Flexible Calling Context Reification
for Aspect-Oriented Programming

Alex Villazon
Faculty of Informatics
University of Lugano

Switzerland
alex.villazon@lIu.unisi.ch

ABSTRACT

Aspect-oriented programming (AOP) eases the development of
profilers, debuggers, and reverse engineering tools. Such tools fre-
quently rely on calling context information. However, current AOP
technology, such as AspectJ, does not offer dedicated support for
accessing complete calling context within aspects. In this paper,
we introduce a novel approach to calling context reification that
reconciles flexibility, efficiency, accuracy, and portability. It relies
on a generic bytecode instrumentation framework ensuring com-
plete bytecode coverage, including the standard Java class library.
‘We compose our program transformations for calling context reifi-
cation with the Aspect] weaver, providing the aspect developer an
efficient mechanism to manipulate a customizable representation of
the complete calling context. To highlight the benefits of our ap-
proach, we present ReCrash as an aspect using a stack-based call-
ing context representation; ReCrash is an existing tool that gener-
ates unit tests to reproduce program failures. In comparison with
the original ReCrash tool, our aspect resolves several limitations,
is extensible, covers also the standard Java class library, and causes
less overhead.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Frameworks; D.3.4 [Programming Languages]: Proces-
sors—Optimization

General Terms

Languages, Measurement, Performance

Keywords

Calling context reification, aspect weaving, bytecode instrumen-
tation, composition of program transformations, debugging, Java
Virtual Machine

INTRODUCTION

Techniques for profiling, debugging, and reverse engineering of-
ten benefit from detailed calling context information. Regarding

1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AOSD’09, March 2—-6, 2009, Charlottesville, Virginia, USA.

Copyright 2009 ACM 978-1-60558-442-3/09/03 ...$5.00.

Walter Binder
Faculty of Informatics
University of Lugano

Switzerland
walter.binder@unisi.ch

63

Philippe Moret
Faculty of Informatics
University of Lugano

. Switzerland
philippe.moret@Iu.unisi.ch

profiling, the calling context tree [3] is a popular profiling data-
structure that helps locate performance bottlenecks in programs.
As an example in the debugging area, calling context informa-
tion has been used to reproduce the crashing conditions of faulty
applications by storing copies of method arguments on a shadow
stack [4]. Concerning reverse engineering, it is possible to auto-
matically reverse-engineer network protocols by analyzing the han-
dling of different protocol fields in a message, which typically in-
volves different calling contexts [21].

Aspect-oriented programming (AOP) [19] is a promising ap-
proach for rapid prototyping of profilers, debuggers, and reverse
engineering tools. In [22], several profiling tools are presented
as aspects in a concise manner. Unfortunately, current AOP lan-
guages, such as Aspect] [18], do not offer dedicated support for
efficiently accessing detailed calling context information. While it
is possible to specify aspects to gather calling context information,
such aspects typically cause high runtime overhead, limiting the
practicability of aspect-based techniques for profiling, debugging,
or reverse engineering.

In Java, the only standard API to
context information is the Throwable class. Using
new Throwable().getStackTrace(), a thread can obtain
a trace of its call stack. However, the overhead of allocating a
Throwable instance and filling in the stack trace can be excessive
if it is done frequently, such as upon each method invocation. AOP
frameworks, such as JAsCo [27] and JBoss AOP [17], use this
technique to implement the cf1low pointcut, resulting in high over-
head [9]. Aspect] provides limited access to dynamic and static
calling context information (e.g., thisJoinPoint, thisJoin-
PointStaticPart, thisEnclosingJoinPointStaticPart).
However, there is no efficient, built-in construct to access complete
calling context.

In this paper we present a novel program transformation for
customizable, efficient, accurate, and portable calling context
reification. Our approach is customizable, because it supports
user-defined calling context representations, such as the shadow
stack [4]. For efficiency reasons, the reified calling context is passed
as extra method arguments from the caller to the callee, while en-
suring compatibility with native code and with stack introspection.
Passing context information as extra arguments is a common tech-
nique employed by Aspect] compilers, e.g., for implementing ac-
cess to the special variable thisJoinPoint [15]; the compiler
generates code to pass the current JoinPoint instance to advices.
We generalize the passing of extra arguments to every instrumented
method so as to reduce the overhead of complete calling context
reification. Accuracy of the reified calling context is ensured by
using an instrumentation technique that guarantees complete byte-
code coverage. That is, every method with a bytecode representa-

access calling

tion can be instrumented, including methods in the standard Java
class library and in dynamically downloaded or generated classes.
In order to ensure portability, our approach has been implemented
in pure Java and has been successfully tested with standard Java
Virtual Machines (JVMs) on different platforms.

Our approach integrates particularly well with Aspect], since
it does not require any modification or extension of the Aspect]
language and of existing aspect weaving tools. We use a compo-
sition of FERRARI-based program transformations. FERRARI!
(Framework for Exhaustive Rewriting and Reification with Ad-
vanced Runtime Instrumentation) [7] is a general-purpose byte-
code instrumentation framework that generates the necessary pro-
gram logic to enable user-defined instrumentation modules (UDlIs)
to cover all bytecodes that execute in the JVM. Moreover, we lever-
age the AJ-UDI [28], which integrates the Aspect] weaver with
FERRARI such that aspects can be woven also into the standard
Java class library. This feature, which is essential for aspects used
in profiling or debugging that require full bytecode coverage, is not
supported by current aspect weaving tools, such as AspectJ [18] or
abc [6].

In this paper we present two new FERRARI UDIs, the CC-UDI
and the AJ-CC-UDI. The CC-UDI implements our new approach
to calling context reification. The AJ-CC-UDI is a composition of
the AJ-UDI and the CC-UDI. In conjunction with FERRARI, the
AJ-CC-UDI enhances Aspect] with calling context awareness and
full bytecode coverage.

We illustrate the benefits of our approach by representing and
extending the functionality of the ReCrash tool [4] with an aspect
using a shadow stack. ReCrash is an existing tool (not using AOP)
that generates unit tests to reproduce program failures. Thanks to
FERRARI and the AJ-CC-UDI, we remove several limitations of
ReCrash, significantly improve its coverage, and at the same time
reduce its overhead.

The scientific contributions of this paper are threefold:

1. We introduce generic program transformations for calling
context reification that reconcile customizability, efficiency, accu-
racy, and portability.

2. We compose these transformations, implemented by the
CC-UDI, with the AJ-UDI, enabling aspects with complete byte-
code coverage to efficiently manipulate calling context informa-
tion.

3. We present a case study in the debugging domain, highlight-
ing the benefits of our approach. Moreover, we assess the overhead
reductions achieved by using the CC-UDI.

This paper is structured as follows. Section 2 recapitulates our
prior work on which this paper builds. Section 3 discusses the lim-
itations of calling context reification with standard AOP constructs
and introduces the principles of our efficient calling context reifi-
cation techniques. Section 4 explores the hurdles that need to be
addressed for compatibility with native code and stack introspec-
tion. Section 5 details the general instrumentation scheme for call-
ing context reification, implemented by the CC-UDI. Section 6 ex-
plains the composition of aspect weaving and calling context reifi-
cation, provided by the AJ-CC-UDI. Section 7 presents our Re-
Crash case study. Section 8 assesses the runtime overhead due to
calling context reification. Section 9 discusses related work. Fi-
nally, Section 10 concludes this paper.

2. PRIOR WORK

In this section we briefly summarize our prior work on which
this paper depends; for details, we refer to [7, 28].

"http://www.inf .unisi.ch/projects/ferrari/

64

FERRARI [7] is a generic bytecode instrumentation frame-
work that guarantees the instrumentation of every code execut-
ing in a virtual machine that has a corresponding bytecode rep-
resentation. FERRARI consists of a static instrumentation tool
and a load-time instrumentation agent, which is based on the
java.lang.instrument package introduced in JDK 1.5. The for-
mer tool is used for statically instrumenting the standard Java class
library (including also the vendor-specific Java classes of the run-
time system), whereas the latter agent dynamically instruments all
application classes. Both of them invoke a user-defined instrumen-
tation module (UDI) through an interface, following the Strategy
pattern. The UDI may change method bodies, add new methods
(with minor restrictions), and add fields (with some restrictions).
To this end, FERRARI passes the original class bytes to the UDI
and receives back the UDI-instrumented class bytes. FERRARI’s
general purpose API [7] allows the seamless integration of existing
bytecode transformation tools through UDIs.

FERRARI ensures that UDI-inserted code is not executed be-
fore the JVM has completed bootstrapping and provides sup-
port for temporarily bypassing the execution of inserted code for
each thread, e.g., during load-time instrumentation or when UDI-
inserted code invokes instrumented methods, such as methods of
the Java class library. FERRARI keeps a copy of the original code
of every instrumented method and inserts bypasses (conditionals)
that allow reverting to the original code.

The AJ-UDI [28] enables Aspect] aspects to be woven into both
application and standard Java classes. The AJ-UDI relies on stan-
dard, unmodified Aspect] weaving tools. In [28], the AJ-UDI is
validated with existing profiling aspects [22] and with an aspect for
memory leak detection.

Regarding classes of the standard Java class library, the AJ-UDI
imposes some restrictions concerning the possible program trans-
formations. For example, non-singleton aspect instances using
per* clauses (e.g., per-object or per-control flow aspect associa-
tion) are currently not supported, because such mechanisms may
modify the class hierarchy of the woven classes (e.g., to imple-
ment a compiler-generated interface). Changing the hierarchy of
JDK classes may break the bootstrapping, therefore the AJ-UDI
does not support such constructs. [28] mentions further limitations
of the AJ-UDI regarding the inter-type declaration mechanism that
allows explicit structural transformations of woven classes. While
we have removed many of these restrictions from the AJ-UDI in the
meantime, some JVMs may still limit the use of static cross-cutting
in JDK classes.2 Other transformations (method body modifica-
tions, insertion of advice invocation, additional static fields, access
to reflective information in advices, etc.) are supported for JDK
weaving in general.

3. CALLING CONTEXT REIFICATION

Aspect])’s reflective API provides information about the current
calling context through thisJoinPoint, but does not directly pro-
vide aspects with the complete calling context. One way to obtain
full calling context information is to transform each method so as
to maintain a representation of the calling context. We call this
approach calling context reification.

In this section we discuss two different techniques for calling
context reification with aspects. As calling context representation,
we focus on the shadow stack, which is commonly used in the

2For instance, Sun’s JVMs make assumptions on the size of the
class Object that prevent the insertion of instance fields in that
class. In contrast, we successfully used inter-type declarations to
add instance fields to Object in IBM’s J9 JVM.

public aspect CCAspectSlow {
public static final class ShadowStack {
private static final int MAX_STACK_SIZE = 10000;
public int sp = 0;
public final Object[] stack = new Object [MAX_STACK_SIZE];
}

private static final ThreadLocal<ShadowStack> TL =
new ThreadLocal<ShadowStack>() {
protected ShadowStack initialValue() {
return new ShadowStack();
}
};

pointcut allExecs() :
execution(* *(..)) && !within(CCAspectSlow);

before() : allExecs() {
ShadowStack ss = TL.get();
ss.stack[ss.sp] = thisJoinPoint; // push context

ss.sp = ss.sp + 1;

}

: allExecs() {
TL.get();
null;

after() returning()
ShadowStack ss =
ss.stack[ss.sp] =
ss.sp = ss.sp - 1;

// pop context

}
after () throwing() : allExecs() {
ShadowStack ss = TL.get();
ss.stack[ss.sp] = null; // pop context

ss.sp = ss.sp - 1;

}

Figure 1: Naive calling context reification.

area of debugging [4]. Each thread maintains a separate, thread-
confined shadow stack reflecting the invoked methods on the call
stack in the virtual machine. First, we present a naive approach to
calling context reification that relies only on standard Aspect] con-
structs. However, the naive approach suffers from high overhead.
Therefore, we introduce our optimized approach, which requires
special program transformations in addition to aspect weaving.

3.1 Naive Reification Using a Thread-local
Variable

AOQOP allows us to concisely specify program transformations
for calling context reification. Figure 1 illustrates an aspect
CCAspectSlow that maintains a shadow stack for each thread. The
shadow stack is an instance of type ShadowStack that includes
an object array stack and an integer stack pointer sp; the next
free entry on the shadow stack is stack[sp]. We assume that
MAX_STACK_SIZE is large enough such that the shadow stack never
overflows. The thread-local variable TL provides the ShadowStack
instance of the current thread.

Upon method entry and completion (normal completion as well
as abnormal completion by throwing an exception), the current
thread’s shadow stack is updated accordingly. On method entry,
a representation of the invoked method is pushed on the shadow
stack; upon method completion, it is popped off the shadow stack.
We use JoinPoint instances to represent method invocations on
the shadow stack (provided by the thisJoinPoint construct).

The aspect in Figure 1 has three advices. The first advice handles
method entry. The other two advices handle normal respectively
abnormal method completion. Here we do not consider the execu-
tion of constructors in order to simplify the discussion; in our case
study in Section 7 we will also deal with constructors.

The CCAspectSlow shown in Figure 1 has two major draw-
backs:

65

public aspect CCAspectFast {
pointcut allExecs() :
execution(* *(..)) && !within(CCAspectFast);

before() : allExecs() {
SSAccess.thisStack() [SSAccess.thisSP()] = thisJoinPoint;
}
after() returning() : allExecs() {
SSAccess.thisStack() [SSAccess.thisSP()] = null;
}
after() throwing() : allExecs() {
SSAccess.thisStack() [SSAccess.thisSP()] = null;

¥
}

public final class SSAccess { // marker methods
public static Object[] thisStack() {
throw new UnsupportedOperationException();

}

public static int thisSP() {
throw new UnsupportedOperationException();

}

Figure 2: Efficient calling context reification.

1. The shadow stack excludes invocations of native methods, be-
cause the aspect can be woven only into Java methods.

2. The aspect causes high runtime overhead, as we will show in
Section 8, because the thread-local variable TL is accessed in each
advice. Moreover, the stack pointer sp, which is kept in an object
field on the heap, is updated upon method entry as well as upon
method completion, contributing to the high overhead.

The first limitation can be solved with native method prefixing,
a feature of the standard JVM Tool Interface (JVMTI) [26] intro-
ducted in JDK 1.6. Native methods are renamed by prepending a
well-chosen prefix that is announced to the JVM (the prefix should
not occur in any method name). When linking native code libraries,
the JVM is able to match method names declared with a prefix
with unchanged method names in native code libraries. For each
renamed native method, a Java method with the original name and
signature is added, which invokes the corresponding renamed na-
tive method; we call these inserted Java methods replacement meth-
ods. Since replacement methods are instrumented by the aspect
weaver as any other Java methods, the generated calling context
representation will include the invocations of native methods. Our
approach to calling context reification presented in the next sections
relies on native method prefixing.

The second issue, high runtime overhead, can be addressed by
passing the caller’s context (i.e., the object array stack and the
stack pointer sp) to the callee as additional method arguments. In-
stead of maintaining the calling context as a ShadowStack instance
on the heap that is accessed through a thread-local variable, each
method invocation keeps a reference to the object array stack and
its sp value in local variables on the call stack. Since it is not
possible to express such an instrumentation with current AOP lan-
guages, we implemented it as a special FERRARI UDI for calling
context reification (CC-UDI) and composed that UDI with the As-
pect] weaver.

3.2 [Efficient Reification with Extra Method
Arguments

Figure 2 shows an aspect for efficient calling context reification.
It relies on a dedicated instrumentation of the woven code (pro-
vided by the CC-UDI) so as to pass the calling context as extra
method arguments. Moreover, it requires the compiled aspect itself

Compiled CCAspectSlow (naive reification):

public class CCAspectSlow {
public static CCAspectSlow aspectOf() {...}

public void before(JoinPoint tjp) {
ShadowStack ss = TL.get();
ss.stack[ss.sp] = tjp;
ss.sp = ss.sp + 1;

}

public void afterReturning() {
ShadowStack ss = TL.get();
ss.stack[ss.sp] = null;
ss.sp = ss.sp - 1;

}

public void afterThrowing() {
ShadowStack ss = TL.get();
ss.stack[ss.sp] = null;
ss.sp = ss.sp - 1;

}

Compiled and transformed CCAspectFast (efficient reification):

public class CCAspectFast {
public static CCAspectFast aspectOf() {...}

public void before(JoinPoint tjp, Object[] stack, int sp) {
stack[sp] = tjp;

public void afterReturning(Object[] stack, int sp) {
stack[sp] = null;
}

public void afterThrowing(Object[] stack, int sp) {
stack[sp] = null;
}

}

Figure 3: Comparison of the compiled CCAspectSlow with the compiled and transformed CCAspectFast (pseudo-code).

Sample code calculating Fibonacci numbers:

public class Fibonacci {
public static int fib(int n) {

// assert n >= 0;
return n<=1 ? n :

Code after weaving CCAspectSlow:

public class Fibonacci {
public static int fib(int n) {

JoinPoint tjp = ...; // create JoinPoint instance
CCAspectSlow a = CCAspectSlow.aspect0f();
try {
a.before(tjp);
int res = (n<=1 ? n : fib(n-1)+fib(n-2));
a.afterReturning();
return res;
}
catch(Throwable t) {
a.afterThrowing() ;
throw t;

}

fib(n-1)+fib(n-2);

Code after weaving CCAspectFast and after instrumentation:

public class Fibonacci {
public static int fib(int n, Object[] stack, int sp) {
int calleeSP = sp + 1;
JoinPoint tjp = ...; // create JoinPoint instance
CCAspectFast a = CCAspectFast.aspect0f();
try {
a.before(tjp, stack, sp);
int res = (n<=1 ? n : fib(n-1, stack, calleeSP) +
fib(n-2, stack, calleeSP));
a.afterReturning(stack, sp);
return res;
¥
catch(Throwable t) {
a.afterThrowing(stack, sp);
throw t;

}

public static int fib(int n) {
return fib(n, SSRuntime.findStack(), SSRuntime.findSP());
}
}

Figure 4: Comparison of a woven method using CCAspectSlow with a woven and instrumented method using CCAspectFast (pseudo-

code).

to be transformed in order to access the introduced extra arguments
(details of this transformation will be presented in Section 6).

CCAspectFast gets direct access to the object array stack
and to the stack pointer sp through the static methods
SSAccess.thisStack() and SSAccess.thisSP (). These meth-
ods are used as markers for the transformation of the compiled as-
pect and are never invoked at runtime (this is emphasized in the
method bodies throwing UnsupportedOperationException).
In the compiled advice methods, all invocations of these two static
methods are replaced with bytecodes that access the corresponding
extra arguments.

66

Figure 3 compares CCAspectSlow after compilation with
CCAspectFast after compilation and transformation. ~While
CCAspectSlow has to access the thread-local variable TL upon
each advice invocation, CCAspectFast directly updates the object
array stack at the right position. Note that CCAspectFast does
not update the stack pointer sp, since our instrumentation (which
is applied to the woven code) will pass the correct sp value to each
invoked advice method. The pseudo-code in Figure 4 illustrates
the application of CCAspectSlow and CCAspectFast to a sample
method computing Fibonacci numbers. The aspect weaver gener-
ates infrastructural code to create the context information at the join

point, which is passed to the before advice, since it makes use of
thisJoinPoint. The weaver also inserts invocations to the static
aspect0f () method (which is generated upon aspect compilation)
to access the singleton aspect instance.’

For CCAspectFast, the CC-UDI (which is applied after as-
pect weaving) introduces the extra method arguments, computes
the stack pointer value calleeSP to be passed to callee meth-
ods, and generates a method with the original signature to en-
sure compatibility with native code (and reflection), which is not
aware of the extra arguments and hence may invoke the method
with the original signature. In that case, the static methods
SSRuntime.findStack() and SSRuntime.findSP() look up
the current thread’s shadow stack. The implementations of these
methods will be given in Section 5.

When compared to CCAspectSlow, CCAspectFast reduces the
overhead of calling context reification by almost factor 2 in stan-
dard, state-of-the-art virtual machines. A detailed overhead evalu-
ation will be presented in Section 8.

4. METHOD OVERLOADING

In this section we explore the intricacies of introducing the rei-
fied calling context as extra method arguments. First, we con-
sider native code compatibility, which requires method overload-
ing by our instrumentation. Afterwards, we investigate limitations
of method overloading.

While in the previous section we concentrated on the shadow
stack and represented the calling context as two extra arguments
(an object array and an integer), we now consider a generalized
calling context represented by an N-tuple < ccq,...,ccy >, where
cc;j is of type CCj; CC; may be a primitive type or a reference type
(1 <i<N). Each element cc; of the tuple is mapped to an ex-
tra argument. For the shadow stack, N=2, CC;=0bject[], and
CCr=int.

4.1 Compatibility with Native Code

Conceptually, the signatures of all methods, including the in-
serted replacement methods (due to native method prefixing), are
extended with the N extra arguments of types CC; so as to pass the
calling context from the caller to the callee. Hence, a non-native
method £() gets transformed into method £(CCy,...,CCy),
which we call Extended-Signature-Instrumented (ESI) method.

For compatibility with native code, it is essential to provide
methods with the unmodified signature such that native code can
invoke any Java method without passing the extra arguments. We
call these introduced methods with the original signature Native-
to-Bytecode (N2B) wrappers.

As we rely on native method prefixing [26], native methods are
invoked only by the inserted replacement methods. Replacement
methods do not pass any extra argument upon invocation of the
corresponding native methods.

N2B wrappers (as well as prefixed native methods) preserve the
original method signature, whereas ESI methods receive N extra
arguments. That is, conceptually we are overloading all methods,
including also method declarations in interfaces.

4.2 Non-Overloadable and Non-Wrappable
Methods

Ideally, all methods should be overloaded in the same way. Un-
fortunately, in current JDKs there are a few methods that cannot
be overloaded; we call them non-overloadable methods. Non-

3The weaver inserts code to call aspect0f () before each advice
invocation, which is not shown in Figure 4 for simplicity.

67

overloadable methods are not necessarily excluded from instru-
mentation; normally, the bodies of non-overloadable Java methods
can be instrumented.

A few JDK methods cannot be overloaded for three reasons:

1. A bug in Sun’s recent JDKs prevents the insertion of
more than two non-static, non-private, non-final methods into
java.lang.Object®. We work around this bug by mak-
ing Object.toString() and Object.equals(Object) non-
overloadable.

2. We consider Object.finalize() non-overloadable and
also exclude it from instrumentation. Otherwise, the overhead of
garbage collection would significantly increase for each object.

3. Some code for stack introspection within the JVM veri-
fies the signatures of certain methods on the call stack. Since
ESI methods have extended signatures, their presence on the
call stack may break such checks. In Sun’s recent JDKs, the
method java.lang.reflect.Method.invoke(...) is non-
overloadable for this reason.

Because non-overloadable methods must be invoked without ex-
tra arguments, it is necessary to consider polymorphic call sites and
inheritance of non-overloadable methods. FERRARI [7] provides
dedicated support for determining whether extra arguments can be
passed upon instrumentation of a call site.

The use of stack introspection in the JVM causes further
complications. Invocations of N2B wrappers constitute extra
frames on the call stack. The presence of such additional
stack frames may break JVM-internal code for stack introspec-
tion. For instance, in Sun’s JDKs there are certain methods
that rely on a particular invocation sequence. Examples in-
clude methods in java.lang.Class, java.lang.ClassLoader,
java.lang.Runtime, and java.lang.System. The execution
of the affected methods requires inspection of the n topmost stack
frames of callers to determine whether an operation shall be permit-
ted; for each affected method, n is a statically known constant. Ad-
ditional stack frames due to the invocation of N2B wrappers may
break such stack introspecting code. Those methods in the Java
class library that must not be invoked through wrappers are called
non-wrappable methods in the following.

Invocations of replacement methods also constitute extra frames
on the call stack. However, since the Java class library supports
native method prefixing, the code for stack introspection skips the
frames corresponding to prefixed native methods. Nonetheless, if
a native method is non-wrappable, then the corresponding replace-
ment method is non-wrappable.

We need to make sure that there are no extra stack frames when
invoking a non-wrappable method. This can be achieved by using
code duplication instead of wrapping for compatibility with native
code. That is, instead of introducing an N2B wrapper that calls
the corresponding ESI method with the extra arguments, we can
duplicate the instrumented method body in the method with the
unmodified signature; we call the resulting method an Original-
Signature-Instrumented (OSI) method.

In Sun’s recent JDKs, there are about 50 non-wrappable Java
methods where OSI methods must be generated instead of N2B
wrappers. If the set of non-wrappable methods is not known, it
is possible to use OSI methods instead of N2B wrappers for all
methods, causing however significant code bloat.

“http://bugs.sun.com/bugdatabase/view_bug.do?bug_
1d=6583051

void £() {
ééﬁectof();
;&;ice();
ééérloadable();
ﬁéﬁoverloadable();
}

Figure 5: Example woven method to be instrumented for call-
ing context reification (pseudo-code).

S. INSTRUMENTATION FOR CALLING

CONTEXT REIFICATION (CC-UDI)

In this section we present the details of our instrumentation for
efficient, accurate, and portable calling context reification, which
we implemented as a configurable FERRARI UD], called CC-UDI.
Here we describe the transformation scheme assuming previous as-
pect weaving. The actual composition of aspect weaving with the
CC-UDI instrumentation will be illustrated in the next section.

5.1 General Instrumentation Scheme

As mentioned before, the CC-UDI represents the calling context
as an N-tuple < ccy,...,ccy >, where cc; is of type CC;. N and the
types CC; are configuration parameters of the CC-UDL

In addition, the CC-UDI has the configuration parameters
findContext; and calleeContext;, which refer to user-defined static
methods that are inlined in the instrumented code. We call these
static methods code snippets. Code snippet findContext; has no ar-
guments and returns an instance/value of type CC;. It is inlined in
N2B wrappers and in OSI methods in order to obtain cc;. Code
snippet calleeContext; takes and returns an instance/value of type
CC;. Tt is inlined in ESI and OSI methods so as to compute the i
extra argument to be passed to callees.

Figure 5 shows a woven example method £ () with invocations to
the aspectO0f () method, to an advice method, to an overloadable
method, and to a non-overloadable method. Invocations of native
methods within replacement methods are treated in the same way
as non-overloadable methods (i.e., extra arguments are not passed).

The pseudo-code in Figure 6 illustrates the CC-UDI instrumen-
tation for N2B, ESI, respectively OSI methods. aspect0f ()
and non-overloadable methods are invoked without extra argu-
ments. Advice methods receive the extra arguments that repre-
sent the calling context of the currently executing method, whereas
overloadable methods receive the extra arguments representing
the callee’s context. Depending on the characteristics of method
£ () (overloadable versus non-overloadable, wrappable versus non-
wrappable), N2B, ESI, respectively OSI methods are generated as
follows:

Method £() Generated methods

Overloadable and wrappable N2B and ESI
Overloadable and non-wrappable OSI and ESI
Non-overloadable OSI

5.2 Inlining of Code Snippets

The instrumentation performed by the CC-UDI requires the in-
lining of the code snippets findContext; and calleeContext; accord-
ing to Figure 6. Here we give an overview of the necessary instru-
mentation steps.

Since for load-time instrumentation of application classes, the
execution of the inlining algorithm contributes to the runtime over-
head, the algorithm should be as efficient as possible. Hence, the

68

N2B:
void £() {
CC_1 cc_1 = findContext_1(); // inlined
CC_N cc_N = findContext_N(); // inlined
f(cc_1, ..., cc_N);
}
ESI:

void £(CC_1 cc_1, ...
CC_1 calleeCC_1 =

, CC_N cc_N) {
calleeContext_1(cc_1); // inlined

CC_N calleeCC_N = calleeContext_N(cc_N); // inlined

aspect0f();
advice(cc_1, ..., cc_N);
overloadable(calleeCC_1, ..., calleeCC_N);

nonoverloadable();

}
OSI:

void £() {
CC_1 cc_1 = findContext_1(); // inlined
éé;N cc_N = findContext_N(); // inlined
CC_1 calleeCC_1 = calleeContext_1(cc_1); // inlined
CC_N calleeCC_N = calleeContext_N(cc_N); // inlined
;;ﬁectﬂf();
;(;h.rice(cc_i, ..., cc_N);
;;érloadable(calleecc_l, ..., calleeCC_N);
Aégoverloadable();

}

Figure 6: Generated N2B, ESI, respectively OSI methods for
method f() in Figure 5.

CC-UDI imposes three restrictions on the code snippets in order to
simplify inlining.

1. The JVM local variable corresponding to the argument of
code snippet calleeContext; is only read but not written. Conceptu-
ally, calleeContext; is a function that does not modify its argument.

2. Each code snippet leaves the operand stack empty on return.

3. In each code snippet, the last instruction is a return bytecode,
and there is no second return bytecode in the snippet. Thus, when
inlining a code snippet, we can simply delete the return bytecode
form the snippet, and the inlined code will leave the return value on
the operand stack.

For the code snippets we have been using with the CC-UDI so
far, standard Java compilers generate bytecode conforming to these
restrictions. Otherwise, the code snippets can be provided as man-
ually crafted bytecode. Furthermore, code snippets may invoke ar-
bitrary methods, which are not concerned by the aforementioned
restrictions.

For each extra argument i, the CC-UDI allocates two JVM local
variables, [varf“”” and lvarf“”“, in the method under instrumen-
tation. While lvari“‘”e’ holds the instance/value cc; provided by the
caller (in ESI methods) or by the code snippet findContext; (in OSI

methods), / varl?‘“”“ stores the instance/value computed by the code

snippet calleeContext;, which will be passed to overloadable callee
methods. Note that in ESI methods, lvarl-“‘”e’ must correspond to
the JVM local variable in which the i extra argument is passed.
If that local variable is used in the original method body, the body
needs to be updated to use a different local variable instead.

The CC-UDI performs two straightforward optimizations to re-
duce the number of allocated JVM local variables and to avoid gen-
erating unnecessary bytecode.

1. If the method under instrumentation was a leaf method before
aspect weaving (i.e., disregarding invocations of aspect0f () and
of advice methods), then for all i, the local variable lvaric“”ee is not
allocated and the code snippet calleeContext; is not inlined.

2. If code snippet calleeContext; computes the identity func-
tion (i.e., it simply returns the passed argument of type CC;j),
then lvarf“”“ is not allocated and the code snippet calleeContext;
is not inlined. Overloadable callee methods will receive the in-
stance/value stored in lvarf“”” as i extra argument.

The code snippet findContext; is inlined as follows: First, rename
all local variables used in the code snippet such that they do not
interfere with the method under instrumentation. Second, delete
the trailing return bytecode in the code snippet. Third, copy the
remaining bytecodes of the code snippet and insert a subsequent
bytecode to store the value on top of the operand stack in the local
variable lvarf“”” .

Inlining of the code snippet calleeContext; proceeds in a simi-
lar way. However, local variable zero in the code snippet must be
treated specially, since it is supposed to receive the argument cc;.
Thus, in the snippet we rename local variable zero to [varic“”” . The

result of the code snippet on the operand stack is stored in [varf“”“.

5.3 Configuration for the Shadow Stack

For the shadow stack presented in Section 3, the reified call-
ing context is represented by two extra arguments, an object ar-
ray stack and an integer stack pointer sp. The configuration of
the CC-UDI, the code snippets in class SSCodeSnippets, and the
runtime class SSRuntime are given in Figure 7.

Note that the code snippet calleeStack(Object[]) com-
putes the identity function; hence, only a single JVM local vari-
able will be allocated for the object array stack, and the snippet
calleeStack(Object []1) will not be inlined.

The object array stack is kept in the thread-local variable
SSRuntime.TL. Thus, in N2B wrappers and in OSI methods, the
stack can be retrieved from the thread-local variable. In contrast,
the stack pointer sp is never stored in a thread-local variable, but
is computed by searching the stack for the null value with the
lowest index (binary search). Note that access to the thread-local
variable and computation of the stack pointer happen relatively in-
frequently, because in the common case of an overloadable method,
the caller directly passes stack and the correct sp value as extra
arguments.

6. COMPOSITION OF
TRANSFORMATIONS

In this section we firstly illustrate the overall code transforma-
tions performed by the AJ-CC-UDI that enables woven aspects
to access complete calling context information. Thanks to FER-
RARI [7], complete bytecode coverage is ensured. Secondly, we
discuss the necessary transformations of the compiled aspect. Fig-
ure 8 gives an overview of the transformation steps.

69

N 2;
cc_1 Object[];
CC_2 int;

findContext_1
findContext_2
calleeContext_1
calleeContext_2

SSCodeSnippets.findStack();
SSCodeSnippets.findSP() ;
SSCodeSnippets.calleeStack();
SSCodeSnippets.calleeSP();

public final class SSCodeSnippets { // inlined by the CC-UDI
public static Object[] findStack() {
return SSRuntime.findStack();
}

public static int £indSP() { return SSRuntime.findSP(); }

public static Object[] calleeStack(Object[] stack) {
return stack;

}

public static int calleeSP(int sp) { return sp + 1; }
}

public class SSRuntime { // called by inlined code snippets
private static final int MAX_STACK_SIZE = 10000;

private static final ThreadLocal<Object[]> TL =
new ThreadLocal<Object[]>() {
protected Object[] initialValue() {
return new Object [MAX_STACK_SIZE];
}
};

public static Object[] findStack() { return TL.get(); }

public static int findSP() {
Object[] stack = findStack();

int min = 0;

int max = stack.length - 1;

assert stack[max] == null; // the stack is never full
// find the smallest index i such that stack[i] == null

while (min < max) { // binary search
int mid = (min + max) / 2;
if (stack[mid] == null) max = mid;
else min = mid + 1;

¥

return min;

¥
}

Figure 7: Shadow stack: CC-UDI configuration, code snippets,
and class SSRuntime.

6.1 FERRARI Instrumentations
(AJ-CC-UDI)

The AJ-CC-UDI is a composition of the AJ-UDI [28] and the
CC-UDI presented in the previous section.

Figure 9 illustrates the dynamic behavior of the program trans-
formation composition implemented by the AJ-CC-UDI for load-
time instrumentation (for the static instrumentation of JDK classes,
the AJ-CC-UDI behaves in a similar way). FERRARI’s instru-
mentation agent receives the class to be instrumented through the
java.lang.instrument API All the parameters and return val-
ues shown in Figure 9 are byte arrays representing a class. The
overall instrumentation involves the following four steps:

1. Native method prefixing: FERRARI introduces a replacement
method for each native method.

2. Aspect weaving: The AJ-UDI weaves the aspect into Java
methods (including the replacement methods).

3. Calling context reification: The CC-UDI overloads methods
to pass the reified calling context as extra arguments whenever pos-
sible, according to a given configuration.

4. Bypass generation: FERRARI generates bypasses for skip-
ping UDI-inserted code during JVM bootstrapping, during load-
time instrumentation, and when executing methods of the aspect.

Aspect (Source)

{ Application } { Class Library J

Aspect]
Compiler
(ajc)

Aspect]
Weaver

Compiled Aspect

/{ Configuration .
| AJ-CC-Trans | ™
Code Snippets r-=--~

Instrumented
Application

<<call>>

<
Transformed <<call>>

Aspect

Instrumented
Class Library

Figure 8: Overview of the transformation steps.

‘ WM I ‘ FERRARI I ‘ AJ-CC-UDI I ‘ AJ-UDI ‘ cc-upl

transform(origClass, ..)

insertRepMethods(origClass)

i - - repIClass

instrument(replClass,...)

v

instrument(repIClass, ..)

e aiass] |

R
,,,,,,,,,,,,,,,,,,, siccClass ||

ajecClass

insertBypasses(ajccClass)
-
i - - transformedClass
transformedClass

Figure 9: Simplified sequence diagram of the instrumentation
composition.

6.2 Aspect Transformations (AJ-CC-Trans)

The compiled aspect (which is not processed by FERRARI) is
transformed by the automated tool AJ-CC-Trans in order to handle
the reified calling context.

AJ-CC-Trans relies on the CC-UDI configuration parameters N
(the number of extra arguments) and CC; (the types of the ex-
tra arguments). In addition, it requires additional configuration
parameters accessContext;, which refer to static marker methods
to access the i™ extra argument within aspects. In the case of
the shadow stack, accessContext|=SSAccess.thisStack() and
accessContexty=SSAccess.thisSP (). Figure 2 gives an example
how the calling context is accessed within an aspect.

AJ-CC-Trans transforms the compiled aspect in the following
three ways:

1. The signatures of the advice methods are extended to receive
the reified calling context as extra arguments (the signature of the
aspect0f () method is not modified). This transformation works,
because the CC-UDI, which is applied after aspect weaving, trans-
forms invocations to the advice methods so as to pass the calling
context as extra arguments.

2. Invocations of the static marker methods accessContext; are
replaced with corresponding JVM load bytecodes.

3. In the beginning of each advice method, code is inserted to

70

activate the bypasses introduced by FERRARI such that the exe-
cution of advices does not create any artifacts in the reified calling
context. Hence, advice methods may invoke methods in the Java
class library without risking any recursive advice invocation.

7. CASE STUDY: RECRASH

ReCrash [4] is a tool enabling developers to analyze and repro-
duce the state of an application before crashing. It generates unit
tests that help the developer recreate crash conditions. ReCrash
instruments the application code to store (copies of) the actual ar-
guments passed to every method on a shadow stack. Upon method
entry, an element containing the arguments is pushed on the shadow
stack and upon normal method termination, the element is removed
from the shadow stack. ReCrash can use different copy strate-
gies; e.g., it can make a deep copy of each argument or store only
a reference. Crashes are detected as uncaught exceptions in the
main(String[]) method. The original main (String[]) method
is wrapped with a special exception handler that generates the unit
test to reproduce the crash using the elements of the shadow stack.

The current implementation of ReCrash suffers from several lim-
itations:

1. Functional flaws:

o If an exception thrown in a callee method is caught by a caller,
the shadow stack is not updated accordingly, resulting in spu-
rious elements on the shadow stack. Upon a subsequent crash,
test cases may be generated that are not related to the crash.

e Crashes within constructors are not handled.

e Crashes in threads other than the main thread are not handled.

2. Hard-coded instrumentation: Extending ReCrash is difficult,
since the tool relies on ASM?, a rather low-level bytecode manipu-
lation library.

3. Incomplete shadow stack: ReCrash does not support instru-
mentation of the standard Java class library. Thus, it is of limited
use for JDK developers.

4. High overhead: When applied to standard benchmarks (see
Section 8), ReCrash introduces high overhead.

Figure 10 presents our ReCrashAspect that solves all the afore-
mentioned limitations, thanks to FERRARI and the AJ-CC-UDI.
ReCrashAspect is similar to CCAspectFast in Figure 2. How-
ever, there are two major differences: First, the ReCrashAspect
covers the execution of constructors, which are also represented on
the shadow stack. The preinitialization pointcut ensures that
the shadow stack is updated in the very beginning of a construc-
tor, before invoking another constructor of the same class or of the
superclass. Second, exception handling is different, because the
shadow stack must not be updated upon abnormal method comple-
tion, unless the exception is caught by a caller. Otherwise, in the
case of a crash, the shadow stack would be empty and useless for
test case generation.

The advice woven in the beginning of exception handlers
(before(Throwable e): handler(*) &% args(e)) nullifies
the topmost shadow stack elements corresponding to the callees
that completed abnormally. Note that this is only possible because
each method on the call stack holds its corresponding sp value in
a local variable. In the case of CCAspectSlow in Figure 1, a cor-
rect cleanup of the shadow stack would be impossible, since there
is only a single sp value stored in the field of an object on the heap,

Shttp://asm.objectweb.org/

The authors of ReCrash reported significantly lower overhead [4].
However, instead of standard benchmarks, they used only a few
applications, such as “SVNK:it checkout”, which were likely I/O-
bound.

public aspect ReCrashAspect {
pointcut allExecsNews() :
(execution(* *(..)) || execution(*.new(..)))
&& 'within(ReCrashAspect)
&& 'within(com.throughtworks. .*) // used by ReCrash’s
&& 'within(edu.mit.csail.pag.recrash..*); // TraceWriter

pointcut allExecsPreinits() :
(execution(* *(..)) || execution(*.new(..))
|| preinitialization(*.new(..)))
&& 'within(ReCrashAspect)
&& 'within(com.throughtworks. .*) // used by ReCrash’s
&& 'within(edu.mit.csail.pag.recrash..*); // TraceWriter

before() : allExecsPreinits() {

SSAccess.thisStack() [SSAccess.thisSP()] = thisJoinPoint;
}
after() returning() : allExecsNews {

SSAccess.thisStack() [SSAccess.thisSP()] = null;

}

before(Throwable e) : handler(*) && args(e) {
Object[] stack = SSAccess.thisStack();
int sp = SSAccess.thisSP() + 1;
while (stack[sp] !'= null) // cleanup upon caught exception
stack[sp++] = null;
}

after() throwing(Throwable e) :
execution(public static void *.main(String[])) {
doReCrash(SSAccess.thisStack(), e);
}

private static void doReCrash(Object[] stack, Throwable e) {
for (int i = 0; stack[i] '= null; i++) {
JoinPoint jp = (JoinPoint)stack[i];
Object[] oar = jp.getArgs(); // method arguments
Object[] ar = new Object[oar.length + 1];
System.arraycopy(oar, 0, ar, 1, oar.length);
ar[0] = jp.getThis(); // null if static method
String[] st = new String[ar.length];
Signature sigjp = jp.getSignature();
st[0] = sigjp.getDeclaringTypeName();
for (int j = 1; j < st.length; j++) {
st[j] = ar[j].getClass().getName();
}
boolean[] b = new boolean[st.lengthl; // no deep copies
String sig = st[0] + "." + sigjp.getName();
TraceWriter.youMayCrash(sig, ar, st, b);
}
TraceWriter.writeTrace(e); // generate unit test cases

}

Figure 10: ReCrashAspect using a shadow stack.

and the advice cannot know the number of callees that completed
abnormally (i.e., the number of elements to pop off the shadow

stack).”
Crashes are detected as uncaught exceptions in the
main(String[]) method. This is captured by the

after() throwing(Thowable e) advice which adds an
exception handler to main(String[]). In the case of a crash,
the ReCrashAspect processes the JoinPoint instances on the
shadow stack; a null value indicates the top of the shadow stack.
The details of the method doReCrash(...) are unimportant;
it uses the TraceWriter functionality provided by the original
ReCrash tool to generate the unit tests.

7An alternative implementation of CCAspectSlow using an
around advice could keep a local copy of the sp value upon
method entry. The exception introduction pattern [20] could be
used to propagate exceptions. However, our measurements have
shown that such a solution causes even higher overhead than
CCAspectSlow.

71

after() throwing(Throwable e) : execution(void Thread+.run()) {
doReCrash(SSAccess.thisStack(), e);
}

Figure 11: Extension of ReCrashAspect to handle crashes in
threads different from the main thread.

Compared to the original ReCrash tool, our aspect offers the fol-
lowing enhancement:

1. It solves the aforementioned functional flaws. The shadow
stack is correctly maintained in the case of an exception caught by
a caller. Crashes in constructors are correctly handled, too.

2. The aspect can be easily extended. For instance, crashes in
threads other than the main thread can be handled by adding the
advice shown in Figure 11.

3. Since the instrumentation performed by the AJ-CC-UDI cov-
ers every method in the virtual machine that has a bytecode repre-
sentation, the shadow stack includes the invocations of methods in
the standard Java class library. Hence, our aspect can be a valuable
tool also for JDK developers.

4. As we will show in Section 8, our ReCrashAspect outper-
forms the original ReCrash tool on standard benchmarks.

8. EVALUATION

In this section we present our evaluation results. First, we assess
the execution time overhead caused by our approach to efficient
calling context reification and compare it with the overhead due to
naive calling context reification as discussed in Section 3. Second,
we evaluate our ReCrashAspect and compare it with the original
ReCrash tool® (version 0.3).

For our evaluation, we use the SPEC JVMO98° benchmark suite
(problem size 100) and compute the geometric mean of the bench-
marks’ execution times. Our test platform is a Linux Fedora
Core 2 computer (Intel Pentium 4, 2,66 GHz, 1024 MB RAM).
We present measurements made with the Sun JDK 1.7.0-ea-b25
HotSpot Client and Server VMs. The presented measurements
correspond to the median of 15 runs within the same JVM pro-
cess in order to attenuate the perturbations due to load-time instru-
mentation (both FERRARI and the original ReCrash tool leverage
the java.lang.instrument API for load-time instrumentation),
which primarily affects the initial program execution phase.

8.1 Naive versus Efficient Calling Context
Reification

Table 1 compares the overhead of naive calling context reifi-
cation using a thread-local variable (‘Naive’ columns) with the
overhead due to our approach passing the calling context as ex-
tra method arguments (‘Efficient’ columns). The corresponding
aspects, CCAspectSlow and CCAspectFast, are given in Fig-
ure 1 and in Figure 2. Both aspects were woven into all execut-
ing methods (in application classes as well as in the Java class
library). While CCAspectSlow was woven with FERRARI and
the AJ-UDI, CCAspectFast was woven with FERRARI and the
AJ-CC-UDL and the CCAspectFast itself was transformed with
the AJ-CC-Trans tool.

We evaluated two different shadow stack variations. The first
shadow stack stores dynamic join points (JoinPoint instances ob-
tained in the aspects via thisJoinPoint). It exactly corresponds
to the aspects in Figure 1 and in Figure 2. The second shadow
stack holds static join points (JoinPoint.StaticPart instances
obtained in the aspects via thisJoinPointStaticPart). While

8http://groups.csail.mit.edu/pag/reCrash/
“http://wuw.spec.org/osg/jvm98/

Orig. Dynamic Join Points Static Join Points Orig. ReCrash ReCrashAspect | ReCrashAspect
Naive Efficient Naive Efficient App. App. App.+JDK

Client [s] [s] ovh [s] ovh [s] ovh [s] ovh Client [s] [s] ovh [s] ovh [s] ovh
compress 57319739 17.00 | 52.13 9.10 | 73.37 12.80 | 18.76 3.27 compress 5.73 | 138.84 24.23 | 43.05 7.51] 51.09 8.92
jess 1.46 1 41.02 28.10 | 20.79 14.24 | 32.06 21.96 | 7.63 5.23 jess 1.46 | 43.65 29.90 | 14.15 9.69 | 17.96 12.30
db 14.14 | 79.08 5.59 | 48.63 3.44 | 62.88 4.45(20.72 1.47 db 14.14 | 1558 1.10 | 15.09 1.07 | 46.80 3.31
javac 395 (4482 11.35 [26.50 6.71 | 34.82 8.82| 11.84 3.00 javac 395(17.07 4.32 13.03 3.30 | 23.53 5.96
mpegaudio | 2.47 | 45.19 18.30 | 22.60 9.15| 3452 1398 | 7.55 3.06 mpegaudio | 2.47 | 32.82 13.29 | 21.00 8.50 | 21.45 8.68
mtrt 1.15197.43 84.72 | 41.79 36.34 | 78.78 68.50 | 12.29 10.69 mtrt 1.15] 49.79 43.30 | 34.06 29.62 | 41.04 35.69
jack 348 (27.63 7941796 516 |21.75 6.25| 851 245 jack 3.48 576 1.66 | 597 1.72 | 15.60 4.48
Geo.mean 3.34 (5598 16.76 | 30.34 9.08 | 43.71 13.09 | 11.57 3.46 Geo.mean 334 2847 852(17.54 5.25]28.11 8.42
Server [s] [s] ovh [s] ovh [s] ovh [s] ovh Server [s] [s] ovh [s] ovh [s] ovh
compress 5.68 15346 9.41|31.88 5.61 3578 6.30 8.94 1.57 compress 5.68 | 82.58 14.54|27.24 4.80 | 28.82 5.07
jess 1.47 {2029 13.80 | 12.36 8.41 | 1494 10.16 | 3.16 2.15 jess 1.47 29.98 2039 (9.92 6.75 | 11.17 7.60
db 1371 | 37.67 2.75 | 33.81 2.47(30.14 2201521 1.11 db 1371 | 1438 1.05 | 13.93 1.02 | 31.84 2.32
javac 379 (2755 727 (1839 485 21.1 557 745 197 javac 379 1271 335 11.78 3.11 | 16.83 4.44
mpegaudio | 2.48 | 25.61 10.33 | 13.09 5.28 | 1748 7.05| 389 1.57 mpegaudio | 2.48 | 2243 9.04 | 12.69 5.12 | 12.61 5.08
mtrt 1.16 1 49.82 4295 | 20.72 17.86 | 34.08 29.38 [3.40 293 mtrt 1.16 | 29.90 25.78 | 19.73 17.01 | 19.69 16.97
jack 348 [1815 522 (1198 3.44 1353 3.89| 558 1.60 jack 3.48 572 1.64| 5.73 1.65 | 10.74 3.09
Geo.mean 331 (3076 9.29 | 18.69 5.65 | 2230 6.74| 586 1.77 Geo.mean 331 | 20.89 6.31(13.03 3.94 | 17.28 5.22

Table 1: Overhead comparison: CCAspectSlow (naive) versus
CCAspectFast (efficient).

dynamic join points provide more detailed calling context infor-
mation, static join points cause much less overhead and provide
enough information for building tools such as profilers.

Table 1 shows the measured execution times and the correspond-
ing overhead factors (‘ovh’). The ‘Orig.” column is the execution
time for the unmodified benchmarks.

For dynamic join points, our efficient calling context reification
approach almost halves the overhead caused by the naive approach.
In the Client VM, the overhead is reduced from factor 16.76 to fac-
tor 9.08 on average; in the Server VM, it is reduced from factor
9.29 to factor 5.65. In general, the overheads experienced in the
Server VM are lower than in the Client VM, because the just-in-
time compiler of the Server VM is known to perform more aggres-
sive optimizations.

‘mtrt’, which is the most object-oriented benchmark in the
JVMOS suite according to [11], suffers from the highest overhead.
‘mtrt’ invokes many methods with short bodies, resulting in exces-
sive overhead due to the frequent advice invocations, the creation of
the dynamic join points, and the updates of the shadow stack. For
‘mtrt’, our approach shows the highest overhead reductions (from
factor 84.72 to 36.34 in the Client VM, respectively from factor
42.95 to 17.86 in the Server VM).

In contrast to dynamic join points that are created upon each ad-
vice invocation, static join points are created only once and stored
in static fields. Thus, it can be expected that calling context reifica-
tion using static join points causes significantly less overhead than
using dynamic join points. Table 1 confirms this expectation. Be-
cause the high overhead of dynamic join point creation (which af-
fects both the naive and the efficient approach) is avoided, the per-
formance benefits of passing the calling context as extra arguments
become more apparent. On average, the efficient scheme is almost
4 times faster than the naive approach (overhead reduction from
factor 13.09 to 3.46 in the Client VM, respectively from factor 6.74
to 1.77 in the Server VM). Particularly impressive is the overhead
reduction for ‘mtrt’, which exceeds factor 6 in the Client VM, re-
spectively factor 10 in the Server VM.

Our approach to calling context reification benefits very much
from typical compiler optimizations found in state-of-the-art
JVMs, such as inlining and interprocedural register allocation. Fig-
ure 3 and Figure 4 show that the compiled advice methods of

72

Table 2: Overhead comparison: Original ReCrash tool versus
ReCrashAspect.

CCAspectFast are smaller than those of CCAspectSlow, easing
inlining. Furthermore, since the reference to the object array stack
is passed from caller to callee and is frequently accessed, it is a
good candidate for allocation to a CPU register.

8.2 ReCrash versus ReCrashAspect

In our second evaluation, we compare the overhead of the origi-
nal ReCrash tool with the overhead caused by the ReCrashAspect
in Figure 10. For ReCrash, we use the most efficient mode, where
only references to method arguments are kept on the shadow stack
(no deep copying). This mode corresponds to the use of dynamic
join points in the ReCrashAspect. The ReCrashAspect was wo-
ven by FERRARI and the AJ-CC-UDI, and transformed by the
AJ-CC-Trans tool. We consider two different settings, ‘App.” and
‘App.+JDK’. In the former setting, the aspect is woven only into
application classes, allowing a fair comparison with the original
ReCrash tool. In the latter setting, the aspect is also woven into the
Java class library, which is not supported by the original ReCrash
tool.

Table 2 shows our measurements. Regarding the ‘App.” settings,
on average the ReCrashAspect is more than 60% faster than the
original ReCrash tool. In contrast to the ReCrash tool, our aspect
covers the execution of constructors and keeps the shadow stack
consistent when an exception thrown in a callee is caught by a
caller. Interestingly, for ‘jack’, the ReCrash tool slightly outper-
forms our aspect. ‘jack’ in known to be particularly “exception-
intensive” [11]. Hence, our aspect incurs the overhead of shadow
stack cleanup in exception handlers.

In the ‘App.+JDK’ setting, our aspect still slightly outperforms
the original ReCrash tool on average. These results are surpris-
ing, because the original ReCrash tool uses a hand-crafted, low-
level instrumentation and does not incur the overhead of invok-
ing aspect0£f () and the advice methods. Since our approach is
portable and compatible with standard JVMs, we are able to lever-
age state-of-the-art compilation techniques that mitigate the over-
head of advice method calls. We conclude that our high-level, AOP
approach to the development of calling context sensitive tools can
yield tools that outperform traditional implementations based on
low-level bytecode instrumentation techniques, because we opti-
mize the handling of calling context information.

9. RELATED WORK

Calling context reification can be achieved with standard AOP
constructs. However, existing aspect weaving tools, such as As-
pect) [18] and abc [6], do not support weaving in the Java class
library, resulting in incomplete calling context information. Fur-
thermore, such approaches can cause excessive overhead. Our
approach solves these limitations thanks to FERRARI and the
AJ-CC-UDI, which enable aspect weaving in the Java class library
and optimize access to a complete calling context representation.

Calling context reification based on the cflow pointcut may in-
troduce high overhead [5, 15]. The Aspect] and abc compilers rely
on thread-local counters (instead of using a thread-local stack as
in former Aspect] implementations) [18, 6] for the implementation
of cflow. The abc compiler optimizes access to the thread-local
counter within individual methods. Upon method entry, the thread-
local variable is accessed only once and stored in a local variable.
In contrast, our approach applies a global optimization by passing
the reified calling context as extra arguments to all overloadable
methods. Nu [12] uses an intermediate language approach to im-
plement dynamic AOP constructs, such as cflow. More efficient
implementations of cflow exploit direct access to JVM internals
and can be integrated into the just-in-time compiler [9]; however,
they require a modified JVM.

In Smalltalk, the call stack is directly accessible due to the re-
flective nature of the language. AspectS [16], an AOP framework
implemented in Smalltalk, enables access to the call stack through
the special variable thisContext. In Java, stack walking is used
in JAsCo [27] and JBoss AOP [17] using the Throwable API, re-
sulting in high overhead.

Steamloom [14, 8] and PROSE [24, 23] provide aspect support
within the JVM, which may ease calling context reification thanks
to the direct access to JVM internals. Steamloom is an extension
of the Jikes RVM [2] supporting efficient aspect execution and dy-
namic aspect weaving. PROSE introduces aspect weaving through
the Java Virtual Machine Debugger Interface (JVMDI), weaving at
the just-in-time compiler level, and combines bytecode instrumen-
tation with an extension of the Jikes RVM. These approaches trade
portability for performance, since the aspect support is integrated
in the JVM. Our approach supports aspect weaving within the Java
class library in a portable manner and enables the use of state-of-
the-art JVMs and aspect weaving tools, while providing complete
calling context information in an efficient way.

Tracematches [1] is an extension of Aspect] enabling history-
based programming to trigger the execution of extra code by spec-
ifying a pattern of events that cannot be expressed in Aspect].
For example, it is possible to trigger an event only upon a given
sequence of method calls. Similar techniques are used in secu-
rity tools for anomaly-based intrusion detection [13] that rely on
calling context information. Our approach provides complete and
customized calling context information enabling such functionality
without extending the AOP language.

In addition to the shadow stack, our techniques can provide other
calling context representations, such as the calling context tree
(CCT) [3], which is commonly used for profiling and program anal-
ysis. Existing approaches that create accurate CCTs [25, 3] suffer
from considerable overhead. Approaches based on sampling and
stack-walking [29] help reduce the overhead, but at the expense of
aloss of accuracy. Also the probabilistic calling context (PCC) [10]
reduces the cost of computing calling context information. Unfor-
tunately, these approaches do not create complete calling context
representations and rely on native code, limiting portability. In con-
trast, our approach reconciles completeness of the calling context
and moderate overhead, without resorting to JVM modifications.

73

10. CONCLUSION

In this paper we presented a customizable, efficient, accurate,
and portable approach to calling context reification in Java and inte-
grated it with AOP. Our approach enables rapid, AOP-based devel-
opment of extensible and efficient profiling, debugging, and reverse
engineering tools that require accurate calling context information
as well as complete bytecode coverage.

As case study, we represented ReCrash as an aspect using a
shadow stack; ReCrash is an existing tool for reproducing program
failures. Using AOP, we resolved several limitations of ReCrash,
such as inaccuracy and incompleteness of the shadow stack. More-
over, our approach significantly reduces the overhead of calling
context reification.

Our work relies on FERRARI, a generic bytecode instrumenta-
tion framework, which allows user-defined instrumentation mod-
ules (UDIs) to instrument any code in a system having a bytecode
representation. We implemented our instrumentation for calling
context reification as a FERRARI UDI and composed it with the
Aspect] weaver. The resulting composition of program transforma-
tions solves two limitations of current AOP environments, namely
the impossibility to weave aspects into standard Java class libraries
in a portable way, and the lack of an efficient mechanism to access
complete calling context information.

Regarding ongoing research, we are using our techniques for an
optimized implementation of the cf1ow pointcut. Moreover, we are
integrating the customizable aspect compiler abc with FERRARI.
We are extending the aspect language with low-level pointcuts at
the bytecode and basic block levels, which we have already suc-
cessfully used for specifying accurate and efficient cross-profilers
for embedded Java systems.

Acknowledgements

The work presented in this paper has been supported by the Swiss
National Science Foundation.

11. REFERENCES

[1] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren,
S. Kuzins, O. Lhotdk, O. de Moor, D. Sereni,
G. Sittampalam, and J. Tibble. Adding trace matching with
free variables to Aspect]. In OOPSLA ’05: Proceedings of
the 20th annual ACM SIGPLAN conference on Object
oriented programming, systems, languages, and applications,
pages 345-364, New York, NY, USA, 2005. ACM.
B. Alpern, C. R. Attanasio, J. J. Barton, B. Burke, P. Cheng,
J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F.
Hummel, D. Lieber, V. Litvinov, M. F. Mergen, N. Ngo, J. R.
Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith,
V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapefio
virtual machine. IBM Systems Journal, 39(1):211-238, 2000.
G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware
performance counters with flow and context sensitive
profiling. In PLDI ’97: Proceedings of the ACM SIGPLAN
1997 conference on Programming language design and
implementation, pages 85-96. ACM Press, 1997.
S. Artzi, S. Kim, and M. D. Ernst. ReCrash: Making
Software Failures Reproducible by Preserving Object States.
In J. Vitek, editor, ECOOP ’08: Proceedings of the 22th
European Conference on Object-Oriented Programming,
volume 5142 of Lecture Notes in Computer Science, pages
542-565, Paphos, Cyprus, 2008. Springer-Verlag.
P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
J. Lhotdak, O. Lhotdk, O. de Moor, D. Sereni,

2

—

(3]

[4

—

(5

—

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

[14]

(15]

[16]

G. Sittampalam, and J. Tibble. Optimising Aspect]. In PLDI
"05: Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation, pages
117-128, New York, NY, USA, 2005. ACM.

P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins,
J. Lhotdak, O. Lhotak, O. de Moor, D. Sereni,

G. Sittampalam, and J. Tibble. abc: An extensible Aspect]
compiler. In AOSD ’05: Proceedings of the 4th International
Conference on Aspect-Oriented Software Development,
pages 87-98, New York, NY, USA, 2005. ACM Press.

W. Binder, J. Hulaas, and P. Moret. Advanced Java Bytecode
Instrumentation. In PPPJ’07: Proceedings of the 5th
International Symposium on Principles and Practice of
Programming in Java, pages 135-144, New York, NY, USA,
2007. ACM Press.

C. Bockisch, M. Arnold, T. Dinkelaker, and M. Mezini.
Adapting virtual machine techniques for seamless aspect
support. In OOPSLA ’06: Proceedings of the 21st annual
ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pages 109—124, New
York, NY, USA, 2006. ACM.

C. Bockisch, S. Kanthak, M. Haupt, M. Arnold, and

M. Mezini. Efficient control flow quantification. In OOPSLA
"06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-oriented programming systems,
languages, and applications, pages 125-138, New York, NY,
USA, 2006. ACM.

M. D. Bond and K. S. McKinley. Probabilistic calling
context. In OOPSLA *07: Proceedings of the 22nd annual
ACM SIGPLAN conference on Object oriented
programming, systems and applications, pages 97-112, New
York, NY, USA, 2007. ACM.

J. Dujmovic and C. Herder. Visualization of Java workloads
using ternary diagrams. Software Engineering Notes,
29(1):261-265, 2004.

R. Dyer and H. Rajan. Nu: A dynamic aspect-oriented
intermediate language model and virtual machine for flexible
runtime adaptation. In AOSD "08: Proceedings of the 7th
International Conference on Aspect-oriented Software
Development, pages 191-202, New York, NY, USA, 2008.
ACM.

H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and

W. Gong. Anomaly detection using call stack information. In
SP ’03: Proceedings of the 2003 IEEE Symposium on
Security and Privacy, page 62, Washington, DC, USA, 2003.
IEEE Computer Society.

M. Haupt, M. Mezini, C. Bockisch, T. Dinkelaker,

M. Eichberg, and M. Krebs. An execution layer for
aspect-oriented programming languages. In VEE *05:
Proceedings of the 1st ACM/USENIX international
conference on Virtual execution environments, pages
142-152, New York, NY, USA, 2005. ACM.

E. Hilsdale and J. Hugunin. Advice weaving in Aspect]. In
AOSD ’04: Proceedings of the 3rd International Conference
on Aspect-Oriented Software Development, pages 26-35,
New York, NY, USA, 2004. ACM.

R. Hirschfeld. AspectS - Aspect-Oriented Programming with
Squeak. In NODe '02: Revised Papers from the International
Conference NetObjectDays on Objects, Components,
Architectures, Services, and Applications for a Networked
World, pages 216-232, London, UK, 2003. Springer-Verlag.

74

(17]

(18]

(19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

JBoss. Open source middleware software. Web pages at
http://labs. jboss.com/jbossaop/.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of Aspect]. InJ. L.
Knudsen, editor, Proceedings of the 15th European
Conference on Object-Oriented Programming
(ECOOP-2001), volume 2072 of Lecture Notes in Computer
Science, pages 327-353, 2001.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,

C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In M. Aksit and S. Matsuoka, editors,
Proceedings of European Conference on Object-Oriented
Programming, volume 1241, pages 220-242.
Springer-Verlag, Berlin, Heidelberg, and New York, 1997.
R. Laddad. AspectJ in Action: Practical Aspect-Oriented
Programming. Manning Publications Co., Greenwich, CT,
USA, 2003.

Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic Protocol
Format Reverse Engineering Through Context-Aware
Monitored Execution. In Proceedings of the 15th Annual
Network and Distributed System Security Symposium, San
Diego, CA, February 2008.

D. J. Pearce, M. Webster, R. Berry, and P. H. J. Kelly.
Profiling with Aspect]. Software: Practice and Experience,
37(7):747-777, June 2007.

A. Popovici, G. Alonso, and T. Gross. Just-in-time aspects:
efficient dynamic weaving for Java. In AOSD ’03:
Proceedings of the 2nd International Conference on
Aspect-Oriented Software Development, pages 100-109,
New York, NY, USA, 2003. ACM Press.

A. Popovici, T. Gross, and G. Alonso. Dynamic weaving for
aspect-oriented programming. In AOSD ’02: Proceedings of
the Ist international conference on Aspect-oriented software
development, pages 141-147, New York, NY, USA, 2002.
ACM Press.

J. M. Spivey. Fast, accurate call graph profiling. Softw. Pract.
Exper., 34(3):249-264, 2004.

Sun Microsystems, Inc. JVM Tool Interface (JVMTI)
version 1.1. Web pages at http://java.sun.com/
javase/6/docs/platform/jvmti/jvmti.html, 2006.
D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo: an
aspect-oriented approach tailored for component based
software development. In AOSD ’03: Proceedings of the 2nd
international conference on Aspect-oriented software
development, pages 21-29, New York, NY, USA, 2003.
ACM.

A. Villazén, W. Binder, and P. Moret. Aspect Weaving in
Standard Java Class Libraries. In PPPJ ’08: Proceedings of
the 6th International Symposium on Principles and Practice
of Programming in Java, pages 159-167, New York, NY,
USA, Sept. 2008. ACM.

J. Whaley. A portable sampling-based profiler for Java
Virtual Machines. In Proceedings of the ACM 2000
Conference on Java Grande, pages 78-87. ACM Press, June
2000.

