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1. INTRODUCTION 
Over the last decade, several research projects have focused on the automatic generation of 
programming environments given a formal specification of a desired language (for instance, 
Mentor [DHKL84], PSG [BS86], Synthesizer Generator [RT89], Gandalf [HN86], GIPE 
[HKKL85], Genesis [GENESIS87], and Graspin [ES88]). A programming environment is 
here understood as a coherent set of interactive tools such as syntax-directed editors, debug­
gers, interpreters, code generators, and prettyprinters to be used during the construction of 
texts in the desired language. This approach has been used to generate environments for lan­
guages in different areas such as programming, formal specification, text formatting, and 
proof construction. All these projects are based on the assumption that major parts of the 
generated environment are language independent and that all language-dependent parts can be 
derived from a suitable high-level formal specification. Various problems have been studied: 

• integration of text-oriented editing and syntax-oriented editing; 
• automatic generation of incremental tools from non-incremental specifications; 
• a single integrated language definition formalism versus several separate formalisms; 
• generation of interpreters and compilers; 
• fixed versus user-definable user-interfaces; 
• fixed versus user-definable logic in language definition formalisms; 
• descriptive power of the language definition formalism (specification of polymorphic 

type systems, concurrency, etc.). 
Systems with fixed, built-in, solutions for some of the problems mentioned above are very 
easy to use in the application area they were designed for, but it is difficult or even impossible 
to use them in other areas. Therefore, one should strive for systems with more open 
architectures consisting of cooperating sets of replaceable components. In this way one can 
obtain as much generality and flexibility as possible. It may, of course, tum out that very 
general systems are difficult to use in every application area. 

The Centaur system [BCDIKLP88] is an outcome of the GIPE project. It can be charac­
terized as a set of generic components for building environment generators. These generic 
components support, among other things, operations for: 

• manipulating abstract syntax trees; 
• creating graphical objects and user-interfaces. 

The kernel thus provides a number of useful data types but does not make many assumptions 
about, for instance, the logic underlying the language definition formalism. This generality is 
achieved by permitting a simple interface between the kernel and logical engines such as a 
Prolog interpreter or a rewrite rule interpreter. Note that these logical engines are not 
generated from specifications but are implemented separately. 

The kernel has already been extended with compilers for various language definition sub­
formalisms such as TYPOL [Des84, Kah87], SDF [HK89a], METAL [KLMM83], as well 
as interactive tools such as the structure-oriented editor CTEDIT, the generic syntax-directed 
editor GSE with integrated text-oriented and syntax-oriented editing capabilities, and a tool 
for controlling the execution of TYPOL specifications. The system thus resembles an 
extendible toolkit rather than a closed system. 

The current Centaur system gives some support for the interactive development of language 
definitions (e.g., the interactive editing and debugging of TYPOL specifications), but major 
efforts are still needed to obtain a true interactive development environment for language 
definitions. 

In this paper, we describe our own contributions to the GIPE project that aim at 
constructing a "programming environment based on language definitions" as already sketched 
in [Hee83]. Some ideas on "mono-lingual programming environments" [HK85] have also 
guided our work. We distinguish three phases: 

• Design of an integrated language definition formalism (ASF+SDF); 
• Implementation of a generator that generates environments given a language definition; 
• Design and implementation of an interactive development environment for ASF+SDF. 
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The latter leads to a meta-environment in which language definitions can be edited, checked 
and compiled just like programs can be manipulated in a generated environment (i.e., an 
environment obtained by compiling a language definition). Both the generator itself and the 
meta-environment have been implemented on top of the current Centaur system. 
The main topics to be discussed are: 

• interactive editing of modular language definitions with immediate translation of 
modifications in the language definition to modifications in the programming 
environment generated for it (this requires in our case, for instance, incremental 
typechecking, incremental scanner and parser generation, and incremental compilation 
of algebraic specifications); 

• treatment of formalisms with variable (i.e., user-definable) syntax. 
The plan of the paper is as follows. In Section 2, we give an overview of the features of the 
formalism ASF+SDF that have influenced the design of the meta-environment. In Section 3, 
we present the global organization of the ASF+SDF meta-environment. In Section 4 we ad­
dress the issue of defining the syntax of the equations in modules and in Section 5 we give a 
look inside the generic syntax-directed editor that forms the essential building block in our 
design. After these preparations, we describe the actual construction of the ASF+SDF meta­
environment in Section 6. We describe the implementation techniques needed for the system 
in Section 7 and conclude the paper with a description of the current state of the 
implementation of the meta-environment in Section 8. 

2. ASF+SDF 
The global design of the meta-environment for ASF+SDF to be discussed in the next section 
can, to a large extent, be used for a variety of specification formalisms. We make a number of 
assumptions about specifications and the modules in specifications (e.g., assumptions about 
the mechanisms for the import and parameterization of modules, for the renaming of names in 
modules, and assumptions about the specific form of conditional equations). There is, 
however, one specific feature that has largely determined our design: modules cannot only 
introduce new functions and define their semantics but they can introduce new notations for 
these functions as well. The implications of this feature are far-reaching, since one has to 
provide for the (syntax-directed) editing of specifications with a variable syntax. 

Although a detailed understanding of the formalism ASF+SDF is not necessary for un­
derstanding the remainder of this paper, a brief sketch of the formalism may help the reader to 
see the benefits (and associated implementation problems) of user-definable syntax. 

ASF+SDF is the result of the marriage of the formalisms ASF (Algebraic Specification 
Formalism) and SDF (Syntax Definition Formalism). ASF [BHK89] is based on the notion 
of a module consisting of a signature defining the abstract syntax of functions and a set of 
conditional equations defining their semantics. Modules can be imported in other modules 
and can be parameterized. SDF [HK89a, HHKR89] allows the simultaneous definition of 
concrete (i.e., lexical and context-free) and abstract syntax and implicitly defines a translation 
from text strings (via their associated parse trees) to abstract syntax trees. The main idea of 
ASF+SDF [HHKR89, HK89b, Hen89, vdM88] is to identify the abstract syntax defined by 
the signature in an ASF specification with the abstract syntax defined implicitly by an SDF 
specification, thus yielding a standard mapping from strings to abstract syntax trees. This 
gives the possibility to associate semantics with (the tree representation of) strings and to 
introduce user-defined notation in specifications. 

Two (trivial) examples may help to clarify this general description. Figure 1 shows a 
definition of two modules. Module Booleans defines a sort BOOL, constants true and 
false, and left-associative operator A. The equations define/\ as the ordinary and operator 
on Boolean values. Module Naturals defines a sort NAT, constant o, successor function 
succ, and infix operator<. The equations define < as the ordinary less than operator on 
natural numbers. 
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1. module Booleans 
2. exports 
3. sorts BOOL 
4. 
5. 
6. 
7. 
8. 

lexical syntax 
[ \t\n] -> LAYOUT 

context-free syntax 
true -> BOOL 
false -> BOOL 

9. BOOL "/\." BOOL -> BOOL (left) 
10. 

11. 

12. 

13. 

14. 

equations 
[ 1] true /\ true 

[2] true /\ false 

[ 3] false /\ true 

[ 4] false /\ false 

15. module Naturals 
16. exports 
17. sorts NAT 
18. context-free syntax 
19. 0 -> NAT 

succ NAT -> NAT 

true 

false 

false 

false 

20. 
21. 
22. 
23. 
24 . 
25. 
26. 
27 . 
28. 
2 9. 
30 . 

NAT "<" NAT -> BOOL 
imports Booleans 
variables 

N -> NAT 
M -> NAT 

equations 
[1] 0 < 0 
[2] succ N < 0 
[3] 0 < succ N 
[4] succ N < succ M 

false 
false 
true 
N < M 

Figure 1. An ASF+SDF specification of Booleans and Naturals. 

This example shows how new syntax rules are introduced in a module (appearing under the 
heading context-free syntax) and how they can be used in the equations. The result 
is that, for instance, the equation in line 11 can only be parsed given the syntax definition in 
line 9. Since arbitrary context-free grammars can be defined in this way, we cannot give a 
fixed grammar for each module. Instead, all syntax rules defined in a module (together with 
all syntax rules defined in imported modules) contribute to the grammar of that particular 
module (see also Section 4). 

Being interested in formal language definitions, we give an example of a (trivial) type­
checking problem. Consider the language L of programs of the form 

def ( a list of identifiers ) in ( a list of identifiers ) 

satisfying the constraint that each identifier appearing in the second list appears in the first list 
as well. A definition of L is given in Figure 2 and consists of three modules. Module 
Identifiers defines sorts ID (identifiers) and ID-LIST (lists of identifiers) together with a 
membership function E. The sort L-PROGRAM introduced in module L-syntax consists of all 
syntactically correct £-programs. In module L-tc, we define the typechecking function tc [ J 
on £-programs that checks the constraint mentioned above. 
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1. module Identifiers 
2. exports 
3. sorts ID, ID-LIST 
4. lexical syntax 
5. [a-z] [a-z0-9] * -> ID 
6. [ \t\n] -> LAYOUT 
7. context-free syntax 
8. "{" ID*"}" -> ID-LIST 

ID "E" ID-LIST -> BOOL 9. 
10. 
11. 
12. 
13. 
14. 
15. 

16. 

imports Booleans as defined in Figure 1 

17. 

variables 
Id [']* -> ID 
Ids -> ID* 

equations 
(1] Id E {} 

[2] Id E {Id 

[3] 

false 

Ids} = true 

Id ::f. Id' 

Id E {Id' Ids} Id E {Ids} 

18. module L-syntax 
19. exports 
20. sorts L-PROGRAM 
21. context-free syntax 
22. def ID-LIST in ID-LIST-> L-PROGRAM 
23. imports Identifiers 

24. 
25. 
2 6. 
27. 
28. 
2 9. 
30. 
31. 
32. 
33. 
34. 

35. 

3 6. 

module L-tc 
exports 

context-free syntax 
tc " [" L-PROGRAM "]" 

imports L-syntax 
variables 

Id -> ID 
Ids -> ID* 
Defs -> ID* 

equations 

-> BOOL 

[1] tc [ def {Defs} in {} ] = true 
Ide Defs = true, tc [ def {Defs} in 

(
2

] tc[ def {Defs} in {Id Ids} ] 

[ 3] 
Id E Defs = false 

tc[ def {Defs} in {Id Ids} ] = false 

{Ids} ] 
true 

true 

Figure 2. A simple language and its typechecker. 

The points to be emphasized in these examples are: 
• a formal language definition consists of a set of modules; 
• a module may import other modules from the language definition; 
• each module may define syntax rules as well as semantic rules; 
• the notation used in the semantic rules depends on the definition of the syntax rules. 
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3. GLOBAL ORGANIZATION OF A META-ENVIRONMENT BASED ON ASF +SDF 
3.1. General architecture 
Figure 3 shows the overall organization of the system. First of all, we make a distinction 
between the meta-environment (i.e., the interactive development environment for constructing 
language definitions and for generating and testing particular programming environments) 
and a generated environment (i.e., an environment for constructing programs in some pro­
gramming language L, obtained by compiling a language definition for Lin the meta-envi­
ronment). In the meta-environment one can distinguish: 

• a language definition (in ASF+SDF) consisting of a set of modules; 
• the environment generator itself, which consists of three components discussed below. 

The output of the environment generator is used in conjunction with GSE (Generic Syntax­
directed Editor), a generic building block that we use to construct environments. GSE not 
only supports (text-oriented and syntax-oriented) editing operations on programs but can also 
be extended by attaching "external tools" which perform operations on the edited program 
such as typechecking and evaluation. The main inputs to the Generic Syntax-directed Editor 
are: 

• a program text P; 
• the module that defines the syntax of P; 
• connections with external tools. 

Language Definition 

Ml 

£-program --►~1 
(text) _ 

Environment Generator 

Name of 
module defining the 

syntax ofL 

t 
GSE 

Figure 3. Global organization. 
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One language definition can thus result in more than one generated environment by 
connecting a number of instances of GSE to different sets of external tools. 

We will first motivate the architecture sketched in Figure 3 and discuss some details of the 
environment generator itself. A detailed discussion of GSE is postponed to Section 5. 

Our point of departure is a formalism (ASF) in which the operations for module 
composition (import, export, renaming, parameter binding) are defined in terms of textual 
expansion: with each module one can associate a new module that does not contain any 
module composition operations (its so-called normal form) by textually expanding each 
composition operation that appears in the original module. As previous research has shown 
[Hen88], this conceptually simple method is inadequate as a basis for implementation since 
the actual copying of modules is not only expensive (both in compilation time and in size of 
the generated code), but also difficult to extend to separate compilation of modules. 

We propose the following, alternative, implementation model. Each module in the language 
definition contains a number of "rules" such as declarations, grammar rules, and conditional 
equations. We collect all rules from all modules in a single, global set of rules. Each rule in 
this global set is tagged with the name of the module in which it was defined. We use these 
tags to enable or disable individual rules in the global set. Instead of constructing the normal 
form for each module, one only has to calculate which rules in the global set have to be en­
abled to obtain the same effect as the desired normal form. After selecting certain rules from 
the global set, these can be used immediately, for instance, for parsing input sentences 
according to the selected set of grammar rules , or for rewriting an input term according to the 
selected set of conditional equations. The success of this implementation model is determined 
by the efficiency of the following operations: 

• calculation of the set of rules corresponding to a normal form; 
• enabling/disabling rules in the global set; 
• selecting parts of the implementation of the rules in the global set for a given set of en­

abled/disabled rules; 
• modifying the global set of rules (and the corresponding implementation) in response to 

editing operations on the specification. 
The viability of this implementation model is further discussed in Section 7. 

Consider, in Figure 4, a sequence of named modules which may contain names of other 
modules to be imported as well as a number of unspecified "rules" which we denote by lower 
case letters. The names declared in an imported module may optionally be renamed before it 
is imported. The corresponding normal forms are shown in Figure 5 and the corresponding 
global set of rules in Figure 6. The global set of rules contains the original rules as they 
appear in the specification together with renamed versions of the rules as needed for the 
normalization of all the modules in the specification. As an optimization, one could remove 
from the global set those renamed rules that are identical to the original one, i.e., rules that are 
not affected by the renaming. 

Returning to the global architecture shown in Figure 3, we distinguish three components in 
the environment generator that maintain information at a global level: 

1. The Module Manager (MM) administers the overall modular structure of the language 
definition. This amounts to maintaining the import relations between modules and 
keeping track of definition and use of individual rules. 

2. The Syntax Manager (SM) administers the (lexical and context-free) functions as well 
as the declarations of priorities and variables defined in each module. The Syntax 
Manager also creates and updates the scanners and parsers derived from all modules. 

3 . The Equation Manager (EQM) administers the equations defined in each module to­
gether with the rewrite rules that have been derived from them. 
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module Ml begin 
a, b 

end Ml 
module M2 begin 

imports Ml 
C 

end M2 
module M3 begin 

imports Ml, 
M2 renamed by Rl 

d 
end M3 

module M4 begin 
imports Ml, 

M2, 
M3 renamed by R2 

end M4 

module Ml begin 
a, b 

end Ml 
module M2 begin 

a, b, c 
end M2 

module M3 begin 

Figure 4. A modular specification 

a, b, a Rl , b Rl , c Rl , d 
end M3 

module M4 begin 
a, b, c , a R2 , b R2 , a R1R2 , b Rl R2 , c R1R2 , ctR2 

end M4 

Figure S. Normal forms of the modules in Figure 4. 

a a Rl a R2 a R1R2 b b Rl b R2 b R1R2 C c Rl c RlR2 d ctR 2 

Ml X 0 0 0 X 0 0 0 0 0 0 0 0 

M2 X 0 0 0 X 0 0 0 X 0 0 0 0 

M3 X X 0 0 X X 0 0 0 X 0 X 0 

M4 X 0 X X X 0 X X X 0 X 0 X 

Figure 6. Global set of rules and selections corresponding to example in Figure 4. 
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module MJ 
a,b 

module M2 
imports Ml 
C 

module M3 
imports 

Ml 

d 

M2 renamed 
by Rl 

module M4 
imports 

Ml 
M2 
M3 renamed 

by R2 

Lexical 
rules 

X a 
x aRl 
o aR2 

0 aRlR2 

o b 
o bRl 
o bR2 

0 bRlR2 

0 C 
o cRl 

0 cRlR2 

o d 
o dR2 

X a 
x aRl 
o aR2 

► 

0 aRlR2 

o b 
o bRl 
o bR2 

0 bRlR2 

0 C 

o cRl 

0 cRlR2 

o d 
o dR2 

Rewrite rules 

Figure 7. Processing the specification of Figure 4. 

Context-free 
rules 

X a 
x aRl 
o aR2 

0 aRlR2 

o b 
o bRl 
o bR2 

0 bRlR2 

0 C 

o cRl 

0 cRlR2 

o d 
o ctR2 

The general principle is that the Module Manager manages all modular information and that 
the Syntax Manager and the Equation Manager can access only the pieces of information that 
they need to carry out their respective tasks. 

Applying this organization to the example given earlier in Figure 4, we obtain the situation 
shown in Figure 7. The Module Manager passes all information related to syntactic issues to 
the Syntax Manager, which in tum maintains two global sets of rules: lexical rules and 
context-free rules. All information related to equations is passed to the Equation Manager, 
which maintains one global set of rewrite rules derived from the equations. 

3.2. Major components 
Next, we give a description of all operations provided by the Syntax Manager, the Equation 
Manager, and the Module Manager. 

3.2.1. The Module manager (MM) 
The Module Manager provides operations for adding and deleting modules and parts of 
modules as well as for parsing strings and evaluating abstract syntax trees: 
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add,del: 
Add/delete a module to/from the language definition; add/delete one of the following 
entities to/from a module: sort declaration , lexical function definition, context-free 
function definition, priority declaration, import, variable declaration, or equation. 

select: 
Select a module as current module. 

parse: 
Parse a string in the context of the current module; the result is an abstract syntax tree. 

r e write: 
Rewrite an abstract syntax tree (usually called "term" in the context of term rewriting) 
using the rewrite rules derived from the equations defined in the current module. 

Many of these operations depend on the corresponding operations defined in, respectively, 
the Syntax Manager and the Equation Manager (see below). 

3.2.2. The Syntax Manager (SM) 
The Syntax Manager provides operations for adding and deleting parts of the SDF-section of 
a language definition, for selecting a module, and for parsing strings: 

add, del: 
Add/delete one of the following entities to/from a given module: lexical function 
definition, context-free function definition, variable declaration, priority declaration, 
renaming, import, or equation. 

select: 
Select a module as current module. All SDF functions (and their renamed versions) 
belonging to the normal form of the current module define its grammar. Select the parts 
of the generated scanner and parser accepting that grammar. 

parse : 
Parse a string according to the grammar defined by the currently selected module. 

3.2.3. The Equation Manager (EQM) 
The Equation Manager provides operations for adding and deleting equations to/from a mod­
ule, for selecting a module, and for evaluating terms: 

a d d, del: 
Add/delete a signature element or an equation to/from a given module. 

select: 
Select a module as current module. All equations (and their renamed versions) 
belonging to the normal form of the current module define its set of equations. Select 
those parts of the compiled term rewriting system corresponding to the selected set of 
equations. 

rewrite: 
Rewrite a te1m according to the currently selected module. 

4. THE SYNTAX OF EQUATIONS 
When constructing the meta-environment based on ASF+SDF, we are confronted with the 
question of how the syntax of equations can be represented. Defining the syntax of equations 
in the form of an ordinary module is not only elegant but efficient in terms of implementation 
effort as well. The syntax of equations should be explicit and localized in a single module, as 
opposed to, for instance, being dispersed over the implementation of the Module Manager. In 
this way, it will be easy to change the syntax of equations. This might become relevant when 
we want to combine SDF with some logical formalism other than ASF. 

There are two possible approaches to represent the syntax of equations: 
• Use a general grammar to describe the form of equations. In its simplest form, this 

grammar would consist of a single rule 
<equation> ::=<term> " = " <te rm>, 
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where <term> describes all well-formed terms that may appear at the left- or right-hand 
side of the "=" sign as defined by the SDF-section of the current language definition. 
Unfortunately, this rule permits equations in which the sorts of both terms are unequal. 
Therefore these have to be rejected in a separate type checking phase. 

• Reject type incorrect equations already during parsing by adding syntax rules to the 
grammar for equations of all sorts s 1, ... , Sn declared in the language definition. This 
grammar has the form: 

<equation> : : = <S 1> "=" <S 1> I ... I <S n> "=" <S n> 
We will now consider the second alternative in more detail. 

4.1. Typechecking equations by means of a specialized equation grammar 
Consider an ASF+SDF language definition consisting of the modules M1, ... , Mn (see Figure 
8). In order to define the syntax of equations, this language definition is extended in the 
following way. First, the module Equations is added that introduces a sort for an individual 
equation and a sort for a complete equations section. We only discuss a simplified version of 
the definition of unconditional equations; conditional equations can be defined in a similar 
way. The definition is: 

module Equations 
exports 

sorts EQ, EQ-SECTION 
context-free syntax 

EQ* -> EQ-SECTION 

Next, we generate for each module Mi in the language definition a module EQ-Mi that consists 
of three parts: 

• For all exported sorts s1, ... ,sk declared in Mi we generate declarations for exported 
functions of the form s j "=" s j -> EQ; 

• For all hidden sorts T1, ... ,T 1 declared in Mi we generate declarations for hidden 
functionsoftheformT j "=" Tj -> EQ; 

• For all modules N1, ... ,Nm imported by Mi we generate imports of the "equation­
version" of each module N j . If the module has no imports, only an import for the 
module Equations is imported. 

The result is as follows: 

module EQ-Mi 
exports 

context-free syntax 
S1 "=" S1 -> EQ 

sk "=" sk -> EQ 
hiddens 

context-free syntax 
T1 "=" T1 -> EQ 

T1 "='' T1 -> EQ 
imports 

EQ-N1 

EQ-Nm 

Parsing an equation in module Mi can now be done in the context of the dynamically 
generated module EQ-Mi. 

4.2. Example of a specialized equation grammar 
Consider the specification of Booleans and Naturals given earlier in Figure 1 (Section 2). 
Using the scheme described in the previous paragraph, this specification will be extended 
with the following modules (apart from the modules Equation and Equations given earlier): 
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Module defining 
the fixed part of the 
syntax of equations 

r,.......-----," I Equations I 
\. ./ 

,r " 

I Ml I 

Modules in the r--::::-i 
specification L..:::__j 
(defined by user) 

0 I EQ-Mnl ,____ \. ~ 

Modules defining the complete 
syntax of equations for each module 
(automatically generated) 

Figure 8. Definition of the syntax of equations. 

module EQ-Booleans 
exports 

context-free syntax 
BOOL "=" BOOL -> EQ 

imports 
Equations 

module EQ-Naturals 
exports 

context-free syntax 
NAT"=" NAT -> EQ 

imports 
EQ-Booleans 

An equation like o < succ o = succ o < succ succ o that could legally appear in 
module Naturals, can be parsed using EQ-Naturals. More interestingly, an equation like 
true = succ o would be syntactically incorrect. 

S. LOOKING INSIDE THE GENERIC SYNTAX-DIRECTED EDITOR 
The Generic Syntax-directed Editor (GSE) provides the following functions: 

• Syntax-directed editing of strings (programs) in a given language L. 
• Activation of "external tools" operating on the L-program in the editor. As we will see 

some of "external tools" will be derived from the language definition itself (e.g., 
typechecker or evaluator). 

• Display the output of these tools. 
• Informing external tools connected to the editor about changes made during editing. 
• Adjust the internal state of the editor after a modification to the syntax of language L. 

We will now briefly discuss each of them. 
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t 
Mod I Grains I MM I Syntax-changed 

T - Generic Syntax-directed Editor - e 
X 

t External Tools I Changes 

4 ~ H 

1, H 

Figure 9. Generic Syntax-directed Editor (GSE) with its parameters. 

5.1. Syntax-directed editing 
As experience shows, pure syntax-directed editing is not very convenient. In many cases, a 
user wants to perform editing operations that are text-oriented rather than structure-oriented in 
nature. To overcome this problem, GSE aims at integrating text-oriented editing and 
structure-oriented editing as smoothly as possible. By syntax-directed navigation (or just by 
pointing) the user can position a focus on a part of the program being edited. The contents of 
the focus can be modified by conventional text-editing operations. When the user wants to 
move the focus to another part of the program, its text is parsed. If syntax errors are found 
they must be corrected before the focus can be moved. See [DK90, Koo90, Log88] for a 
description of GSE. 

From the perspective of the meta-environment, the parsing of programs can be implemented 
using the parse function of the Module Manager. 

5.2. Management of changes 
Making changes to programs is an essential task of the editor. It depends on the environment 
in which the editor is being used whether additional processing is required after a change. 
Assuming the editor is parameterized with a function Changes that communicates changes to 
the environment, there are two possibilities for choosing the granularity of the 
communication: 

• The function Changes is called after each modification to the program. 
• It is only called after modifications that exceed certain "grain sizes" that are given as a 

parameter of the editor. 
In the first case, Changes has to infer whether additional actions are needed, whereas in the 
second case this can be done by the editor in a more generic way. 

In general, there will be a mismatch between the size of a change made during editing and 
the size of the changes the external tool can cope with. For instance, if the external tool can 
handle changes of the size of statements (in the context of editing some programming 
language) how do we process changes to parts of a statement such as the condition in an if­
statement? The approach we have chosen is to determine the smallest grain enclosing a 
modification automatically and call the external tool for it. Modifications to program 
fragments that are larger than the grains provided by the external tool are processed by 
calculating the difference between the old and the new fragment and calling the external tool 
for a minimal number of grains that cover the difference. 

In the design as presented here we only allow for a single definition of grain sizes for each 
instance of GSE. This implies that all attached external tools will have to provide operations 
for the same set of grains. In the future it may tum out to be desirable to allow different grain 
sizes for each external tool attached. 
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Figure 10. A generated environment for evaluating terms. 

5.3. Attaching external tools to the editor 
The formal definition of a language may contain rules specifying certain operations on pro­
grams such as typechecking and evaluation. After compilation of the specification this leads 
to a number of functions that can operate on programs. From the viewpoint of the editor these 
functions form "external tools" and the question now arises as to how they can be attached to 
GSE. The following points should be considered: 

(a) Activation of the external tool. 
(b) Communication of information from within the editor to the external tool. 
(c) Communication of the output of the external tool back to the editor. 

Point (a) can be solved by including a list of (command,function)-pairs in the language 
definition and passing this list as a parameter to the editor. The commands are placed in the 
command menu of the editor and selection of a certain entry from the menu will result in a call 
to the associated function . All functions have the same calling interface: they have the editor 
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tree in GSE 

Figure 11. A generated environment for editing, typechecking and evaluating 
L-programs. 

from which they are being called as single argument. Note that automatic activation of 
external processors (as, for instance, needed for incremental typechecking) can be imple­
mented by means of the Changes function discussed in the previous section. 

Point (b) is solved by providing operations on the editor that return (parts of) the internal 
state of the editor, such as, the current program, the current focus, etc. 
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Point (c) can only be solved if all external operations return their output in a fixed format. 
An obvious choice is a list of (error-message, subtrees)-pairs, to be interpreted as a list of all 
erroneous subtrees with their associated error-messages. 

5.4. Syntax modifications 
After a modification to the syntax of the input language L of the editor, it should be verified 
that the current program in the editor is still a valid £-program. A naive implementation will 
completely (re)parse the program. This facility is needed to support editing in the meta­
environment (see Section 6). 

5.5. Major functions of GSE 
The above discussion can be summarized in the following list of operations provided by GSE 
(see also Figure 9): 

GSE: 
Construct a new instance of GSE given: 

a Module Manager, 
a module name (defining the input syntax, i.e., the syntax of the texts to be edited), 
a definition of the grain sizes for which Changes should be called) 
a function Changes, 
a list of (command, function)-pairs defining the communication with external tools 

Focus, Tree, MM, Mod: 
Return status information such as the current focus (Fo cus), the current program 
(Tree), the Module Manager used (MM), the module defining the input language (Mod), 
etc. 

Up, Down, Replace, Search, ... , : 
Perform editing operations. 

Syntax-changed: 
Signal a modification of the input syntax and adjust the internal state of the editor ac­
cordingly. 

Typical examples of the use of GSE are shown in Figures 10 and 11. In Figure 10, the lan­
guage definition consists of a single module M, and we construct an environment for editing 
and evaluating terms in M. The "external tool" connected to GSE rewrites the current tree 
using the equations from module M. This connection is established by the following 
(command, function)-pair: 

"execute " : function(gse) { 

} 

gse.MM.select(gse.Mod), 
gse.MM.rewrite(gse.Tree) 

The execute command is added to the command repertoire of GSE, for instance, by adding 
an appropriately labelled button to its user-interface. On activation of the new command, the 
above function is called. It is a nameless function with the instance of GSE from which it is 
being called as single parameter. Through this parameter-and all operations provided by 
GSE-relevant information about the internal state of the editor and of its parameters 
becomes accessible. In the body of the function gse. MM determines the Module Manager 
associated with this instance of GSE. Using this Module Manager, the current input language 
of the editor (gse . Mod) is selected as current module. Next, the current abstract syntax tree in 
the editor (gse. Tree) is rewritten in the context of the selected module using the rewrite 
function provided by the Module Manager. 

In Figure 11 , the language definition consists of three modules: L-SYN (defining the syntax 
of language L), L-Tc (defining the typechecking of L programs; L-Tc imports L-SYN), and 
L-Ev (defining the evaluation of L programs; it also imports L-SYN). In this case, we con­
struct an environment for editing, typechecking and evaluating L programs. The commands 
check and eval are implemented using the functions tc and eval defined in, respectively, 
L-TC and L-EV. 
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Figure 12. Editing a language definition module. 
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6. EDITING IN THE META-ENVIRONMENT 
How can we use generated editing environments to edit ASF+SDF specifications? To answer 
this question we have to define the complete syntax of ASF+SDF specifications. This can be 
done in the following way: 

• To each specification we add, implicitly, a fixed module called SDF, which defines the 
syntax of the SDF part of each module. 

• To each specification we add the module Equations defining the syntax of equations 
as described in Section 4. 

• To each module M we add a module EQ-M, defining the contributions of module M to the 
syntax of equations. 

Editing a module in the specification now amounts to creating two editors: one for the SDF 
part of the module (GSEl) and one for the equations part (GSE2). This is shown in Figure 12. 
Some comments on this figure are appropriate: 

• The grain size for the processing of changes to the SDF part is determined by a list of 
sorts given to GSEl. This list contains a sort name for each entity for which the Syntax 
Manager provides add/delete operations. 

• The Changes function associated with GSEl will use the Syntax Manager for actually 
performing the changes to the SDF part of a module. It will also call GSE2. Syntax­
changed after each modification to the SDF part of the module. 

• The grain size for GSE2 is determined by a list only containing the sort EQ, i.e., only 
changes at the level of complete equations are considered as changes. This corresponds 
precisely to the add/delete operations provided by the Equation Manager. 

• The Changes function associated with GSE2 will use the Equation Manager for actually 
performing the changes to the equations apart of the module. 

• We have left unspecified which operations are performed on, respectively, the SDF part 
and the equations part of the module. Typical examples are: typechecking and 
compiling. 

7. IMPLEMENTATIONTECHNIQUES 
In Section 3.1. we have presented an implementation model for modular specifications in 
which all "rules" appearing in modules are collected in one global set together with a 
mechanism to enable or disable individual rules from this set. Finding an efficient 
implementation method for this model is, of course, essential. Although a general framework 
for describing such a method is still lacking, two experiments have been performed that 
demonstrate the feasibility of the approach. 

One experiment [Kli89] concerns the case that the rules in each module are regular ex­
pressions to be compiled into a deterministic finite automaton. The key idea is to construct a 
single automaton for all regular expressions in all modules. The selection operation that en­
ables or disables certain regular expressions, is implemented by enabling or disabling the 
corresponding transitions in the automaton. The resulting Modular Scanner Generator uses 
techniques for lazy and incremental program generation [HKR87a, HKR87b]: parts of the fi­
nite automaton are only constructed when they are needed and most parts not affected by the 
addition or deletion of a regular expression will be reused. In the same spirit, the enabling or 
disabling of transitions is only done when needed. 

The other experiment [Rek89] concerns modular context-free grammars and the "rules" to 
be considered are syntax rules. Key idea is, again, to construct a single parse table for all 
syntax rules in all modules and to implement the enabling or disabling of a syntax rule by en­
abling or disabling the corresponding transitions in the parse table. The resulting Modular 
Parser Generator also uses lazy and incremental techniques and extends the notion of incre­
mental parser generation described in [HKR90]. 

Measurements show that in both cases the selection operation is very fast and that the over­
all performance of the generated programs (i.e., scanner and parser) is hardly influenced by 
the introduction of an enabhng/disabling mechanism for individual rules. We may therefore 
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conclude that an efficient implementation along the lines of our model exists in at least these 
two specific cases. 

In this context, no experience yet exists with the compilation of algebraic specifications to 
rewrite rules. One of the directions we have investigated is to use finite automata for the 
matching of left-hand sides of rules and to apply techniques similar to the ones used in the 
modular scanner generator in this case as well [Wal90]. 

8. CONCLUDING REMARKS 

8.1. Current state of the implementation 
A first version of the meta-environment for generating programming environments as 
presented in this paper has been implemented. It supports the interactive development of 
ASF+SDF specifications by providing syntax-directed editing of specifications and 
immediate translation of modifications made to the ASF+SDF specification to modifications 
in the programming environment generated for it. The generated environment is immediately 
available and can be used for experimentation. The current meta-environment consists of the 
following parts: 

• A Module Manager consisting of a nucleus providing the operations as described in this 
paper, except that the current implementation does not yet support renaming and 
parameterization of modules . On top of this nucleus, a simple user-interface has been 
built yielding an interactive development environment for language definitions written 
in ASF+SDF. 

• The Modular Scanner Generator and Modular Parser Generator discussed in the 
previous section are operational and have been used to implement the Syntax Manager. 

• A moderately efficient Equation Manager has been implemented. Work on building a 
more efficient one is in progress. 

• The Generic Syntax-directed Editor has been implemented. It supports integrated text­
oriented and structure-oriented editing, but does not yet provide the complete 
functionality as described in Section 5. In particular, the determination of the grain size 
is currently implemented as part of the Module Manager and the connection of external 
tools has only been implemented in a rudimentary fashion. 

Some major implementation problems still have to be solved such as the generic treatment of 
the output of external tools, i.e., prettyprinting arbitrary values resulting from the evaluation 
of an external tool, or treating error messages produced by a typechecker in a nice fashion. 

8.2. Discussion 
Although a full evaluation of the proposed meta-environment has to await completion of its 
implementation as well as experience with its use, some remarks on the design are in order. 
We foresee the following problems and open questions: 

• The system proposed here will be faced with a serious version management problem: 
after changing a language definition there may still be programs around that conform to 
the old definition. 

• It is not yet clear whether the proposed implementation model will scale up to industrial 
size applications. 

• Not much experience exists with the use of specification formalisms with user-de­
finable syntax. In principle, freedom of notation seems to be a desirable property, but it 
may very well tum out that this freedom has to be controlled in some way for the sake 
of readability and reusability of specifications. 

• We are not yet able to derive incremental implementations from ASF+SDF 
specifications, but intend to do so using techniques described in [ vdM90]. 

We see the following merits in the proposed system: 
• The system is so interactive and responsive that users are completely unaware of the 

fact that each modification they make to their language definition has major impacts on 
the generated implementation. For instance, the presence of a parser generator is 
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completely invisible to the user. As a result, the system is also accessible to naive 
users. 

• The generality of the syntax definition mechanism provided by ASF+SDF together with 
the new, but well-understood, techniques used for their implementation form an im­
provement over the syntax definition facilities in comparable systems [FGJM85, 
Voi86]. 

• The use of two coupled instances of GSE for editing languages definitions in the meta­
environment is an interesting case of reusing existing components. As a result, both the 
meta-environment and generated environments will benefit from future improvements 
in GSE. 

• The similarity between meta-environment and generated environments leads to a 
situation where features considered desirable in the meta-environment may have 
unexpected applications in generated environments (and vice versa). This may lead to 
interesting generalizations. 
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