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1. INTRODUCTION

FUNPACK, a small package of special function programs [7, 10] developed in

the 1970s, was designed for near-optimal performance on a limited set of

computers. Because the programs were highly machine-dependent and not

intended to be moved to other machines, the package has become outmoded.

We present here SPECFUN, a new and more complete package containing

highly transportable FORTRAN programs for 27 special functions. In addi-

tion to the functions, the package contains a complete set of transportable

self-contained test drivers that may also be used to assess the quality of

function programs from other collections. These test drivers may ultimately

prove the most useful part of the package; to our knowledge, no other test

drivers are available.

In the next section we review the overall design of the package (presented

in more detail elsewhere [11]), including portability issues. Section 3
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discusses the function programs in the package, and Section 4 briefly summa-

rizes the test programs.

2. PACKAGE DESIGN

SPECFUN differs considerably from the earlier FUNPACK package in sev-

eral important aspects: portability, the functions available, and the inclusion

of programs to measure performance of the functions. The latter two differ-

ences are discussed in the following sections; here we concentrate on the

portability issue.

The design goal was to achieve portability with minimum degradation of

the accuracy and robustness found in FUNPACIK. Clearly, portability comes

with a price—the loss of features such as precise overflow/underflow thresh-

old tests in this case, features that depend intimately on the machine

representation of data.

Most of the FUNPACK programs expressed approximation coefficients and

error thresholds in the native representation for the host machine (a major

reason the programs are not portable). In contrast, all coefficients and

thresholds in SPECFUN are given in decimal in DATA statements. This

design introduces tvvo different potentially damaging sources of error: the

error necessarily introduced by the conversion of these decimal strings to

internal representations, and the imprecision in error thresholds. Thle effect

of conversion error is minimized by selecting approximation forms that are

numerically stable, and then evaluating them with attention to details that

minimize the buildup of rounding error. Lack of precision in error thresholds

cannot be circumvented, however. The best that can be done is to provide

conservative values (so that overflow, for example, is not triggered lbecause

the test threshold is slightly too large) and to accept the resultant trapping of

a few theoretically acceptable arguments as the price for portability.

We use two general approaches to evaluating the functions: minimax

approximations for functions of one variable, and recurrence technicpes for

functions of two variables (the Bessel functions for arbitrary real ar<~ment

and order where the programs normally return a sequence of function

values). Approximation coefficients and certain of the recursion parameters

are selected to provide between 18 and 20 significant decimal digits of

accuracy. The programs thus provide full sing] e-precision accuracy on all

computers currently used for serious scientific computation (assuming, of

course, that the elementary function library is decent), and double-pl~ecision

accuracy on most such machines (the exceptions being machines like the

Crays with more than 60-bit double-precision arithmetic). The decision to use

only one approximation, independent of the underlying machine precision,

means that the programs may be inefficient on short-wordlength machines,

evaluating a higher-degree approximation than would otherwise be neces-

sary. We view this as the lesser of two evils, the alternative being to provide
different approximations (and possibly different computational paths) for

each of several different wordlengths. Of course, parameters for recurrence

schemes are adjustedl wherever possible to match machine wordlength.
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The comments at the beginning of each program provide complete details

on calling sequences, error returns, citations for coefficients and algorithms,

other programs required, and machine-dependent parameters (error thresh-

olds, etc. ). The parameter discussion includes a mathematical definition of

each parameter in sufficient detail to permit its computation for a new

machine, and a tabulation of suggested values for popular machines. These

values must be inserted in the appropriate DATA statements in each pro-

gram as part of the process of installing the programs (default values in the

DATA statements are those for machines based on IEEE arithmetic).

Other than the provision of these machine-dependent constants, program

installation involves only some minor global editing changes. All other coeffi-

cients, variable declarations (we impose strong typing), function calls, or

other constructs that might vary with declared precision are duplicated in

statements containing CS in columns 1 and 2 for the single-precision versions

and CD in those columns for the double-precision versions. A single-precision

version of a program is thus obtained by changing all such occurrences of CS

to blanks, and a double-precision version by instead changing the CDs to

blanks. Note that one or the other of these global changes must be made.

We have used different names for some single- and double-precision rou-

tines in the error and gamma families to be consistent with the traditional

names established years ago in IBM libraries. The single- and double-preci-

sion versions of all other function programs have the same name. There are

several reasons for this. First, when we used different names in the FUN-

PACK package many years ago, some users complained. Applications using

our functions were difficult to move between IBM machines, for example,

where computations were normally done in double precision, and CDC ma-

chines where computations were normally done in single precision. Second,

system-maintained libraries, even today, normally contain special function

routines in only one precision, typically single precision on machines like

CRAYS and double precision on machines like those based on IEEE arith-

metic.

One final note on package design: programs sharing core computations are

packaged together in a packet. Such a packet contains two or more function

programs intended to be called by the user, together with a computational

subroutine intended to be called only by the function programs, i.e., a

subroutine whose usage is intended to be limited to internal package calls.

The names of these computational subroutines have been chosen so the user

is not likely to duplicate them unintentionally in his own program.

3. THE FUNCTIONS

Table I lists the functions in SPECFUN by family. Unless otherwise noted

here, use of a function from this package requires only the declaration of the

function and its argament, and the usual invocation for a FUNCTION-type

FORTRAN subprogram.

The first family listed is a packet of three exponential integral programs

(EI, EONE, and EXPEI) and one computational core program (CALCEI)
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Table I. Contents of SPECFUN

Function

.
Exponential Integrals

Ei(x)

El(x)

e–z El(x)

Gamma Functions

r(x)
111r(z)

v(z)
Error Functions

erf(-c)
erfc(x )

e~zel’fc( z)

Dawson’s Integral
Normal D]stributiou

J Bessel Functions
Jo(x)

J,(x)

Jv($)

Y Bessel Functions

Ye(x)

Y,(z)

Y“(x)

I Bessel Ful~ctlons

Io(z)

e-lzlI~(z)

II(z)

e+1,(Z)

Iv(r), e-zlv(.r)

K Bessel Funct]ons

liO(z)
e* AO(z)
I{I(r)

erA”l(z)

KW(z), e=fiu(z)

Function .+uxiliary-

Prog]am Routine

EI C.ALCEI

EONE CALCEI

EXPE1 CALCEI

GAhf\I.4, DG.4MhI.k

ALC+ +111. I. DLC+AM.A

l)S1

Cllr. DERr

ERIX’. DERK

ERJWX. DERK’X

DA\\”

ANORI[

BESJO

BESJ 1

R JBE5L

BESYO

131:’s}” I

R}”JIESL

BESIO

BESEIO

JJESI1

J3ESE11

RIBESL

BES1iO

BESElilJ

nEshl

BESLK1

RIiBESL

C’\J.ERF

(’.\LERF

C.ALERF

C.ILJYO

C’.AL.JY1

C’.ALJYO

C’.AL.JY1

C.ALCIO

C.4LCI0

C.ALCI1

C.iLCIl

CiLCKO

C.ALCKO

C.ALCK1

C’ALCKl

patterned after a similar packet in FUNPACK. These programs exploit

rational minimax approximations [20, 21] that are theoretically accurate to

18 significant decimal digits. EONE avoids an error return for negative

arguments by computing with Ix 1.The programs return default values of zero

or the largest machine-representable number, as appropriate, for zero argu-

ments or arguments exceeding machine-dependent limits.

Next come functions related to the gamma function. The programs for 17(x)

(GAMMA and DGAMMA, where the D designates the double-precision pro-

gram) are based on an algorithm outlined in [8]. These programs exploit an

unpublished minimax approximation for 1 s x < 2 and a published approxi-

mation [24] for 12 s x. Other arguments are handled with the reflection

formula (for negative arguments) and the recurrence relation. The/se pro-

grams return the largest machine-representable number at singularity ies and
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for arguments greater in magnitude than a machine-dependent threshold.

The companion programs for in r(x) (ALGAMA and DLGAMA) exploit pub-

lished minimax approximations [ 15, 24] in an algorithm detailed in [15]. The

argument for this function must be positive and less than a machine-

dependent upper limit. These routines return the largest positive machine

number for out-of-range arguments. The family also includes a program for

W x ) (PSI), similar to the corresponding FUNPACK program, and based on

minimax approximations from [19]. This program returns the largest repre-

sentable floating-point number, with appropriate sign, for arguments in a

machine-dependent neighborhood of zero, and negative arguments less than

a machine-dependent threshold.

The third family is a collection of error-like functions. Programs for the

error function (ERF and DERF), the complementary error function (ERFC

and DERFC), and the exponentially scaled complementary error function

(ERFCX and DERFCX) are packaged together with one core computational

program (CALERF). The approximations used here [6] are theoretically

accurate to at least 18 significant decimal digits. ERFC and ERFCX return

zero for arguments greater than machine-dependent thresholds, and ERFCX

returns the largest floating-point number for negative arguments less than a

machine-dependent threshold. Next is Dawson’s integral (DAW). This pro-

gram is similar to the FUNPACK program, exploiting minimax approxima-

tions and an algorithm outlined in [16]. There is a machine-dependent

argument beyond which the program returns a zero result. The final member

of this family is the normal distribution function (AN ORM). The approxima-

tions used in this program are derived from those for the error function.

The remainder of the functions in SPECFUN are Bessel functions grouped

into four families, the J, Y, I, and K functions. Each family consists of

function programs for orders O and 1 and a subroutine-type program for

sequences of functions starting at an arbitrary fractional order. In addition,

the I and K families include routines for exponentially scaled functions.

For efficiency, the programs for JO(x) (BESJO) and YO( x) (BESYO) are

packaged into one packet with a core computational program (CALJYO).

Similarly, the programs for Jl( x) (BESJ1) and Yl( x) (BESY1) are packaged

into one packet with a core program (CALJY1). In both packets, the main

computation uses unpublished minimax approximations for Ix I s 8 and ap-

proximations from [24] for larger arguments. The first few zeros of all of

these functions are built into the approximations so that relative accuracy is

maintained for Ix I < 8. Only absolute accuracy is maintained for x > 8,

however. These programs return zero for arguments greater than machine-

dependent thresholds, and BESYO and BESY1 return the negative of the

largest floating-point number for zero or negative arguments. The programs

BESJO and BESJ1 duplicate capabilities in FUNPACK.

The subroutine RJBESL is a heavily modified version of a program written

by Sookne [25] that computes both I and J Bessel functions of real argument
and integer order. Modifications for SPECFUN include the restriction of the

computation to the J Bessel functions for nonnegative arguments, the gener-

alization to arbitrary nonnegative fractional order, and elimination of
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underflow problems. The new program returns an array of Bessel flmctions

Ja(x), Ja+l(x),. . . . c1’.+.. I(x) for O < x < XLARGE and O s a <1, where
XLARGE is arbitrarily set to 104. The calling sequence for this routine is

CALL RJBESL(X,ALPHA,NB,B,NCALC)

where X and ALPHA are input floating-point values for x and a, respec-

tively, NB is an input INTEGER variable with the value n, B is a floating-

point output array of at least length NB to hold the computed function

values, and NCALC is an INTEGER output variable containing errc)r infor-

mation in the form of the number of correct function values returned, or a

coded indicator for an improper argument (such as a negative value for X or

NB). In case of an argument error, B(1) is set to zero, but the remaining

contents of the array B are not altered by the prcgram. RJ13ESL does require

that a GAMMA function be available.

RYBESL is the counterpart of RJBESL for the Y Bessel functions. The

program draws heavily on Temme’s Algol program for Y(a, x) and Y( a + 1,x)

[26], and on Campbell’s program for x,(x) [3]. Temrne’s scheme is used for

arguments in the nonasymptotic region, and Campbell’s scheme is used in

the asymptotic region. With the original authors’ permissions, segments of

code from both sources have been translated into FORTRAN 77, merged, and

heavily modified. Modifications include parametrization of machine {depend-

encies, use of a new internal approximation for In r(x), and built-in protec-

tion against overflow and destructive underflow. RYBESL returns an array of

Bessel functions Ya(.x), Y.+ ~(x),. . . . Y. . ..l(x) for O < x < XLARGE and O s
a < 1, where XLARGE is a machine-dependent thresholol. The calling se-

quence is

CALL RYBESL(X,ALPHA,NB,BY,NCALC)

where the arguments and error indications are similar to tJlose for RJBESL.

In case of an argument error, BY(1) is set to zero, but the remaining e lements

of the array are unaltered.

The next family is the I Bessel family. In addit~ on to programs analogous to

those in the previous two families, this family includes programs for e xponen-

tially scaled functions of order O and 1, and an additional parameter to the

general-order subroutine to provide exponentially scaled functions there. The

programs for l.( x) and e ‘1 ‘[lo( x) (BESIO and BE SEIO, respectively) are

packaged with the core program CALCIO. The corresponding programs for

11(x) and e‘1 ‘III( x ) (BESI1 and BE SEI1) form a packet with the core program

CALCI1. The main computations in these programs evaluate slightly modi-

fied minimax approximations from [2]. BESIO and BESI1 return the largest

floating-point number for arguments greater in magnitude than machine-

dependent thresholcls. These two packets duplicate facilities provided in

FUNPACK.

RIBESL is the counterpart to RJBESL in this family. It too is based on

Sookne’s program [25]. Modifications include the restriction of the computa-

tion to the I Bessel functions for nonnegative arguments, the extension to

arbitrary nonnegative fractional order, the inclusion of optional exponential
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scaling, and elimination of underflow problems. An earlier version of this

program was published in [9]. RIBESL returns an array of Bessel functions

Ire(x), Icp+,(.r), . . . . 1,,... I(x) or of exponentially scaled Bessel functions
e ‘l X1fl(. x), e zIU+l(x),... ,ZIZl .+..I(x) for O<x and 0< a< 1. In addi-
tion, x is bounded above by machine-dependent thresholds which differ for

the scaled and unscaled computations. The calling sequence is

CALL RIBESL(X,ALPHA,NB, IZE,B,NCALC)

where the INTEGER input parameter IZE is set to 1 if unscaled functions are

to be computed, and to 2 if exponentially scaled functions are to be computed.

All other parameters are similar to those for RJBESL or RYBESL. In case of

an argument error, none of the elements of the array B is altered. RIBESL

also requires a GAMMA function.

The final family of K Bessel functions contains programs entirely analo-

gous to those in the I Bessel family. The programs for KO( .x) and e ‘Ko( x )

(BESKO and BESEKO) are packaged with the core computation CALCKO,

while those for Kl( x ) and e ‘Kl( x ) (BESK1 and BE SEK1) are packaged with

the core computation CALCK1. Arguments to these functions must be strictly

positive and less than machine-dependent thresholds. All of the main compu-

tations use slightly modified minimax approximations from [1]. BESKO and

BESK1 return the largest floating-point number for nonpositive arguments,

and return zero for arguments larger than machine-dependent thresholds.

FUNPACK contained similar programs.

RKBESL returns an array of Bessel functions K.(*), K<,. I( x ), . . . .

K ,,+ ~ 1( x ) or of exponentially scaled Bessel functions e ‘K<, ( x),
exK,, +l(.x), . .. Km+ml. -l (x) for O < x and O < a <1. In addition, x is bounded
above by a machine-dependent threshold for the unscaled functions. The

calling sequence is

CALL RKBESL(X,ALPHA,NB, IZE,BK,NCALC’)

where the arguments are defined similarly to those for RIBESL. The program

is based on one written by Campbell [4, 5]. Modifications include the addition

of nonscaled functions; parameterization of machine dependencies; and the

use of more accurate, locally generated internal approximations for sinh( .r )

and sin(x). In case of an argument error, none of the elements of the array

BK is altered.

4. THE TEST PROGRAMS

Table H lists the 18 test programs and an auxiliary program in SPECFUN.

The tests are all self-contained. They rely on carefully selected and imple-

mented identities or analytic expansions to check accuracy and provide some

checks of robustness (error returns, etc.).

Accuracy tests all use randomly generated arguments, usually 2000 of

them, from appropriate intervals. These arguments are first “purified” (per-

turbed in a test-dependent way) to ensure that certain auxiliary arguments

to be determined from them are exact machine numbers. The purified
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Table II. Test Drivers in SPECFUN

~

.kuxi]iary

Routi[)e

EITEST El DSUBN

GAMTST C+ANiU.1, DC;.ilIMA

ALC;TST ALC; .4AI,i. DLC;.\A1 .-i

PSITST Psl

ERFTST ERl_’. ERFC ERI’C’X

DA\\’TST D.\\\

ANRTST .\xOl{\l

JoTEST BESJO

JITEST BESJ1

RJTEST R.JBESL

YOTEST J3m’)”o

YITEST BJ5)” I

R1 TES’I R\ R1:$J.

10TEST lJI:’-J IO. BIAl:10

IITEST BESI1. J3ESJll

RITEST R113CSJ>

KOTEST BESI<O. BESEKO

KITEST BESKI. BESEIil

RIiTEST RIiBESJ,

arguments are then used in calls to the function under test. The auxiliary

arguments are used in an independent computation of the function value

based on an identity or analytic expansion. The results of these two computa-

tions are compared, and the loss of significant digits (in the native radix for

the machine) is estimated as follows.

Let ~ denote the machine floating-point radix, p the number of base-~

digits in the floating-point significant, and E the relative difference between

the two computations for a particular argument. ‘Then the reported statistics

are

MRE =p + ln(maxlEl)/ln( ~),

and

RMS = max[().().p + ln(~~’/~)/(21n( E))],

where the surn in RAYS is taken over all arguments in a given interval. MRE

estimates the maximum relative error in the interval and RMS is an

estimate of the root-mean-square error for the interval, both measured in

terms of lost base-~ digits. Note that the computation of RMS has been

adjusted so RMS never reports a negative loss of significant digits.
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Values for p, (?, and other machine parameters are dynamically deter-

mined with the auxiliary routine MACHAR [12], which is included in the

package for completeness. A random number generator, REN, is also in-

cluded. (Warning: REN is good enough for our simple needs, but is not

intended to be used for a general-purpose generator. ) All of the test programs

in SPECFUN call MACHAR and REN. Therefore, the programs will malfunc-

tion on any machine on which MACHAR malfunctions (see [12]), although

they can be customized for a particular machine by supplying the necessary

constants in DATA statements and removing the call to MACHAR.

The accuracy test in the first test driver, EITEST, is based on a local Taylor

series expansion [18]. Derivatives are generated as needed by using the

auxiliary routine DSUBN, a slightly modified version of Gautschi and Klein’s

algorithm for the derivatives of e ‘\x [22, 23]. See [18] for details of the test

procedure, an error analysis for the testing process, and typical statistics

obtained for EI and routines from several other sources on some typical

machines. Although this program specifically tests the accuracy only of EI,

the tests are easily altered to look at the other functions in the family. We

have not done that because our programs share a core computational element

whose accuracy is adequately tested in checking EI. Robustness checks are

applied to all three of our exponential integral routines, however.

The next three test drivers, GAMTST, ALGTST, and PSITST, look at the

gamma family of functions. The identities used in these programs, the error

analysis for the testing procedures, and sample test results are given in [13].

The next three test drivers, ERFTST, DAWTST, and ANRTST, check the

error function family. ERFTST checks ERF, ERFC, and ERFCX using meth-

ods discussed in detail in [14]. The accuracy tests in DAWTST are based on

local Taylor series expansions similar in concept to those discussed in [181.

ANRTST tests ANORM using methods similar to those in ERFTST.

Our accuracy tests for Bessel programs involve two different approaches,

the use of multiplication formulas and local Taylor series expansions. See [ 17]

for a detailed discussion of the first approach, including an error analysis and

typical results for RKTEST. Accuracy tests in JOTEST and JITEST are based

on local Taylor series, while those in YOTEST, YITEST, and all of the tests

for K Bessel functions are based on multiplication theorems. RJTEST,

RYTEST, IOTEST, IITEST, and RITEST all use multiplication formulas for

testing with small arguments, and local Taylor series otherwise.

With the exception of the Taylor series-based tests for the integer-order

Bessel functions, which require functions of orders O and 1 to initialize the
Taylor series, all of the accuracy tests in our programs involve only the

program under test and possibly one or two elementary functions.
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