanism [21].

The second bar (Xen MQ) in Figure 3 shows the improvement
in processing cost that is achieved when guests are assigned a ded-
icated receive queue in a multi-queue NIC. As expected, multi-
queue significantly improves performance. In particular, multi-
queue reduces the driver domain cost by 69%. To understand the
detailed impact on driver domain processing, Figure 4 shows the
breakdown of cost across all the kernel and hypervisor functions
that are executed on behalf of the driver domain.

1 xen-unstable.hg changeset 17823:cc4e471bbc08, June 10, 2008
2 linux-2.6.18.8-xen.hg changeset 572:5db911a71eac, June 10, 2008

Figure 5. Guest domain cost breakdown in instructions exe-
cuted/packet

Figure 4 shows that multi-queue significantly reduces the cost of
the Xen grant table mechanism. This is because multi-queue avoids
the cost of the data copy performed by the grant copy hypercall.
This copy is responsible for most of the grant overhead in original
Xen. Some grant overhead remains, however, since grants are still
used to map and unmap the guest pages into the driver domain’s
address space.

In addition to avoiding a data copy, multi-queue avoids the need
to route packets in software, because the multi-queue NIC performs
routing in hardware. This avoids the overheads associated with the
Linux bridge and with network processing as illustrated in Figure 4.

Finally, multi-queue removes the cost associated with memory
management functions in the driver domain kernel as shown in Fig-
ure 4. This is a consequence of using a mechanism that we added
to netback to recycle socket buffers when using multi-queue. Net-
back uses a regular Linux socket buffer data structure to represent
a packet. When the native device driver for the multi-queue NIC
requests an empty receive buffer to be posted on the device re-
ceive queue, netback gets a guest buffer previously posted on the
I/O channel, attaches it as a fragment to the socket buffer and re-
turns the socket buffer to the native device driver. When a packet
is received in that buffer, the device driver returns the associated
socket buffer to netback which then removes the fragment from the
socket buffer and notifies the guest that a packet has been received.
However, instead of freeing the local socket buffer, netback keeps
it in a free list to be reused when a new guest buffer needs to be
posted in the receive queue of the NIC. This socket buffer recy-
cling avoids the Linux memory management costs associated with
allocating and deallocating socket buffers.

The third bar (GRU) in Figure 3 shows the improvement in
processing cost due to the I/O translation table and grant reuse
mechanisms described in Section 4. Similar to multi-queue, grant
reuse also reduces the overhead in the driver domain. In particular,
grant reuse reduces the driver domain cost by 53% compared to the
multi-queue results. Figure 4 confirms that grant reuse eliminates
the cost associated with grant table code in Xen. In addition, most
of the cost associated with other Xen functions is significantly
reduced. These extra savings are due to overheads in other Xen
functions which are indirectly executed when using grants. Most
of these extra costs are due to hypercall code to enter and exit the
hypervisor, and Xen memory management functions used to pin
pages and to map and unmap granted pages into the driver domain
address space.

In summary, support for multi-queue NICs, combined with
grant reuse, reduces the per-packet processing cost in the driver do-
main by more than 80% compared to original Xen. By reducing the

Figure 6. Guest domain cost breakdown in cycles/packet

driver domain overhead the bottleneck shifts to the guest domain
CPU which becomes the main throughput limiting factor. The pro-
cessing cost in the guest domain is unaffected by multi-queue and
grant reuse, and is 61% higher than the cost of Linux.

6. Guest Domain Optimizations

This section analyzes the loss of efficiency when running Linux as a
guest in Xen compared to running Linux natively. This section also
proposes additional optimizations to reduce packet processing cost
in the guest domain. These optimizations are aimed at reducing the
virtualization overheads in the guest and have all been implemented
in netfront, the virtual driver in the guest domain.

6.1 LRO in Virtual Device Driver

In Figure 5, the first bar shows the distribution of the number of
instructions executed per packet in the guest domain, when multi-
queue support and the grant reuse mechanism are enabled. The in-
struction distribution for Linux is shown in the last bar in Figure 5.
The guest domain has a much higher instruction count than Linux
in the network component, caused by executing a larger number of
instructions per packet for TCP/IP network stack processing.

This difference in the network stack processing is caused by
the use of a software optimization called Large Receive Offload
(LRO) [9, 13]. In Linux, the device driver (provided by Intel) uses
LRO to aggregate arriving TCP/IP packets into a much smaller
number of larger-sized packets (TCP segments), and then passes
the large segments to the network stack. As a result, the network
stack processes a group of packets as a single unit, at the same cost
as for processing a single packet.

The second bar in Figure 5 shows that implementing LRO in
netfront reduces the instruction execution count in the network
stack close to that of Linux. Compared to the first bar, the second
bar also shows that slightly more instructions are executed per
packet in netfront to aggregate arriving packets into large TCP
segments. Overall, the total instruction count is close to that of
Linux (last bar).

The impact on processing cost (CPU cycles per packet) of using
LRO in netfront is shown in the first two bars of Figure 6. The
results show that adding LRO reduces guest domain processing
cost by almost 15%, from 4721 to 4013 CPU cycles per packet. The
reduction in CPU cycles in the network component offsets a smaller
increase of CPU cycles in the netfront component. However, the
total cost is still far higher than the Linux cost of 2927 CPU cycles
per packet.

In comparing the guest domain with LRO to Linux, both have
similar instruction count distributions (Figure 5), whereas the per-

packet processing costs in CPU cycles are still far apart (Figure 6).
Basically, the average number of cycles per instructions (CPI) in
a Xen guest is higher than in native Linux. This higher instruction
cost is caused by worse cache and TLB miss behavior. The two
additional guest domain optimizations described in the next sub-
sections address both of these factors.

6.2 Software Prefetching

After the NIC places packet data into guest buffers, the initial
software access to the packet in netfront is certain to cause a cache
miss (although future hardware optimizations may avoid this cache
miss [10]). To reduce the cache miss penalty, we added instructions
in netfront to prefetch packet data headers.

On each virtual interrupt, netfront executes a loop to process
a batch of arriving packets (the batch size is determined by the
interrupt rate of the NIC, which can be configured with the interrupt
coalescing driver parameter). We added instructions causing each
iteration of the loop to prefetch the header of the packet that will
be processed in the next iteration. However, to issue this prefetch,
the address of the packet data must be read from a field in the
corresponding socket buffer. To minimize the cache miss penalty
for accessing this field, in each iteration we also prefetch the socket
buffer structure for the packet that will be processed two iterations
later.

The third bar in Figure 6 shows the impact on processing cost
of adding the software prefetch instructions to netfront. Also, the
third bar in Figure 5 shows the corresponding impact on instruction
execution count. In comparing these two figures, it is clear that the
prefetch optimization reduces the guest domain processing cost by
8.7% (from 4013 to 3662 CPU cycles per packet), without adding
significantly to the instruction execution count.

6.3 Half Page Buffers

For historical reasons, netfront in the guest kernel allocates full
page buffers for each data packet. This was to support the original
Xen I/O architecture in which page remapping and page flipping
were used to transfer data between the driver domain and the guest
domain. This approach has largely been supplanted by a data copy
mechanism. In the case of multi-queue support, even the data copy
is removed. There is no need to allocate full 4KB page buffers to
accommodate standard sized Ethernet packets.

We modified netfront to allocate half page (2KB) buffers instead
of full pages which are large enough to store standard sized Ether-
net packet data. Compared to the previous optimizations (third bar
in Figure 6), the half page allocation optimization (fourth bar in
the figure) reduces the guest domain processing cost by 10%, from
3662 to 3266 CPU cycles per packet. There are two contributing
causes for this cost reduction.

Figure 7 shows the TLB misses per packet before and after
applying the half page allocation optimization. The result shows
that using half page allocation reduces the number of TLB misses
per packet. This is most likely a consequence of the fact that half
page allocation reduces by a factor of two the contribution of packet
data pages to the TLB working set. We conjecture that reducing
the cost of handling TLB misses is responsible for most of the
improvement in the overall cost when using half page allocation.

An additional effect that further reduces cost in the guest is that
half page allocation turns out to improve the rate of grant reuse.
Compared to the previous optimizations, the cost of grants (Xen-
Grant and Linux-Grant categories) is reduced slightly. Since this
cost is already small because of the effectiveness of grant reuse,
the additional cost reduction is modest. Using half page allocation
improves reuse since any page that is added to the grant table will
be used for two I/O buffers instead of just one buffer in the case of

0

2

4

6

8

10

12

Xen Guest Domain w/ Prefetch Xen Guest Domain w/ HalfPG

D
TL
B
 M

is
se
s/
Pa

ck
e
t Xen

Linux other

User copy

Linux-grant

mm

network

driver

Figure 7. TLB Misses

full page allocation. The rate of grant reuse is around 95% using full
page allocation and increases to 99.4% using half page allocation.

The combined effect of the three guest domain optimizations
described in this section is to reduce guest domain processing cost
by 30%, from 4721 to 3266 CPU cycles per packet. This final cost
is only 11% higher than the processing cost of Linux (2927 packets
per cycle).

The remaining gap between Xen and native Linux is caused by
two main factors: higher processing cost in the virtual device driver
compared to the physical device driver, and additional CPU cycles
spent in the hypervisor for event delivery between the guest and
driver domains.

7. Impact of Optimizations

This section evaluates the impact of our optimizations on the I/O
throughput that is achieved by guest domains. The results demon-
strate that the large cost savings provided by our optimizations ac-
tually enable guest domains to receive packets at the full line rate
of the 10 GbE NIC. This high throughput is achieved while pre-
serving device-transparent virtualization and the safe execution en-
vironment of the driver domain model.

Figure 8 shows the data receive throughput achieved for various
cases, and Figure 9 shows the corresponding CPU utilization in the
driver and guest domains. The first bar, Xen Orig, shows that Xen
without our optimizations achieves only 2.9 Gb/s throughput to a
single guest. The bottleneck resource in this case is the 100% sat-
urated driver domain CPU. In comparison, non-virtualized Linux,
shown in the last bar, Linux, achieves 9.31 Gb/s using 100% of
a CPU. This is close to the full line rate of 9.41 Gb/s (calculated
by considering the bandwidth used by packet headers in full sized
1514-byte Ethernet frames).

In Figures 8 and 9, the second bar, Xen Opt (1 Guest), cor-
responds to Xen with multi-queue support, grant reuse, and the
guest domain optimizations. With these optimizations, the achieved
throughput increases 180% reaching 8.2 Gb/s for a single CPU
guest. In this case the guest domain CPU is saturated and is the
bottleneck resource that prevents achieving full line rate through-
put.

By removing the driver domain bottleneck we achieve better
scalability and higher data rates when running multiple guests
which can take advantage of multiple cores available in modern
CPUs. The third bar in Figure 8, Xen Opt (2 Guests), shows that
full 10 GbE line rates can be achieved when running two guests
on different physical processors. In this scenario the bottleneck
resource is the link bandwidth.

0

2000

4000

6000

8000

10000

Xen Orig (1
Guest)

Xen Opt (1
Guests)

Xen Opt (2
Guests)

Xen Opt w/
shared cache
(1 Guest)

Linux

Th
ro
ug

h
p
ut
 (
M
b
p
s)

Figure 8. Impact of the optimizations on throughput

The fourth bar in Figure 8 shows that a single CPU guest can
achieve full 10GbE line rate if it executed on a CPU core that shares
the L2 cache with the CPU core running the driver domain. Appar-
ently, the cache footprints of the guest and driver domains fit in our
4 MB shared L2 cache, and this sharing provides some performance
benefit when accessing shared data. These results indicate that a po-
tentially fruitful topic for future research is to identify mechanisms
and policies that can optimize cache sharing benefits for virtualized
I/O. For example, in a large multi-core system it may be worthwhile
to use driver domains with multiple virtual CPUs (VCPUs). Poli-
cies that assign VCPUs to physical CPU cores, and the assignment
of device queues to driver domain VCPUs, can be coordinated with
guest domain placement policies to maximize cache sharing be-
tween each guest domain and the driver domain VCPU that man-
ages the device queue that is dedicated to the guest.

8. Related Work

Multiple virtual machine monitors have utilized driver domains,
such as Xen, the L4 microkernel, and Microsoft’s Hyper-V [8, 11,
16]. The driver domain model provides a safe execution environ-
ment for device drivers and protects guests and hypervisor from
faults due to buggy device drivers. Chou et al. have shown that
device driver bugs are the main cause of system crashes using an
empirical study of Linux and OpenBSD Operating Systems [4]. To
solve this problem, Swift et al. proposed to isolate device drivers
from the rest of the kernel in standard Operating Systems [23]. The
driver domain model provides the same capability by isolating de-
vice drivers in a separate virtual machine domain. However, as de-
scribed earlier, previous I/O virtualization solutions based on driver
domains incur significant CPU overheads and do not achieve high
data rates.

In contrast to Xen, VMware’s ESX server hosts device drivers
directly in the hypervisor [7]. This sacrifices the fault isolation and
range of driver support provided by the driver domain model, while
enabling higher performance. Despite this difference, multi-queue
NICs have also been used to reduce I/O virtualization overheads
in ESX server [3]. The primary difference between the VMware
solution and the Xen solution proposed here is the memory pro-
tection mechanisms. With device drivers directly in the hypervisor,
all guest memory can implicitly be used for I/O operations. With
the driver domain model of Xen, the grant mechanism is required,
making the grant reuse mechanism critically important.

Direct I/O has been proposed as a very efficient I/O virtualiza-
tion solution [12, 17, 18, 19, 20, 24]. With direct I/O, the device
presents multiple logical interfaces which can be securely accessed

Figure 9. Impact of the optimizations on CPU utilization

directly by guest domains bypassing the virtualization layer, re-
sulting in the best possible performance, with CPU cost close to
native performance. However, direct I/O lacks the isolation prop-
erty of driver domains since the device driver is executed inside the
guest kernel. In addition, direct I/O breaks the device transparency
provided to guest VMs when using software-based device virtual-
ization. Device transparency has the benefit of avoiding the need
to maintain device-specific code in guest VMs, thereby reducing
the associated costs for maintaining and certifying guest images.
In addition, device transparency simplifies live migration of guest
VMs across physical machines that have different flavors of de-
vices. Although techniques have been proposed to enable live mi-
gration [5, 22] with direct I/O [26], these techniques are not ideal
since they are not transparent to the guest and require the guest
to support complex mechanisms such as hot plug devices, device
failover, etc. In addition, direct I/O increases the complexity of us-
ing virtual appliance models of software distribution which rely on
the ability to execute on arbitrary hardware platforms. To use di-
rect I/O, virtual appliances would have to include device drivers
for a large variety of devices increasing their complexity, size, and
maintainability. This paper shows that it is possible to efficiently
virtualize network devices and achieve high data rates while avoid-
ing the disadvantages of the direct I/O model and preserving the
benefits of the driver domain model.

Menon et al. presented several transmit-side optimizations for
Xen and advocated copying instead of page flipping on the receive
path [15]. Menon and Zwaenepoel then implemented LRO within
the driver domain of Xen [13]. In contrast, this paper describes a
different set of optimizations on the receive path, and implements
LRO within the guest domain. LRO is performed in the guest
because packets are not mapped into the driver domain’s address
space.

Santos et al. evaluated the potential benefits of multi-queue and
grant reuse using a 1 GbE NIC [21]. There, multi-queue NICs
were only emulated on a traditional single queue NIC. Moreover,
a real grant reuse mechanism was not implemented and evaluated,
but instead its potential benefits was estimated by circumventing
the memory protection mechanisms. In contrast, this paper demon-
strates safe and efficient virtualization of a real multi-queue 10 GbE
NIC. In addition, this paper proposes and evaluates the implemen-
tation of a novel grant reuse mechanism based on a software I/O
translation table. This mechanism allows guests to revoke grants
unilaterally without requiring a handshake with the driver domain.

Finally, our I/O translation table is similar to an IOMMU ta-
ble [1, 2, 25]. While an IOMMU provides address translation for

hardware devices, our I/O translation table mechanism provides ad-
dress translations to software running in the device driver. However,
the driver domain does not need to access the guest page in soft-
ware but only uses the guest page address to program the hardware
device to perform a DMA operation. If the different queues in the
multi-queue devices could be configured to use different IOMMU
tables, the I/O translation table could be replaced with an IOMMU
table mapping grant references to guest pages. This is possible if
each queue is assigned to a different PCI address (BDF), since
IOMMU tables are selected by the device PCI address. Modern
NICs that support the PCI-IOV standard for direct I/O [18] have
exactly this capability and could be used with a driver domain in
a multi-queue mode where all virtual functions (VF) could be as-
signed to the driver domain. This paper shows that this can be a
better model for PCI-IOV devices than exposing the device virtual
functions directly to the guest.

9. Conclusions

Currently, network I/O virtualization in Xen has significant over-
head. With Xen, 4.7 times the number of processing cycles are con-
sumed compared to native Linux to process each received packet.
The high cost of virtualizing I/O in the driver domain limits net-
work throughput when running Xen to only 2.9 Gb/s on a modern
server which is able to achieve 9.3 Gb/s when running native Linux.

This paper presented mechanisms that significantly reduce the
processing cost of the driver domain. First, the efficient use of
a multi-queue NIC eliminates packet demultiplexing and copying
overheads leading to a 69% reduction in processing cycles executed
on behalf of the driver domain (including kernel and hypervisor
code). Second, the reuse of page grants from the guest domain leads
to a 53% reduction in the remaining processing cycles executed on
behalf of the driver domain. These optimizations reduce the per-
packet processing cost of the driver domain from 310% to 44% of
the processing cost in native Linux.

In addition, this paper presented guest optimizations that in-
crease the throughput of a single processor guest. The use of soft-
ware Large Receive Offload (LRO), software prefetching, and half-
page network buffers leads to a 30% reduction in processing cy-
cles executed on behalf of the guest. The processing overhead in
the guest domain itself is reduced from 52% to 7% of the native
Linux cost. The remaining 7% gap between the guest domain and
native Linux is caused by higher processing cost in the virtual de-
vice driver compared to the physical device driver. In addition, the
cost of executing hypervisor code on behalf of the guest is reduced
from 8% to 4% of the processing cost of native Linux.

In summary, the aggregate processing cost of the guest and the
driver domain is reduced from 4.7 to just 1.55 times the processing
cycles consumed by native Linux. This cost reduction increases the
throughput of a single processor guest from 2.9 Gb/s to 8.2 Gb/s.
By shifting the bottleneck from the driver domain to the guests,
the optimizations presented in this paper enable the system to take
advantage of the multiple cores available in modern systems more
effectively and achieve full 10 GbE line rates when running two or
more guests.

Acknowledgments

We would like to thank Mitch Williams, John Ronciak and Intel for
providing us samples of the Intel Oplin 82598 NIC and for extend-
ing the ixgbe linux device driver to support multi-queue for Xen.
We would also like to thank the National Science Foundation for
their partial support of this project under Grant Nos. CCF-0546140
and CNS-0720878.

References

[1] Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger,
Greg Regnier, Rajesh Sankaran, Ioannis Schoinas, Rich Uhlig, Balaji
Vembu, and John Wiegert. Intel virtualization technology for directed
I/O. Intel Technology Journal, 10(3), August 2006.

[2] Advanced Micro Devices, Inc. IOMMU architectural specifi-
cation. www.amd.com/us-en/assets/content_type/white_
papers_and_tech_docs/34434.pdf, Feb 2007. PID 34434 Rev
1.20.

[3] Shefali Chinni and Radhakrishna Hiremane. Virtual machine device
queues. Intel Corp. White Paper, 2007.

[4] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Daw-
son R. Engler. An empirical study of operating system errors. In Sym-

posium on Operating Systems Principles (SOSP), pages 73–88, New
York, NY, USA, 2001.

[5] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen,
Eric Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live
migration of virtual machines. In Symposium on Networked Systems

Design and Implementation (NSDI), 2005.

[6] Intel Corp. Intel 82598 10 GbE ethernet controller open source
datasheet, 2008. Revision 2.5.

[7] Scott Devine, Edouard Bugnion, and Mendel Rosenblum. Virtualiza-
tion system including a virtual machine monitor for a computer with a
segmented architecture. VMware US Patent 6397242, Oct 1998.

[8] Keir Fraser, Steve Hand, Rolf Neugebauer, Ian Pratt, Andrew Warfield,
and Mark Williams. Safe hardware access with the Xen virtual ma-
chine monitor. In 1st Workshop on Operating System and Architec-

tural Support for the on demand IT InfraStructure (OASIS), October
2004.

[9] Leonid Grossman. Large Receive Offload implementation in Neterion
10GbE Ethernet driver. In Ottawa Linux Symposium (OLS), 2005.

[10] Ram Huggahalli, Ravi Iyer, and Scott Tetrick. Direct cache access
for high-bandwidth network I/O. In International Symposium on

Computer Architecture (ISCA), 2005.

[11] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz. Un-
modified device driver reuse and improved system dependability via
virtual machines. In Symposium on Operating Systems Design and

Implementation (OSDI), pages 17–30, 2004.

[12] Kieran Mansley, Greg Law, David Riddoch, Guido Barzini, Neil Tur-
ton, and Steven Pope. Getting 10 Gb/s from Xen: Safe and fast device
access from unprivileged domains. In Euro-Par 2007 Workshops: Par-

allel Processing, 2007.

[13] Aravind Menon and Willy Zwaenepoel. Optimizing TCP receive
performance. In USENIX Annual Technical Conference, June 2008.

[14] Aravind Menon, Jose Renato Santos, Yoshio Turner, G. Janakiraman,
and Willy Zwaenepoel. Diagnosing performance overheads in the
Xen virtual machine environment. In Conference on Virtual Execution

Environments (VEE), June 2005.

[15] Aravind Menon, Alan L. Cox, and Willy Zwaenepoel. Optimizing net-
work virtualization in Xen. In USENIX Annual Technical Conference,
June 2006.

[16] Microsoft. Hyper-V architecture. http://msdn.microsoft.com/en-
us/library/cc768520.aspx.

[17] Neterion. Product brief : Neterion X3100 series. http://www.
neterion.com/products/pdfs/X3100ProductBrief.pdf,
2008.

[18] PCI SIG. I/O virtualization. www.pcisig.com/specifications/
iov/.

[19] Himanshu Raj and Karsten Schwan. High performance and scalable
I/O virtualization via self-virtualized devices. In International Sympo-

sium on High Performance Distributed Computing (HPDC), 2007.

[20] Scott Rixner. Network virtualization: Breaking the performance bar-
rier. ACM Queue, January/February 2008.

[21] Jose Renato Santos, Yoshio Turner, G. (John) Janakiraman, and Ian
Pratt. Bridging the gap between software and hardware techniques
for I/O virtualization. In USENIX Annual Technical Conference, June
2008.

[22] Constantine Sapuntzakis, Ramesh Chandra, Ben Pfaff, Jim Chow,
Monica Lam, and Mendel Rosenblum. Optimizing the migration of
virtual computers. In Symposium on Operating Systems Design and

Implementation (OSDI), December 2002.

[23] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving
the reliability of commodity operating systems. ACM Trans. Comput.

Syst., 23(1):77–110, 2005.

[24] Paul Willmann, Jeffrey Shafer, David Carr, Aravind Menon, Scott
Rixner, Alan L. Cox, and Willy Zwaenepoel. Concurrent direct net-

work access for virtual machine monitors. In International Sympo-

sium on High-Performance Computer Architecture (HPCA), February
2007.

[25] Paul Willmann, Alan L. Cox, and Scott Rixner. Protection strategies
for direct access to virtualized I/O devices. In USENIX Annual Tech-

nical Conference, June 2008.

[26] Edwin Zhai, Gregory D. Cummings, and Yaozu Dong. Live migration
with pass-through device for linux vm. In Ottawa Linux Symposium

(OLS), 2008.

