
Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

P. Klint

A meta-environment for generating programming environments

Computer Science/Department of Software Technology Report CS-R9064 November

Centrum oar \'11~k1.1.J,10fl "1iormaiica

-- - .JfnSJ,~ ·-- ·

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum , which was founded on February 11 ,
1946, as a nonprofit institution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

A Meta-Environment for Generating

Programming Environments

P. Klint
Department of Software Technology, Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
and

Programming Research Group, University of Amsterdam
P.O. Box 41882 , 1009 DB Amsterdam, The Netherlands

Over the last decade, considerable progress has been made in solving the problems of auto­
matic generation of programming/development environments, given a formal definition of
some programming or specification language. In most cases, research has focused on the
functionality and efficiency of the generated environments, but only marginal attention has
been paid to the development process of formal language definitions itself. Assuming that the
quality of automatically generated environments will be satisfactory within a few years, the
development costs of formal language definitions will very soon become the crucial factor
determining the ultimate success and acceptance of environment generators. In this paper we
describe the design and implementation of a meta-environment (a development environment
for formal language definitions) based on the formalism ASF+SDF. This meta-environment
is currently being implemented as part of the Centaur system and is, at least partly, obtained
by applying environment generation techniques to the language definition formalism itself. A
central problem is providing fully interactive editing of modular language definitions such that
modifications made to the language definition during editing can be translated immediately to
modifications in the programming environment generated from the original language
definition. Therefore, some of the issues addressed are the treatment of formalisms with
user-definable syntax, and incremental program generation techniques.

1989 CR Categories: D.2.1 [Software Engineering]: Requirements/ Specifications-Lan­
guages; D.2.6. [Software Engineering]: Programming Environments; D.3.1 [Programming
Languages]: Formal Definitions and Theory-Syntax, Semantics; D.3.4 [Programming Lan­
guages]: Processors.

1985 Mathematics Subject Classification: 68N15 [Software]: Programming Languages;
68N20 [Software]: Compilers and generators.

Key Words & Phrases: concrete and abstract syntax, user-definable syntax, programming
language semantics, algebraic specification, language definition formalism, programming en­
vironment generation, meta-environment, incremental program generation.

Note: Partial support received from the European Communities under ESPRIT project 2177
(Generation of Interactive Programming Environments II-GIPE II).

To appear in: J.A.Bergstra & L. Feijs (eds), Proceedings of the METEOR workshop on
Methods based on formal specifications, Mierlo, September 1989, to appear in Springer
Lecture Notes in Computer Science.

Report CS-R9064
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

- 1 -

1. INTRODUCTION
Over the last decade, several research projects have focused on the automatic generation of
programming environments given a formal specification of a desired language (for instance,
Mentor [DHKL84], PSG [BS86], Synthesizer Generator [RT89], Gandalf [HN86], GIPE
[HKKL85], Genesis [GENESIS87], and Graspin [ES88]). A programming environment is
here understood as a coherent set of interactive tools such as syntax-directed editors, debug­
gers, interpreters, code generators, and prettyprinters to be used during the construction of
texts in the desired language. This approach has been used to generate environments for lan­
guages in different areas such as programming, formal specification, text formatting, and
proof construction. All these projects are based on the assumption that major parts of the
generated environment are language independent and that all language-dependent parts can be
derived from a suitable high-level formal specification. Various problems have been studied:

• integration of text-oriented editing and syntax-oriented editing;
• automatic generation of incremental tools from non-incremental specifications;
• a single integrated language definition formalism versus several separate formalisms;
• generation of interpreters and compilers;
• fixed versus user-definable user-interfaces;
• fixed versus user-definable logic in language definition formalisms;
• descriptive power of the language definition formalism (specification of polymorphic

type systems, concurrency, etc.).
Systems with fixed, built-in, solutions for some of the problems mentioned above are very
easy to use in the application area they were designed for, but it is difficult or even impossible
to use them in other areas. Therefore, one should strive for systems with more open
architectures consisting of cooperating sets of replaceable components. In this way one can
obtain as much generality and flexibility as possible. It may, of course, tum out that very
general systems are difficult to use in every application area.

The Centaur system [BCDIKLP88] is an outcome of the GIPE project. It can be charac­
terized as a set of generic components for building environment generators. These generic
components support, among other things, operations for:

• manipulating abstract syntax trees;
• creating graphical objects and user-interfaces.

The kernel thus provides a number of useful data types but does not make many assumptions
about, for instance, the logic underlying the language definition formalism. This generality is
achieved by permitting a simple interface between the kernel and logical engines such as a
Prolog interpreter or a rewrite rule interpreter. Note that these logical engines are not
generated from specifications but are implemented separately.

The kernel has already been extended with compilers for various language definition sub­
formalisms such as TYPOL [Des84, Kah87], SDF [HK89a], METAL [KLMM83], as well
as interactive tools such as the structure-oriented editor CTEDIT, the generic syntax-directed
editor GSE with integrated text-oriented and syntax-oriented editing capabilities, and a tool
for controlling the execution of TYPOL specifications. The system thus resembles an
extendible toolkit rather than a closed system.

The current Centaur system gives some support for the interactive development of language
definitions (e.g., the interactive editing and debugging of TYPOL specifications), but major
efforts are still needed to obtain a true interactive development environment for language
definitions.

In this paper, we describe our own contributions to the GIPE project that aim at
constructing a "programming environment based on language definitions" as already sketched
in [Hee83]. Some ideas on "mono-lingual programming environments" [HK85] have also
guided our work. We distinguish three phases:

• Design of an integrated language definition formalism (ASF+SDF);
• Implementation of a generator that generates environments given a language definition;
• Design and implementation of an interactive development environment for ASF+SDF.

- 2 -

The latter leads to a meta-environment in which language definitions can be edited, checked
and compiled just like programs can be manipulated in a generated environment (i.e., an
environment obtained by compiling a language definition). Both the generator itself and the
meta-environment have been implemented on top of the current Centaur system.
The main topics to be discussed are:

• interactive editing of modular language definitions with immediate translation of
modifications in the language definition to modifications in the programming
environment generated for it (this requires in our case, for instance, incremental
typechecking, incremental scanner and parser generation, and incremental compilation
of algebraic specifications);

• treatment of formalisms with variable (i.e., user-definable) syntax.
The plan of the paper is as follows. In Section 2, we give an overview of the features of the
formalism ASF+SDF that have influenced the design of the meta-environment. In Section 3,
we present the global organization of the ASF+SDF meta-environment. In Section 4 we ad­
dress the issue of defining the syntax of the equations in modules and in Section 5 we give a
look inside the generic syntax-directed editor that forms the essential building block in our
design. After these preparations, we describe the actual construction of the ASF+SDF meta­
environment in Section 6. We describe the implementation techniques needed for the system
in Section 7 and conclude the paper with a description of the current state of the
implementation of the meta-environment in Section 8.

2. ASF+SDF
The global design of the meta-environment for ASF+SDF to be discussed in the next section
can, to a large extent, be used for a variety of specification formalisms. We make a number of
assumptions about specifications and the modules in specifications (e.g., assumptions about
the mechanisms for the import and parameterization of modules, for the renaming of names in
modules, and assumptions about the specific form of conditional equations). There is,
however, one specific feature that has largely determined our design: modules cannot only
introduce new functions and define their semantics but they can introduce new notations for
these functions as well. The implications of this feature are far-reaching, since one has to
provide for the (syntax-directed) editing of specifications with a variable syntax.

Although a detailed understanding of the formalism ASF+SDF is not necessary for un­
derstanding the remainder of this paper, a brief sketch of the formalism may help the reader to
see the benefits (and associated implementation problems) of user-definable syntax.

ASF+SDF is the result of the marriage of the formalisms ASF (Algebraic Specification
Formalism) and SDF (Syntax Definition Formalism). ASF [BHK89] is based on the notion
of a module consisting of a signature defining the abstract syntax of functions and a set of
conditional equations defining their semantics. Modules can be imported in other modules
and can be parameterized. SDF [HK89a, HHKR89] allows the simultaneous definition of
concrete (i.e., lexical and context-free) and abstract syntax and implicitly defines a translation
from text strings (via their associated parse trees) to abstract syntax trees. The main idea of
ASF+SDF [HHKR89, HK89b, Hen89, vdM88] is to identify the abstract syntax defined by
the signature in an ASF specification with the abstract syntax defined implicitly by an SDF
specification, thus yielding a standard mapping from strings to abstract syntax trees. This
gives the possibility to associate semantics with (the tree representation of) strings and to
introduce user-defined notation in specifications.

Two (trivial) examples may help to clarify this general description. Figure 1 shows a
definition of two modules. Module Booleans defines a sort BOOL, constants true and
false, and left-associative operator A. The equations define/\ as the ordinary and operator
on Boolean values. Module Naturals defines a sort NAT, constant o, successor function
succ, and infix operator<. The equations define < as the ordinary less than operator on
natural numbers.

- 3 -

1. module Booleans
2. exports
3. sorts BOOL
4.
5.
6.
7.
8.

lexical syntax
[\t\n] -> LAYOUT

context-free syntax
true -> BOOL
false -> BOOL

9. BOOL "/\." BOOL -> BOOL (left)
10.

11.

12.

13.

14.

equations
[1] true /\ true

[2] true /\ false

[3] false /\ true

[4] false /\ false

15. module Naturals
16. exports
17. sorts NAT
18. context-free syntax
19. 0 -> NAT

succ NAT -> NAT

true

false

false

false

20.
21.
22.
23.
24 .
25.
26.
27 .
28.
2 9.
30 .

NAT "<" NAT -> BOOL
imports Booleans
variables

N -> NAT
M -> NAT

equations
[1] 0 < 0
[2] succ N < 0
[3] 0 < succ N
[4] succ N < succ M

false
false
true
N < M

Figure 1. An ASF+SDF specification of Booleans and Naturals.

This example shows how new syntax rules are introduced in a module (appearing under the
heading context-free syntax) and how they can be used in the equations. The result
is that, for instance, the equation in line 11 can only be parsed given the syntax definition in
line 9. Since arbitrary context-free grammars can be defined in this way, we cannot give a
fixed grammar for each module. Instead, all syntax rules defined in a module (together with
all syntax rules defined in imported modules) contribute to the grammar of that particular
module (see also Section 4).

Being interested in formal language definitions, we give an example of a (trivial) type­
checking problem. Consider the language L of programs of the form

def (a list of identifiers) in (a list of identifiers)

satisfying the constraint that each identifier appearing in the second list appears in the first list
as well. A definition of L is given in Figure 2 and consists of three modules. Module
Identifiers defines sorts ID (identifiers) and ID-LIST (lists of identifiers) together with a
membership function E. The sort L-PROGRAM introduced in module L-syntax consists of all
syntactically correct £-programs. In module L-tc, we define the typechecking function tc [J
on £-programs that checks the constraint mentioned above.

- 4 -

1. module Identifiers
2. exports
3. sorts ID, ID-LIST
4. lexical syntax
5. [a-z] [a-z0-9] * -> ID
6. [\t\n] -> LAYOUT
7. context-free syntax
8. "{" ID*"}" -> ID-LIST

ID "E" ID-LIST -> BOOL 9.
10.
11.
12.
13.
14.
15.

16.

imports Booleans as defined in Figure 1

17.

variables
Id [']* -> ID
Ids -> ID*

equations
(1] Id E {}

[2] Id E {Id

[3]

false

Ids} = true

Id ::f. Id'

Id E {Id' Ids} Id E {Ids}

18. module L-syntax
19. exports
20. sorts L-PROGRAM
21. context-free syntax
22. def ID-LIST in ID-LIST-> L-PROGRAM
23. imports Identifiers

24.
25.
2 6.
27.
28.
2 9.
30.
31.
32.
33.
34.

35.

3 6.

module L-tc
exports

context-free syntax
tc " [" L-PROGRAM "]"

imports L-syntax
variables

Id -> ID
Ids -> ID*
Defs -> ID*

equations

-> BOOL

[1] tc [def {Defs} in {}] = true
Ide Defs = true, tc [def {Defs} in

(
2

] tc[def {Defs} in {Id Ids}]

[3]
Id E Defs = false

tc[def {Defs} in {Id Ids}] = false

{Ids}]
true

true

Figure 2. A simple language and its typechecker.

The points to be emphasized in these examples are:
• a formal language definition consists of a set of modules;
• a module may import other modules from the language definition;
• each module may define syntax rules as well as semantic rules;
• the notation used in the semantic rules depends on the definition of the syntax rules.

- 5 -

3. GLOBAL ORGANIZATION OF A META-ENVIRONMENT BASED ON ASF +SDF
3.1. General architecture
Figure 3 shows the overall organization of the system. First of all, we make a distinction
between the meta-environment (i.e., the interactive development environment for constructing
language definitions and for generating and testing particular programming environments)
and a generated environment (i.e., an environment for constructing programs in some pro­
gramming language L, obtained by compiling a language definition for Lin the meta-envi­
ronment). In the meta-environment one can distinguish:

• a language definition (in ASF+SDF) consisting of a set of modules;
• the environment generator itself, which consists of three components discussed below.

The output of the environment generator is used in conjunction with GSE (Generic Syntax­
directed Editor), a generic building block that we use to construct environments. GSE not
only supports (text-oriented and syntax-oriented) editing operations on programs but can also
be extended by attaching "external tools" which perform operations on the edited program
such as typechecking and evaluation. The main inputs to the Generic Syntax-directed Editor
are:

• a program text P;
• the module that defines the syntax of P;
• connections with external tools.

Language Definition

Ml

£-program --►~1
(text) _

Environment Generator

Name of
module defining the

syntax ofL

t
GSE

Figure 3. Global organization.

- 6 -

Meta-environment

Generated Environment

One language definition can thus result in more than one generated environment by
connecting a number of instances of GSE to different sets of external tools.

We will first motivate the architecture sketched in Figure 3 and discuss some details of the
environment generator itself. A detailed discussion of GSE is postponed to Section 5.

Our point of departure is a formalism (ASF) in which the operations for module
composition (import, export, renaming, parameter binding) are defined in terms of textual
expansion: with each module one can associate a new module that does not contain any
module composition operations (its so-called normal form) by textually expanding each
composition operation that appears in the original module. As previous research has shown
[Hen88], this conceptually simple method is inadequate as a basis for implementation since
the actual copying of modules is not only expensive (both in compilation time and in size of
the generated code), but also difficult to extend to separate compilation of modules.

We propose the following, alternative, implementation model. Each module in the language
definition contains a number of "rules" such as declarations, grammar rules, and conditional
equations. We collect all rules from all modules in a single, global set of rules. Each rule in
this global set is tagged with the name of the module in which it was defined. We use these
tags to enable or disable individual rules in the global set. Instead of constructing the normal
form for each module, one only has to calculate which rules in the global set have to be en­
abled to obtain the same effect as the desired normal form. After selecting certain rules from
the global set, these can be used immediately, for instance, for parsing input sentences
according to the selected set of grammar rules , or for rewriting an input term according to the
selected set of conditional equations. The success of this implementation model is determined
by the efficiency of the following operations:

• calculation of the set of rules corresponding to a normal form;
• enabling/disabling rules in the global set;
• selecting parts of the implementation of the rules in the global set for a given set of en­

abled/disabled rules;
• modifying the global set of rules (and the corresponding implementation) in response to

editing operations on the specification.
The viability of this implementation model is further discussed in Section 7.

Consider, in Figure 4, a sequence of named modules which may contain names of other
modules to be imported as well as a number of unspecified "rules" which we denote by lower
case letters. The names declared in an imported module may optionally be renamed before it
is imported. The corresponding normal forms are shown in Figure 5 and the corresponding
global set of rules in Figure 6. The global set of rules contains the original rules as they
appear in the specification together with renamed versions of the rules as needed for the
normalization of all the modules in the specification. As an optimization, one could remove
from the global set those renamed rules that are identical to the original one, i.e., rules that are
not affected by the renaming.

Returning to the global architecture shown in Figure 3, we distinguish three components in
the environment generator that maintain information at a global level:

1. The Module Manager (MM) administers the overall modular structure of the language
definition. This amounts to maintaining the import relations between modules and
keeping track of definition and use of individual rules.

2. The Syntax Manager (SM) administers the (lexical and context-free) functions as well
as the declarations of priorities and variables defined in each module. The Syntax
Manager also creates and updates the scanners and parsers derived from all modules.

3 . The Equation Manager (EQM) administers the equations defined in each module to­
gether with the rewrite rules that have been derived from them.

- 7 -

module Ml begin
a, b

end Ml
module M2 begin

imports Ml
C

end M2
module M3 begin

imports Ml,
M2 renamed by Rl

d
end M3

module M4 begin
imports Ml,

M2,
M3 renamed by R2

end M4

module Ml begin
a, b

end Ml
module M2 begin

a, b, c
end M2

module M3 begin

Figure 4. A modular specification

a, b, a Rl , b Rl , c Rl , d
end M3

module M4 begin
a, b, c , a R2 , b R2 , a R1R2 , b Rl R2 , c R1R2 , ctR2

end M4

Figure S. Normal forms of the modules in Figure 4.

a a Rl a R2 a R1R2 b b Rl b R2 b R1R2 C c Rl c RlR2 d ctR 2

Ml X 0 0 0 X 0 0 0 0 0 0 0 0

M2 X 0 0 0 X 0 0 0 X 0 0 0 0

M3 X X 0 0 X X 0 0 0 X 0 X 0

M4 X 0 X X X 0 X X X 0 X 0 X

Figure 6. Global set of rules and selections corresponding to example in Figure 4.

- 8 -

module MJ
a,b

module M2
imports Ml
C

module M3
imports

Ml

d

M2 renamed
by Rl

module M4
imports

Ml
M2
M3 renamed

by R2

Lexical
rules

X a
x aRl
o aR2

0 aRlR2

o b
o bRl
o bR2

0 bRlR2

0 C
o cRl

0 cRlR2

o d
o dR2

X a
x aRl
o aR2

►

0 aRlR2

o b
o bRl
o bR2

0 bRlR2

0 C

o cRl

0 cRlR2

o d
o dR2

Rewrite rules

Figure 7. Processing the specification of Figure 4.

Context-free
rules

X a
x aRl
o aR2

0 aRlR2

o b
o bRl
o bR2

0 bRlR2

0 C

o cRl

0 cRlR2

o d
o ctR2

The general principle is that the Module Manager manages all modular information and that
the Syntax Manager and the Equation Manager can access only the pieces of information that
they need to carry out their respective tasks.

Applying this organization to the example given earlier in Figure 4, we obtain the situation
shown in Figure 7. The Module Manager passes all information related to syntactic issues to
the Syntax Manager, which in tum maintains two global sets of rules: lexical rules and
context-free rules. All information related to equations is passed to the Equation Manager,
which maintains one global set of rewrite rules derived from the equations.

3.2. Major components
Next, we give a description of all operations provided by the Syntax Manager, the Equation
Manager, and the Module Manager.

3.2.1. The Module manager (MM)
The Module Manager provides operations for adding and deleting modules and parts of
modules as well as for parsing strings and evaluating abstract syntax trees:

- 9 -

add,del:
Add/delete a module to/from the language definition; add/delete one of the following
entities to/from a module: sort declaration , lexical function definition, context-free
function definition, priority declaration, import, variable declaration, or equation.

select:
Select a module as current module.

parse:
Parse a string in the context of the current module; the result is an abstract syntax tree.

r e write:
Rewrite an abstract syntax tree (usually called "term" in the context of term rewriting)
using the rewrite rules derived from the equations defined in the current module.

Many of these operations depend on the corresponding operations defined in, respectively,
the Syntax Manager and the Equation Manager (see below).

3.2.2. The Syntax Manager (SM)
The Syntax Manager provides operations for adding and deleting parts of the SDF-section of
a language definition, for selecting a module, and for parsing strings:

add, del:
Add/delete one of the following entities to/from a given module: lexical function
definition, context-free function definition, variable declaration, priority declaration,
renaming, import, or equation.

select:
Select a module as current module. All SDF functions (and their renamed versions)
belonging to the normal form of the current module define its grammar. Select the parts
of the generated scanner and parser accepting that grammar.

parse :
Parse a string according to the grammar defined by the currently selected module.

3.2.3. The Equation Manager (EQM)
The Equation Manager provides operations for adding and deleting equations to/from a mod­
ule, for selecting a module, and for evaluating terms:

a d d, del:
Add/delete a signature element or an equation to/from a given module.

select:
Select a module as current module. All equations (and their renamed versions)
belonging to the normal form of the current module define its set of equations. Select
those parts of the compiled term rewriting system corresponding to the selected set of
equations.

rewrite:
Rewrite a te1m according to the currently selected module.

4. THE SYNTAX OF EQUATIONS
When constructing the meta-environment based on ASF+SDF, we are confronted with the
question of how the syntax of equations can be represented. Defining the syntax of equations
in the form of an ordinary module is not only elegant but efficient in terms of implementation
effort as well. The syntax of equations should be explicit and localized in a single module, as
opposed to, for instance, being dispersed over the implementation of the Module Manager. In
this way, it will be easy to change the syntax of equations. This might become relevant when
we want to combine SDF with some logical formalism other than ASF.

There are two possible approaches to represent the syntax of equations:
• Use a general grammar to describe the form of equations. In its simplest form, this

grammar would consist of a single rule
<equation> ::=<term> " = " <te rm>,

- 10 -

where <term> describes all well-formed terms that may appear at the left- or right-hand
side of the "=" sign as defined by the SDF-section of the current language definition.
Unfortunately, this rule permits equations in which the sorts of both terms are unequal.
Therefore these have to be rejected in a separate type checking phase.

• Reject type incorrect equations already during parsing by adding syntax rules to the
grammar for equations of all sorts s 1, ... , Sn declared in the language definition. This
grammar has the form:

<equation> : : = <S 1> "=" <S 1> I ... I <S n> "=" <S n>
We will now consider the second alternative in more detail.

4.1. Typechecking equations by means of a specialized equation grammar
Consider an ASF+SDF language definition consisting of the modules M1, ... , Mn (see Figure
8). In order to define the syntax of equations, this language definition is extended in the
following way. First, the module Equations is added that introduces a sort for an individual
equation and a sort for a complete equations section. We only discuss a simplified version of
the definition of unconditional equations; conditional equations can be defined in a similar
way. The definition is:

module Equations
exports

sorts EQ, EQ-SECTION
context-free syntax

EQ* -> EQ-SECTION

Next, we generate for each module Mi in the language definition a module EQ-Mi that consists
of three parts:

• For all exported sorts s1, ... ,sk declared in Mi we generate declarations for exported
functions of the form s j "=" s j -> EQ;

• For all hidden sorts T1, ... ,T 1 declared in Mi we generate declarations for hidden
functionsoftheformT j "=" Tj -> EQ;

• For all modules N1, ... ,Nm imported by Mi we generate imports of the "equation­
version" of each module N j . If the module has no imports, only an import for the
module Equations is imported.

The result is as follows:

module EQ-Mi
exports

context-free syntax
S1 "=" S1 -> EQ

sk "=" sk -> EQ
hiddens

context-free syntax
T1 "=" T1 -> EQ

T1 "='' T1 -> EQ
imports

EQ-N1

EQ-Nm

Parsing an equation in module Mi can now be done in the context of the dynamically
generated module EQ-Mi.

4.2. Example of a specialized equation grammar
Consider the specification of Booleans and Naturals given earlier in Figure 1 (Section 2).
Using the scheme described in the previous paragraph, this specification will be extended
with the following modules (apart from the modules Equation and Equations given earlier):

- 11 -

Module defining
the fixed part of the
syntax of equations

r,.......-----," I Equations I
\. ./

,r "

I Ml I

Modules in the r--::::-i
specification L..:::__j
(defined by user)

0 I EQ-Mnl ,____ \. ~

Modules defining the complete
syntax of equations for each module
(automatically generated)

Figure 8. Definition of the syntax of equations.

module EQ-Booleans
exports

context-free syntax
BOOL "=" BOOL -> EQ

imports
Equations

module EQ-Naturals
exports

context-free syntax
NAT"=" NAT -> EQ

imports
EQ-Booleans

An equation like o < succ o = succ o < succ succ o that could legally appear in
module Naturals, can be parsed using EQ-Naturals. More interestingly, an equation like
true = succ o would be syntactically incorrect.

S. LOOKING INSIDE THE GENERIC SYNTAX-DIRECTED EDITOR
The Generic Syntax-directed Editor (GSE) provides the following functions:

• Syntax-directed editing of strings (programs) in a given language L.
• Activation of "external tools" operating on the L-program in the editor. As we will see

some of "external tools" will be derived from the language definition itself (e.g.,
typechecker or evaluator).

• Display the output of these tools.
• Informing external tools connected to the editor about changes made during editing.
• Adjust the internal state of the editor after a modification to the syntax of language L.

We will now briefly discuss each of them.

- 12 -

t
Mod I Grains I MM I Syntax-changed

T - Generic Syntax-directed Editor - e
X

t External Tools I Changes

4 ~ H

1, H

Figure 9. Generic Syntax-directed Editor (GSE) with its parameters.

5.1. Syntax-directed editing
As experience shows, pure syntax-directed editing is not very convenient. In many cases, a
user wants to perform editing operations that are text-oriented rather than structure-oriented in
nature. To overcome this problem, GSE aims at integrating text-oriented editing and
structure-oriented editing as smoothly as possible. By syntax-directed navigation (or just by
pointing) the user can position a focus on a part of the program being edited. The contents of
the focus can be modified by conventional text-editing operations. When the user wants to
move the focus to another part of the program, its text is parsed. If syntax errors are found
they must be corrected before the focus can be moved. See [DK90, Koo90, Log88] for a
description of GSE.

From the perspective of the meta-environment, the parsing of programs can be implemented
using the parse function of the Module Manager.

5.2. Management of changes
Making changes to programs is an essential task of the editor. It depends on the environment
in which the editor is being used whether additional processing is required after a change.
Assuming the editor is parameterized with a function Changes that communicates changes to
the environment, there are two possibilities for choosing the granularity of the
communication:

• The function Changes is called after each modification to the program.
• It is only called after modifications that exceed certain "grain sizes" that are given as a

parameter of the editor.
In the first case, Changes has to infer whether additional actions are needed, whereas in the
second case this can be done by the editor in a more generic way.

In general, there will be a mismatch between the size of a change made during editing and
the size of the changes the external tool can cope with. For instance, if the external tool can
handle changes of the size of statements (in the context of editing some programming
language) how do we process changes to parts of a statement such as the condition in an if­
statement? The approach we have chosen is to determine the smallest grain enclosing a
modification automatically and call the external tool for it. Modifications to program
fragments that are larger than the grains provided by the external tool are processed by
calculating the difference between the old and the new fragment and calling the external tool
for a minimal number of grains that cover the difference.

In the design as presented here we only allow for a single definition of grain sizes for each
instance of GSE. This implies that all attached external tools will have to provide operations
for the same set of grains. In the future it may tum out to be desirable to allow different grain
sizes for each external tool attached.

- 13 -

Environment Generator

Language Definition
consisting of the
single module M

M

M

Mod I Grains I MM I Syntax-changed
Program

(text) T
----1~~e Generic Syntax-directed Editor

X

t External Tools I

, ,
["execute": function(gse) {

Changes

Meta-environment

Generated Environment

gse .MM. select (gse .Mod), Select Mas current module
gse .MM. rewrite (gse. Tree) Rewrite the current tree

Figure 10. A generated environment for evaluating terms.

5.3. Attaching external tools to the editor
The formal definition of a language may contain rules specifying certain operations on pro­
grams such as typechecking and evaluation. After compilation of the specification this leads
to a number of functions that can operate on programs. From the viewpoint of the editor these
functions form "external tools" and the question now arises as to how they can be attached to
GSE. The following points should be considered:

(a) Activation of the external tool.
(b) Communication of information from within the editor to the external tool.
(c) Communication of the output of the external tool back to the editor.

Point (a) can be solved by including a list of (command,function)-pairs in the language
definition and passing this list as a parameter to the editor. The commands are placed in the
command menu of the editor and selection of a certain entry from the menu will result in a call
to the associated function . All functions have the same calling interface: they have the editor

- 14 -

Language Definition
cons is ting of three
modules

Environment Generator

Meta-environment

Generated Environment

L-SYN

~
Program

Mod Grains MM Syntax-changed

(text) T
---~►• e Generic Syntax-directed Editor

["check":

X

t External Tools Changes

t
function(gse) {

gse.MM.select(L-TC),
gse.MM.rewrite(tc(gse.Tree))

} ,

Select L-TC as current module
Rewrite tc applied to current
tree in GSE

"execute": function(gse) {
gse .MM. select (L-EV), Select L-EV as current module
gse .MM. rewrite (eval (gse. Term)) Rewrite eval applied to current

tree in GSE

Figure 11. A generated environment for editing, typechecking and evaluating
L-programs.

from which they are being called as single argument. Note that automatic activation of
external processors (as, for instance, needed for incremental typechecking) can be imple­
mented by means of the Changes function discussed in the previous section.

Point (b) is solved by providing operations on the editor that return (parts of) the internal
state of the editor, such as, the current program, the current focus, etc.

- 15 -

Point (c) can only be solved if all external operations return their output in a fixed format.
An obvious choice is a list of (error-message, subtrees)-pairs, to be interpreted as a list of all
erroneous subtrees with their associated error-messages.

5.4. Syntax modifications
After a modification to the syntax of the input language L of the editor, it should be verified
that the current program in the editor is still a valid £-program. A naive implementation will
completely (re)parse the program. This facility is needed to support editing in the meta­
environment (see Section 6).

5.5. Major functions of GSE
The above discussion can be summarized in the following list of operations provided by GSE
(see also Figure 9):

GSE:
Construct a new instance of GSE given:

a Module Manager,
a module name (defining the input syntax, i.e., the syntax of the texts to be edited),
a definition of the grain sizes for which Changes should be called)
a function Changes,
a list of (command, function)-pairs defining the communication with external tools

Focus, Tree, MM, Mod:
Return status information such as the current focus (Fo cus), the current program
(Tree), the Module Manager used (MM), the module defining the input language (Mod),
etc.

Up, Down, Replace, Search, ... , :
Perform editing operations.

Syntax-changed:
Signal a modification of the input syntax and adjust the internal state of the editor ac­
cordingly.

Typical examples of the use of GSE are shown in Figures 10 and 11. In Figure 10, the lan­
guage definition consists of a single module M, and we construct an environment for editing
and evaluating terms in M. The "external tool" connected to GSE rewrites the current tree
using the equations from module M. This connection is established by the following
(command, function)-pair:

"execute " : function(gse) {

}

gse.MM.select(gse.Mod),
gse.MM.rewrite(gse.Tree)

The execute command is added to the command repertoire of GSE, for instance, by adding
an appropriately labelled button to its user-interface. On activation of the new command, the
above function is called. It is a nameless function with the instance of GSE from which it is
being called as single parameter. Through this parameter-and all operations provided by
GSE-relevant information about the internal state of the editor and of its parameters
becomes accessible. In the body of the function gse. MM determines the Module Manager
associated with this instance of GSE. Using this Module Manager, the current input language
of the editor (gse . Mod) is selected as current module. Next, the current abstract syntax tree in
the editor (gse. Tree) is rewritten in the context of the selected module using the rewrite
function provided by the Module Manager.

In Figure 11 , the language definition consists of three modules: L-SYN (defining the syntax
of language L), L-Tc (defining the typechecking of L programs; L-Tc imports L-SYN), and
L-Ev (defining the evaluation of L programs; it also imports L-SYN). In this case, we con­
struct an environment for editing, typechecking and evaluating L programs. The commands
check and eval are implemented using the functions tc and eval defined in, respectively,
L-TC and L-EV.

- 16 -

Fixed modules

SDF

Equations Environment Generator Generated Modules

M2
I EQ-M2

Language Definition
EQ-Mn I

Meta-environment

SDF Generated Environment

SDF part

Equations

Mi

Mod Grains MM Syntax-changed

T
i----a► e

X

Generic Syntax-directed Editor
GSEl

t External Tools Changes

EQ-Mi [EQ]

t t
Mod Grains MM Syntax-changed

T
1--_.e Generic Syntax-directed Editor

GSE2
X

t External Tools Changes

Syntax
Manager

Equation
Manager

Figure 12. Editing a language definition module.

- 17 -

6. EDITING IN THE META-ENVIRONMENT
How can we use generated editing environments to edit ASF+SDF specifications? To answer
this question we have to define the complete syntax of ASF+SDF specifications. This can be
done in the following way:

• To each specification we add, implicitly, a fixed module called SDF, which defines the
syntax of the SDF part of each module.

• To each specification we add the module Equations defining the syntax of equations
as described in Section 4.

• To each module M we add a module EQ-M, defining the contributions of module M to the
syntax of equations.

Editing a module in the specification now amounts to creating two editors: one for the SDF
part of the module (GSEl) and one for the equations part (GSE2). This is shown in Figure 12.
Some comments on this figure are appropriate:

• The grain size for the processing of changes to the SDF part is determined by a list of
sorts given to GSEl. This list contains a sort name for each entity for which the Syntax
Manager provides add/delete operations.

• The Changes function associated with GSEl will use the Syntax Manager for actually
performing the changes to the SDF part of a module. It will also call GSE2. Syntax­
changed after each modification to the SDF part of the module.

• The grain size for GSE2 is determined by a list only containing the sort EQ, i.e., only
changes at the level of complete equations are considered as changes. This corresponds
precisely to the add/delete operations provided by the Equation Manager.

• The Changes function associated with GSE2 will use the Equation Manager for actually
performing the changes to the equations apart of the module.

• We have left unspecified which operations are performed on, respectively, the SDF part
and the equations part of the module. Typical examples are: typechecking and
compiling.

7. IMPLEMENTATIONTECHNIQUES
In Section 3.1. we have presented an implementation model for modular specifications in
which all "rules" appearing in modules are collected in one global set together with a
mechanism to enable or disable individual rules from this set. Finding an efficient
implementation method for this model is, of course, essential. Although a general framework
for describing such a method is still lacking, two experiments have been performed that
demonstrate the feasibility of the approach.

One experiment [Kli89] concerns the case that the rules in each module are regular ex­
pressions to be compiled into a deterministic finite automaton. The key idea is to construct a
single automaton for all regular expressions in all modules. The selection operation that en­
ables or disables certain regular expressions, is implemented by enabling or disabling the
corresponding transitions in the automaton. The resulting Modular Scanner Generator uses
techniques for lazy and incremental program generation [HKR87a, HKR87b]: parts of the fi­
nite automaton are only constructed when they are needed and most parts not affected by the
addition or deletion of a regular expression will be reused. In the same spirit, the enabling or
disabling of transitions is only done when needed.

The other experiment [Rek89] concerns modular context-free grammars and the "rules" to
be considered are syntax rules. Key idea is, again, to construct a single parse table for all
syntax rules in all modules and to implement the enabling or disabling of a syntax rule by en­
abling or disabling the corresponding transitions in the parse table. The resulting Modular
Parser Generator also uses lazy and incremental techniques and extends the notion of incre­
mental parser generation described in [HKR90].

Measurements show that in both cases the selection operation is very fast and that the over­
all performance of the generated programs (i.e., scanner and parser) is hardly influenced by
the introduction of an enabhng/disabling mechanism for individual rules. We may therefore

- 18 -

conclude that an efficient implementation along the lines of our model exists in at least these
two specific cases.

In this context, no experience yet exists with the compilation of algebraic specifications to
rewrite rules. One of the directions we have investigated is to use finite automata for the
matching of left-hand sides of rules and to apply techniques similar to the ones used in the
modular scanner generator in this case as well [Wal90].

8. CONCLUDING REMARKS

8.1. Current state of the implementation
A first version of the meta-environment for generating programming environments as
presented in this paper has been implemented. It supports the interactive development of
ASF+SDF specifications by providing syntax-directed editing of specifications and
immediate translation of modifications made to the ASF+SDF specification to modifications
in the programming environment generated for it. The generated environment is immediately
available and can be used for experimentation. The current meta-environment consists of the
following parts:

• A Module Manager consisting of a nucleus providing the operations as described in this
paper, except that the current implementation does not yet support renaming and
parameterization of modules . On top of this nucleus, a simple user-interface has been
built yielding an interactive development environment for language definitions written
in ASF+SDF.

• The Modular Scanner Generator and Modular Parser Generator discussed in the
previous section are operational and have been used to implement the Syntax Manager.

• A moderately efficient Equation Manager has been implemented. Work on building a
more efficient one is in progress.

• The Generic Syntax-directed Editor has been implemented. It supports integrated text­
oriented and structure-oriented editing, but does not yet provide the complete
functionality as described in Section 5. In particular, the determination of the grain size
is currently implemented as part of the Module Manager and the connection of external
tools has only been implemented in a rudimentary fashion.

Some major implementation problems still have to be solved such as the generic treatment of
the output of external tools, i.e., prettyprinting arbitrary values resulting from the evaluation
of an external tool, or treating error messages produced by a typechecker in a nice fashion.

8.2. Discussion
Although a full evaluation of the proposed meta-environment has to await completion of its
implementation as well as experience with its use, some remarks on the design are in order.
We foresee the following problems and open questions:

• The system proposed here will be faced with a serious version management problem:
after changing a language definition there may still be programs around that conform to
the old definition.

• It is not yet clear whether the proposed implementation model will scale up to industrial
size applications.

• Not much experience exists with the use of specification formalisms with user-de­
finable syntax. In principle, freedom of notation seems to be a desirable property, but it
may very well tum out that this freedom has to be controlled in some way for the sake
of readability and reusability of specifications.

• We are not yet able to derive incremental implementations from ASF+SDF
specifications, but intend to do so using techniques described in [vdM90].

We see the following merits in the proposed system:
• The system is so interactive and responsive that users are completely unaware of the

fact that each modification they make to their language definition has major impacts on
the generated implementation. For instance, the presence of a parser generator is

- 19 -

completely invisible to the user. As a result, the system is also accessible to naive
users.

• The generality of the syntax definition mechanism provided by ASF+SDF together with
the new, but well-understood, techniques used for their implementation form an im­
provement over the syntax definition facilities in comparable systems [FGJM85,
Voi86].

• The use of two coupled instances of GSE for editing languages definitions in the meta­
environment is an interesting case of reusing existing components. As a result, both the
meta-environment and generated environments will benefit from future improvements
in GSE.

• The similarity between meta-environment and generated environments leads to a
situation where features considered desirable in the meta-environment may have
unexpected applications in generated environments (and vice versa). This may lead to
interesting generalizations.

ACKNOWLEDGEMENTS
Constructing a programming environment based on language definitions is a common, long
term, goal shared with Jan Heering. We have had numerous discussions about the
desirability, implications and possible realization of such a system.

The specific design and implementation of the meta-environment presented here has
emerged from numerous discussions with Casper Dik (EQM), Hans van Dijk (GSE), Jan
Heering, Paul Hendriks (MM), Wilco Koom (GSE), Emma van der Meulen, Jan Rekers
(SM), and Pum Walters (EQM) . Jan Heering, Paul Hendriks and Emma van der Meulen
commented on drafts of this paper.

REFERENCES
[BCDIKLP88]

[BHK89]

[BS86]

[CH89]

[DHKL84]

[DK90]

[Des84]

P. Borras, D. Clement, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang &
V. Pascual, "Centaur: the system", Proceedings of the ACM SIG­
SOFTISIGPLAN Conference on Practical Software Development Envi­
ronments, 1988, pp. 14-24.
J.A. Bergstra, J. Heering & P. Klint (eds.), Algebraic Specification, ACM
Press in co-operation with Addison-Wesley, 1989.
R. Bahlke & G. Snelting, "The PSG system: from formal language defini­
tions to interactive programming environments", ACM Transactions on
Programming Languages and Systems, Vol. 8, Number 4, 1986, pp. 547-
576.
D. Clement & L. Hascoet, "Centaur Paths: a structure to designate
subtrees", CENTAUR User's Manual, Version 0 .9, INRIA, 1989.
V. Donzeau-Gouge, G. Huet, G. Kahn & B. Lang, "Programming envi­
ronments based on structured editors: the Mentor experience" in D .R.
Barstow, H. E. Shrobe & E. Sandewall (eds.), Interactive Programming
Environments, McGraw-Hill, 1984, pp. 128-140.
M.H.H. van Dijk & J.W.C. Koorn, "GSE: a generic syntax-directed
editor", Report CS-R9045, Centre for Mathematics and Computer Science,
Amsterdam, 1990.
T. Despeyroux, "Executable specification of semantics", in Semantics of
Data Types, G. Kahn, D.B. MacQueen & G. Plotkin (eds.), Lecture Notes
in Computer Science, Vol. 173, Springer-Verlag, 1984, pp. 215-233.

- 20 -

[ES88] R. Endres & M. Schneider, "The GRASPIN Software Engineering Envi­
ronment", in ESPRIT '88: Putting the Technology to Use, North-Holland,
1988, pp. 349-364.

[FGJM85] K. Futatsugi, J. A. Goguen, J.-P. Jouannaud, and J. Meseguer,
"Principles of OBJ2", in Conference Record of the Twelfth Annual ACM
Symposium on Principles of Programming Languages, ACM, 1985, pp.
52-66.

[GENESIS87] "An Overview of Genesis", ESPRIT Project 1222 (GENESIS), Deliver­
able 12Y3, 1987.

[HHKR89] J. Heering, P.R.H. Hendriks, P. Klint & J. Rekers, "The syntax defini­
tion formalism SDF-reference manual", SIGPLAN Notices, Vol. 14
(11), pp. 43-75 (November 1989).

[Hee83] J. Heering, "Een programmeeromgeving gebaseerd op taaldefinities" (in
dutch), in J. Heering & P. Klint (eds.), Colloquium
Programmeeromgevingen, Mathematical Centre Syllabus 30, 1983, pp.
69-81.

[HK85] J. Heering & P. Klint, "Towards monolingual programming
environments", ACM Transactions on Programming Languages and
Systems, Vol. 7, No. 2, April, 1985, pp. 183-213.

[HK89a] J.Heering & P. Klint, "The syntax definition formalism SDF", in
[BHK89, Chapter 6]. Also in ESPRIT '86: Results and Achievements,
North-Holland, 1987, pp. 619-630.

[HK89b] J. Heering & P. Klint, "PICO revisited", in [BHK89, Chapter 9]. Also in
ESPRIT '88: Putting the Technology to Use, North-Holland, 1988, pp.
365-379.

[HKKL85] J. Heering, G. Kahn, P. Klint & B. Lang, "Generation of interactive pro­
gramming environments", in ESPRIT '85: Status Report of Continuing
Work, Part I, North-Holland, 1986, pp. 467-477.

[HKR87a] J. Heering, P. Klint & J. Rekers , "Principles of lazy and incremental pro­
gram generation", Report CS-R8749, Centre for Mathematics and Com­
puter Science, Amsterdam, 1987.

[HKR87b] J. Heering, P. Klint & J. Rekers, "Incremental generation of lexical scan­
ners", Report CS-R8761, Centre for Mathematics and Computer Science,
Amsterdam, 1987 (accepted for publication in ACM Transactions on
Programming Languages and Systems).

[HKR90] J.Heering, P.Klint & J.Rekers, "Incremental generation of parsers", IEEE
Transactions on Software Engineering, SE-16, 11 (November 1990); Also
in Proceedings of the SIGPLAN '89 Conference on Programming
Language Design and Implementation, (June 1989), pp. 179-191.

[Hen88] P.R.H. Hendriks, "ASF system user's guide", Report CS-R8823, Centre
for Mathematics and Computer Science, Amsterdam, 1988.

[Hen89] P.R.H. Hendriks, "Type-checking Mini-ML", in [BHK89, Chapter 7].
Abbreviated version in Proceedings of CSN87: Computing Science in the
Netherlands, SION, 1987, pp. 21-38.

- 21 -

[HN86]

[KLMM83]

[Kah87]

[Kli89]

[Koo90]

[Log88]

[vdM88]

[vdM90]

[RT89]

[Rek89]

[Voi86]

[Wal90]

A.N. Habermann & D. Notkin, "Gandalf: software development environ­
ments", IEEE Transactions on Software Engineering, Vol. 12, 1986,
pp.1117-1127.
G. Kahn, B. Lang, B. Melese & E. Morcos, "METAL: a formalism to
specify formalisms", Science of Computer Programming, Vol. 3, 1983,
pp. 151-188.
G. Kahn, "Natural semantics", in Fourth Annual Symposium on Theoreti­
cal Aspects of Computer Science, ed. F.J. Brandenburg, G. Vidal-Naquet,
and M. Wirsing, Lecture Notes in Computer Science, Vol. 247, Springer­
Verlag, 1987, pp. 22-39.
P. Klint, "Scanner generation for modular regular grammars", in Liber
Amicorum, J. W. de Bakker, 25 jaar Semantiek, Centre for Mathematics
and Computer Science, Amsterdam, 1989, pp. 291-305.
J.W.C. Koorn, "GSE: A generic text and structure editor", Programming
Research Group, University of Amsterdam, to appear, 1990.
M. Logger, "An integrated text and syntax-directed editor", Report CS­
R8820, Centre for Mathematics and Computer Science, Amsterdam, 1988.
E.A. van der Meulen, "Algebraic specification of a compiler for a language
with pointers", Report CS-R8848, Centre for Mathematics and Computer
Science, Amsterdam, 1988.
E.A. van der Meulen, "Deriving incremental implementations from
algebraic specifications", Centre for Mathematics and Computer Science,
Amsterdam, to appear, 1990.
T. Reps & T. Teitelbaum, The Synthesizer Generator: a System for Con­
structing Language-based Editors, Springer-Verlag, 1989.
J. Rekers, "Modular parser generation", Report, Centre for Mathematics
and Computer Science, Amsterdam, CS-R8933, 1989.
F. Voisin, "Cigale: a tool for interactive grammar construction and expres­
sion parsing", Science of Computer Programming, Vol 7., 1986, pp. 61-
86.
H .R. Walters, "Using text scanners for tree matching", Programming
Research Group, University of Amsterdam, to appear, 1990.

- 22 -

