
Enhancing Base-code Protection in Aspect-Oriented
Programs

Mohamed ElBendary
University of Wisconsin-Milwaukee

Milwaukee, WI 53211
mbendary@cs.uwm.edu

John Boyland
University of Wisconsin-Milwaukee

Milwaukee, WI 53211
boyland@cs.uwm.edu

ABSTRACT
Aspect-oriented programming (AOP) promises to localize
concerns that inherently crosscut the primary structural de-
composition of a software system. Localization of concerns
is critical to parallel development, maintainability, modular
reasoning, and program understanding. However, AOP as
it stands today causes problems in exactly these areas, de-
feating its purpose and impeding its adoption. First, the
need to open up systems’ modules for aspects’ interaction
competes with the need to protect those modules against
possible fault injection by aspects. Second, since aspects
are written in terms of base code interfaces, base system
components must be stable before aspect components can
be developed. This dependency hinders parallel develop-
ment. This work proposes a language-based solution that
allows base code classes to regulate aspect invasiveness, and
provides loose coupling of aspects and base code.

Categories and Subject Descriptors
D.3 [Programming Languages]: Aspect-Oriented Pro-
gramming; D.2 [Software Engineering]: Compilers

General Terms
Algorithms, Design

1. INTRODUCTION
Aspect-oriented software development (AOSD) is supposed

to apply over a system’s entire lifetime, positively impact-
ing software measures such as cost, quality, and time-to-
market [8]. AOP promises to localize cross-cutting concerns
by providing language-based mechanisms for explicitly rep-
resenting their structure and/or behavior. AOP does pro-
vide a cleaner separation of concerns. However, AOP nega-
tively impacts modularity by crossing module boundaries in
a completely unregulated fashion [10].

This work is an attempt to resolve two points of contention
that are impeding the adoption of AOP. The first point is the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOAL’09, March 2, 2009, Charlottesville, Virginia, USA.
Copyright 2009 ACM 978-1-60558-452-2/09/03 ...$5.00.

competition between the need to open up systems’ modules
for AOP and the need to protect those modules against pos-
sible fault injection by AOP. The second point is the need to
have base system components stabilized before aspect com-
ponents can be developed, which reduces opportunities for
parallel development.

We believe that pure obliviousness (currently, the dom-
inant approach to AOP, as in AspectJ) is problematic for
the following reasons. First, while clients (including aspects)
may be insensitive to changes in implementation details of
the components they use, they are tightly coupled to their
interfaces. For example, an aspect that references method m

in class C breaks if method m is now called n, this problem
is referred to as the fragile pointcut problem. Second, pure
obliviousness offers no information on the base side regard-
ing what elements of an interface are being advised or which
aspects are involved. Aspects can infuse the component’s in-
ternals through introductions and advice mechanisms mak-
ing it impossible to reason about a base component by exam-
ining it in isolation. Third, pure obliviousness renders the
base code component entirely helpless in the face of harmful
aspects. A harmful aspect is an aspect that violates a base
code policy as it extends (advises) base components, for ex-
ample, by replacing the body to be executed at a joinpoint
with something entirely different.

Our philosophy is that since the base code and the as-
pect code participate in making up a module’s interface,
they should explicitly cooperate to preserve the module’s
boundary. We see a module boundary extending beyond
traditional class or aspect module boundaries with base code
classes being responsible for establishing their module bound-
aries within the system, using advising constraints to limit
aspects’ invasiveness.

We believe that pure obliviousness can be sacrificed to
maintain ease of reasoning, ease of maintenance, separation
of concerns, and code locality. This work focuses on sepa-
ration of concerns, code quality, and ease of maintenance as
primary “concerns”.

2. INTERFACE IMAGE (I2) APPROACH
An Interface Image (I2) is a level of indirection through

which all advising requests are carried out. It provides
a mechanism by which a class exposes a set of joinpoints
through aliasing base code interface elements. The image
incorporates advising constraints per exposed joinpoint. As-
pects are developed against the aliases defined in the inter-
face images of base code classes. Aspects are not allowed to
advise classes directly. This indirection limits the scope of

image declaration ::= image {

[opento: { TypeAccess* };]
[alias definition*]

}

alias definition ::=
method-header = method-header { constraints }

| * = * { constraints }

method-header ::=
[modifiers] RT method-name(P) throws list

modifiers: Java-style member method modifiers
RT ::= TypeAccess
method-name: Java-style method identifier
P : Java-style method parameter list
throws list ::= TypeAccess*
TypeAccess ::=

Java-style type access (qualified and simple type names)

constraints ::= kind: { Advice Kind* };

| (origin=Origin, boundary=Boundary);
| exceptions: { Exception Type* };

Advice Kind ::= before | after | after_returning
| after_throwing | around

Origin ::= internal | external
Boundary ::= method | class | package
Exception Type ::= TypeAccess

Figure 1: Interface image syntax.

dependency of aspects on base code to that of images only.
I2 lends itself to a feature-obliviousness design, as the next
section will show. Our design requires cooperation from the
base code developers so it is not language-level oblivious.
I2 is not designer-oblivious either since it assumes designers
are aware of aspects realizing functionality.

In this design, an I2 provides the following benefits:

1. The base code is now an active participant in the ad-
vising process since it is up to each class to expose
joinpoints on which it permits advice. For each ex-
posed joinpoint, advising constraints can be attached
to disallow unwanted aspect advising.

2. Response to changes in the interface of a class is limited
to updates in the class’ interface image. Aspects are
not involved. Parallel development can benefit from
this loose coupling.

3. The I2 serves as a specification of advisable interface
elements for base code and aspect developers alike.

This work studies the interface image approach in the con-
text of classes only. We leave augmenting interfaces and
aspects with interface images for future work.

Interface images are defined using the image construct.
An image can only appear within the scope of a class defini-
tion. Figure 1 shows the syntax and Fig. 2 shows an example
instance. An empty image image{} exposes the class to un-
restricted (AspectJ-style) advising.

class Point extends Shape {

protected int x, y;

public void moveby(int dx, int dy){

x += dx; y += dy;

}

image {

opento: {CheckScene};

public void moveby(int dx, int dy) =

public void translate(int dx, int dy){

kind: {after};

(origin=external, boundary=class);

exceptions: {SceneInvariantViolation};

}

}

}

Figure 2: Example image for a class Point

2.1 The opento clause
The opento clause allows a class to provide a list of as-

pects allowed to perform introductions on it. If an image
does not declare an opento list, then the enclosing class will
accept introductions from any aspect. An empty opento list
prohibits any aspects from performing introductions on the
declaring class.

2.2 Aliases
An alias definition has a signature on the left-hand side

of an equal sign followed by an alias signature and an at-
tached scope for declaring advising constraints. The aliases
are used to name aspect joinpoints—only aliased methods
can be advised.

A class can only alias methods that it explicitly declares.
Both instance and static methods are aliasable. The wild-
card form * = * permits all declared methods in the class
to be advised under a single set of advising constraints.

An image can also declare multiple aliases for the same
joinpoint to further allow constraint refinement per join-
point. If two aspects implementing two different concerns
each with a different set of, possibly conflicting, advising
constraints at the same joinpoint, accommodating both is
easily done by defining different aliases on the same join-
point and having each aspect use a different alias definition.
Providing different hooks (aliases) with different advising
constraints essentially allows joinpoints to “fan-out” differ-
ent channels for aspects to communicate with the base code.

2.3 Advising Constraints
The kind clause lists the advice kinds allowed at this join-

point. For example (Fig. 2), the clause kind: {after},
would only allow after advice at this joinpoint for this
alias. If an aspect declares a pointcut that matches this
alias, and declares an advice of a kind other than this kind
(e.g. around), this advice application will be disabled. This
is useful for enforcing the design intent that the translation
cannot be skipped.

An empty kind clause turns off any advising on this join-
point through this alias. If a kind clause is omitted, all
advice kinds are allowed.

The (origin, boundary) pair, if it exists, specifies whether
advising is permitted for calls originating inside (internal)
or outside (external) module boundary or both. A mod-
ule boundary is either method, class, or package. If the
(origin, boundary) pair is omitted, all calls may be ad-
vised.

The exceptions clause, if it exists, lists all exception types
that if thrown by this joinpoint cannot be “softened” by an
aspect with a matching pointcut of a declare soft() state-
ment. Omitting the exceptions clause allows all exceptions
to be softened. An empty exceptions list prevents softening
of any exception through this alias.

2.4 Summary
The interface image technique has the following benefits

to the base code designer: The base code can limit advice
to join points that are semantically relevant to the outside,
and can limit which aspects are permitted to perform in-
troductions. The base code can determine which exceptions
can be safely softened. No extra aspect is required to check
advising constraints.

On the other hand, the aspect designer can still make
use of the full power of aspect orientation and is now only
dependent on the alias names, not the actual method names.
This avoids the overloading of method signatures with two
different meanings, from the client’s perspective they are
service access points while from the aspect’s perspective they
are joinpoints.

3. EXAMPLE
This banking authorization example is adapted from Lad-

dad [9]. Ladded developed it to showcase modularity of an
AspectJ solution over a conventional Java solution. The ex-
ample is an authorization service in a banking system. The
base code (not shown) for this example consists of methods
for performing simple operations on bank accounts: debit,
credit and transfer.

Laddad used an abstract aspect, shown in Fig. 3 to im-
plement an authorization protocol. The abstract pointcut
authOperations() acts as a hook for concrete derived as-
pects to quantify which operations in the system they want
to apply the authorization protocol to. A derived concrete
aspect, BankingAuthAspect, that fully implements the au-
thorization concern is shown in Fig. 3.

The first before() advice in Fig. 3 performs authentica-
tion if the subject accessing the system has not been au-
thenticated yet. The around() advice wraps authorization
around the banking operations’ calls. The example uses
banking methods’ names as the permission names. We rely
on the JoinPoint.StaticPart parameter to access method
names at the joinpoints in the body of getPermission().

The implementation given uses strictly two kinds of ad-
vice, before and around. So it is safer to allow exactly those
kinds of advice and explicitly disable all others, possibly al-
lowing more as new concerns are added. It is important to
note that allowing around does not automatically include
before and after kinds, even though their effects may be
possible.

The solution provided by Laddad [9] does not soften the
checked exception, InsufficientBalanceException, used
by the application to prevent invalid withdrawals and/or
transfers. The solution provides an aspect implemented
specifically for preserving this exception. We believe that,

public abstract aspect AbstractAuthAspect{

public abstract pointcut authOperations();

before() : authOperations() {

// authentication logic

}

public abstract Permission getPermission(

JoinPoint.StaticPart joinPointStaticPart);

Object around()

: authOperations() &&

!cflowbelow(authOperations()) {

// Perform authorized operation

}

before() : authOperations(){

// Authorization logic

}

} // Abstract aspect ends here

Figure 3: AbstractBankingAuthAspect [Laddad].

public aspect BankingAuthAspect

extends AbstractAuthAspect{

public pointcut authOperations()

: execution(public * banking.Account.*(..))

|| execution(

public *

banking.InterAccountTransferSystem.*(..));

public Permission getPermission(

joinPoint.StaticPart joinPointStaticPart){

return new BankingPermission(

joinPointStaticPart.getSignature().

getName());

}

}

Figure 4: Concrete aspect BankingAuthAspect
[Laddad].

image {

opento: {};

* = * {

kind: { before, around };

exceptions: { InsufficientBalanceException };

(origin=internal, boundary=package);

}

}

Figure 5: Banking example interface image declara-
tion.

for an exception that is part of the contract of a core class
method, the decision of whether it is softened or not, is for
the core class to make. Clients on the base code may want
to “know” about this situation and handle it in their own
specific ways. The exceptions clause also saves substan-
tial coding, since it replaces an entire aspect that had to be
developed in the classical AspectJ solution.

Given the nature of this application and its operations,
calls to credit and debit originating outside banking should
be considered dubious. Currently, AspectJ guards against
this using pointcut matching. However, a single misplaced
wild card, could jeopardize the integrity of the application
and the base code is simply helpless. Instead, base code
classes could easily add the (origin, boundary) pair in
Fig. 5, improving the robustness of advising and preventing
the potentially erroneous behavior of unintended wild-cards.

The image in Fig. 5 is the finished product, this is all
the code we need in order to alleviate the potential prob-
lems outlined above. In this example, the aspect side does
not perform introductions of any sort. However, it does not
make sense to keep the base classes open for intertype dec-
larations, even though no errors will be caused in this case.
This is because it is safer to progressively open classes to
specific aspects as needed than leaving them open for all
aspects and deal with possible maintenance problems later.

4. IMPLEMENTATION
I2 is implemented as an extension to AspectJ within the

aspectbench compiler (abc) [2]. Our implementation uses
the JastAdd [4] front-end of abc.

4.1 Image Semantic Checking
An image has to pass an error checking phase before it

can be translated, including that the enclosing class does
not have multiple image declarations, and that aliases are
for methods declared in the enclosing class. We also check
for duplicate constraint declarations.

If an aspect wishes to make introductions, the effected
classes must have a image declaration and permit the in-
troduction (see opento). Then for each joinpoint that the
advice potentially applies to, we check the advice for viola-
tions of kind and exceptions clauses.

4.2 Image Translation
The image construct is translated internally into a priv-

ileged static nested aspect that performs method introduc-
tions into the class declaring the image. Being privileged
allows the translated aspect to refer to private members of
enclosing classes, which may be aliased.

One introduced wrapper method that called the original
method is generated for each alias definition. An around

advice is used to intercept calls to the original method and
direct them to the wrapper. This advice in controlled by the
(origin, boundary) pair constraint for the alias. Table 1
shows the translation to AspectJ conditions.

Additionally, we add && !within(imageAspect) to each
generated pointcut to prevent internal aspects from advis-
ing themselves, where “imageAspect” is some identifier used
only internally that identifies the generated aspect.

We use AspectJ’s precedence declaration to ensure that
the generated aspects are applied before the concern-specific
aspects:

Table 1: Translation of (origin, boundary) pairs to
pointcuts.

(origin,boundary) Pointcut Translation
(internal, method) within(signature(m))
(internal, class) within(enclosing type)
(internal, package) within(enclosing package)
(external, method) !within(signature(m))
(external, class) !within(enclosing type)
(external, package) !within(enclosing package)

class Point extends Shape {

protected int x, y;

public void moveby(int dx, int dy){

x += dx; y += dy;

}

privileged static imageAspect {

public void Point.translate(int dx, int dy){

moveby(dx, dy);

}

void around(Point p):

target(p) && !within(imageAspect) &&

!within(Point) &&

call(

public void Point.moveby(int dx,int dy)){

p.translate(dx, dy);

}

}

}

Figure 6: Class Point after translation

public aspect _internalOrderingAspect {

declare precedence: *..*imageAspect*, *;

}

Any concern-specific precedence declarations are rewritten
to add the pattern *..*imageAspect* to the front of the
precedence list of each one of them.

Class Point shown in Fig. 2 translates internally to the
one shown in Fig. 6. It shows the call to the aliased method
moveby() wrapped inside introduced method translate().
It also shows the around advice and the pointcuts generated
from the (origin, boundary) constraint. The target(p)

pointcut exposes p for use in the advice body.

5. EVALUATION
This section presents evaluation of the I2 approach. This

quantitative evaluation uses the AspectJ Development Tools’
(AJDT) cross-cutting map generator to measure coupling.
In the context of this study, coupling means the existence
of a “cross-cutting relationship” between two components.
A cross-cutting relationship in the source code arises from
intertype declarations and advice declarations.

This study uses two examples from the AspectJ program-
ming guide published by the Eclipse foundation [6]. These
are, the Observer and the Telecom Simulation. The third
is the ants simulation program used to demonstrate Open

Table 2: Coupling data reported by AJDT.

Example AspectJ AJI2 Coupling Change(%)
Observer 38 48 +26.3%
Telecom 30 24 -20.0%

Ants 670 626 -6.6%

Modules [1]. For each example, two implementations are an-
alyzed, a classical AspectJ implementation and an AspectJ
with I2-style implementation.

In order to allow AJDT to process I2 sources, we simulate
the effects of I2 syntax by modifying the implementations of
the examples as follows. We use a field introduction of an
aspect instance into the class that uses opento, to account
for classes referring back to aspects using the opento clause.
We use one introduction declaration within each aspect ref-
erenced in the opento list. We also change method names
in pointcuts to use alias names instead of the original names
of their signatures in classes. For every alias that we use, we
write a method in base code classes selected by the point-
cut using the alias. This additional method bears the alias
signature and wraps the call to the original aliased method.
This arrangement simulates limiting the scope of aspects’
references to images as opposed to the entire program as
in AspectJ. The table above summarizes the “cross-cutting
relationships” data reported by AJDT for each example.

In weighing these percentages a few details need to be
taken into consideration. In ants simulation, the 6.6%
corresponds to 44 less cross-cutting relationships in the pro-
gram, which in turn corresponds to 27 spots in the source
code where independent evolution is possible. We can only
expect the number of spots to grow for larger programs with
a similar feature mix. The 27 spots represent a 9% reduc-
tion in coupled spots in the code, a substantial percentage
in a large program.

6. RELATED WORK
In Open Modules (OM) [1], a module exposes pointcuts

that can be advised by external aspects as part of the mod-
ule’s interface. Thus only “external origin” calls are advis-
able. Also unlike I2, Open Modules do not allow advice
to crosscut modules unless the modules are related through
inheritance.

Cross-cutting Pointcut Interfaces (XPI) [5] separate a tra-
ditional aspect into three aspects: one to specify pointcuts
and advising constraints; another aspect with advice imple-
mentations; and a third aspect to check advising constraints.
Roughly, I2 can be seen as a way to automatically create and
check the advising constraints of XPI.

Using Explicit Join Points (EJPs [7]), the base code adds
syntactic hooks that look like static method calls at points
where advising is required. This is more powerful than As-
pectJ or I2 because these hooks can occur in arbitrary blocks
of code, at the cost of requiring the base code designer to
put forward more effort.

Modular Aspects with Ownership (MAO [3]) enables mod-
ular reasoning using ownership to constrain heap effects.
Advice can be declared as having no or only limited con-
trol effects, or no or limited data (heap) effects. Unre-
stricted aspects must be “accepted” by the base code to
which they apply, in a similar mechanism to I2’s “opento”

declaration, which only applies to aspects with introduc-
tions. I2 preserves more feature obliviousness while MAO
enables stronger modular reasoning.

Ptolemy [11] solves the fragile pointcut problem by in-
troducing named event (joinpoint in AspectJ terminology)
types that are declared independently from the modules (as-
pects) that announce/handle them. This is arguably supe-
rior to the pattern-matching used by AspectJ (and I2) to
identify joinpoints. Ptolemy does not appear to support ad-
vising constraints.

7. CONCLUSION
This work addresses two modularity problems in AOSD:

(1) aspect brittleness and sensitivity to base code changes;
(2) the inability for base code to control advising. We pro-
vide a language-level solution to both problems in the form
of a new construct added to classes that exports a view of the
advisable class interface for aspects. Advising constraints
can be attached to joinpoints that restrict what advice may
apply. A prototype implementation as an AspectJ extension
along with evaluation studies show it is possible to realize
a design that loosely couples the evolution of the base code
interfaces from the aspect-oriented code advising base com-
ponents. We hope that these ideas can encourage greater
adoption of AOP by the software engineering community.

8. REFERENCES
[1] J. Aldrich. Open modules: Modular reasoning about

advice. In ECOOP ’05, pages 144–168, 2005.

[2] P. Avgustinov, A. S. Christensen, L. Hendren,
S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. abc: An
extensible AspectJ compiler. In AOSD 2005, pages
87–98, 2005.

[3] C. Clifton, G. T. Leavens, and J. Noble. Mao:
Ownership and effects for more effective reasoning
about aspects. In ECOOP ’07, pages 451–475, 2007.

[4] T. Ekman and G. Hedin. The jastadd system -
modular extensible compiler construction. Sci.
Comput. Program., 69(1-3):14–26, 2007.

[5] W. G. Griswold, K. Sullivan, Y. Song, Y. Cai,
M. Shonle, N. Tewari, and R. Hridesh. Modular
software design with crosscutting interfaces. IEEE
Softw., pages 51–60, 2006.

[6] A. P. Guide. The AspectJ programming guide.
http://www.eclipse.org/aspectj/doc/released/progguide/.

[7] K. Hoffman and P. Eugster. Bridging java and
AspectJ through explicit join points. Technical Report
ejp-200705-1, Purdue University, 2007.

[8] I. Jacobson. A case for aspects. Software development
Magazine, October 2003.

[9] R. Laddad. AspectJ IN ACTION, Practical
Aspect-Oriented Programming. Manning Publications
Co., 2003. ISBN 1-930110-93-6.

[10] G. T. Leavens and C. Clifton. Multiple concerns in
aspect-oriented language design: A language
engineering approach to balancing benefits, with
examples. Technical Report TR 07-01a, Iowa State
University, 2007.

[11] H. Rajan and G. T. Leavens. Ptolemy: A language
with quantified, typed events. In ECOOP ’08, pages
155–179, 2008.

