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ABSTRACT
A general learning task for a robot in a new environment is
to learn about objects and what actions/effects they afford.
To approach this, we look at ways that a human partner
can intuitively help the robot learn, Socially Guided Ma-
chine Learning. We present experiments conducted with
our robot, Junior, and make six observations characterizing
how people approached teaching about objects. We show
that Junior successfully used transparency to mitigate er-
rors. Finally, we present the impact of “social” versus “non-
social” data sets when training SVM classifiers.

Categories and Subject Descriptors: I.2.6 [Artificial In-
telligence]: Learning I.2.9 [Artificial Intelligence]: Robotics

General Terms: Experimentation, Human Factors.

Keywords: Interactive Machine Learning, Social Robot
Learning.

1. INTRODUCTION
Our research is motivated by the promise of robots that

operate and assist people in human environments. It is rea-
sonable to assume these robots will need to learn during
their deployment, since pre-programming every skill needed
is infeasible. In our view, robots should be able to do some
learning on their own, but they will also need to learn in-
teractively from everyday people–who are likely unfamiliar
with robotics and Machine Learning (ML). In prior work,
we began exploring how self-exploration and guided learn-
ing can be mutually beneficial [17]. In the work presented
here, we aim to understand a teacher’s role in physically
interacting with the learner and the workspace.

In a new environment, a general task for the robot is to
learn about the environment’s objects and what actions/effects
they afford–Affordance Learning [11]. We take a Socially
Guided Machine Learning (SG-ML) approach to this task.
In this paper, we first situate our approach in the context
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Figure 1: Junior—our robot platform.

of prior work. We then present social learning experiments
conducted with our robot platform (Fig. 1), yielding three
contributions: (1) We characterize how people taught Junior
about objects, and how this differs from a systematically col-
lected “non-social” data set. (2) We show that Junior was
able to use a gazing behavior to improve the interaction and
mitigate errors. (3) We show the impact of “social” versus
“non-social” data sets in training Support Vector Machine
(SVM) classifiers.

2. BACKGROUND
For years researchers have been inspired by the idea of ef-

ficiently transferring knowledge from a human to a machine.
In most prior work, systems were not tested with everyday
persons; nonetheless, a review characterizes the ways ma-
chine learning systems have leveraged human input.

Machine learns by observing human: Several sys-
tems deal with the scenario where a machine learns by pas-
sively observing a human: Learning assembly tasks [9], learn-
ing a peg-in-hole task[19], learning a task reward function
[1]. Generally, our goal is to have a more interactive system,
that learns in real-time from everyday people, taking advan-
tage of how such users will naturally provide instruction.

Human explicitly directs action of the machine:
In many works, the human directly influences the robot’s
actions to provide a learning experience: learning tasks by
following a human [12], by tele-operation [15, 7], by physical
interaction [3], by selecting demonstration actions in a GUI
interface [5], or making action suggestions to a Reinforce-
ment Learning agent [10, 16]. These approaches are more
interactive than learning by observation and more closely re-
semble our goals. However, most require the human to learn
how to correctly interact with the machine and to know pre-
cisely how the machine should perform the task.
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Figure 2: SG-ML explicitly has the human “in the
loop”, in contrast to standard supervised ML.

Human provides high-level evaluation, feedback,
or examples to a machine: In other systems a human
influences the experience of the machine with higher level
input. For example, providing feedback to a reinforcement
learner [8, 13], or examples to an active learning system
[4, 14]. Again, the human is an explicit teacher for a spe-
cific task, i.e., the human provides input in a form that is
designed explicitly for the learning system rather than the
human.

3. APPROACH
In much of the work mentioned above, the primary mo-

tivation for using human input is to achieve performance
gains for the machine. Our approach, Socially Guided Ma-
chine Learning, advocates designing for the performance of
the complete human-machine social learning system. This
reframes the machine learning problem as a human-machine
interaction, and allows us to take advantage of human teach-
ing behavior to construct a learning process that is more
amenable to the human partner.

In general, supervised Machine Learning has a human
provide input examples to the learner, which performs its
task and provides some output. Alternatively, an SG-ML
view of learning models the complete human-machine sys-
tem (characterized in Figure 2). An interaction approach to
machine learning forces us to consider many new questions
highlighted by this simple diagram. We need a principled
theory of the content and dynamics of this tightly coupled
process in order to design systems that can learn efficiently
and effectively from everyday users.

Input Channels: An SG-ML approach asks: “How do
humans want to teach?” In addition to designing for what
the machine needs in learning, we need to understand what
humans will naturally try to communicate in their teaching
behavior. We can then change the input portion of the ML
training process to better accommodate a human partner.
In Section 5.1, we characterize how people approach the task
of teaching Junior about objects.

Output Channels: An SG-ML approach asks: “How can
the output of the learning agent improve the performance of
the teaching-learning system?” A ‘black box’ learning pro-
cess does not help a teacher improve the quality and rele-
vance of their instruction. By communicating internal state,
e.g., revealing uncertainties, the agent could improve the ex-
perience, guiding the teaching process. In Section 5.2, we
show that Junior effectively uses eye gaze as a transparency
device to elicit the desired support from human teachers.

We claim there are two reasons that computational learn-
ing systems should make use of social learning principles:

(1) Better for the human: To learn from everyday peo-
ple, a working hypothesis of SG-ML is that using aspects of
human social learning is the most natural interface. Sev-
eral studies show that humans inherently and dynamically
provide social scaffolding for learners. Greenfield describes
studies, of children learning language and learning to weave
[6]. Teachers dynamically adjust the support provided based
on skill level and success, and they are unconscious of the
process or method by which they are teaching.

Thus, the partnership of social learning is an intuitive
interaction for people. We see this in the work presented
here, where people respond consistently and appropriately
to the robot’s use of gaze as a social cue (Section 5.2).

(2) Better for the machine: This point is generally
less intuitive, but one way to think of it is that social in-
teraction provides biases and constraints that simplify the
problem for the machine. Thus, social learning can lead to a
more efficient and robust machine learning process. We have
shown examples of this in prior work [18]. Additionally, in
Section 5.3 we show the positive impact of social learning in
the context of learning SVM classifiers.

4. RESEARCH PLATFORM

4.1 Hardware
Our platform for this research is Junior, a Bioloid robot

configured as an upper torso humanoid with a Webcam head
(Fig. 1). It is approximately 10 inches high. It has 8 degrees
of freedom, which enables arm movements, torso rotation
and neck tilt. Junior’s action set consists of two actions:
poke–a single arm swing (e.g., for batting or pushing objects)
and grasp–a coordinated swing of both arms. Both actions
are parametrized with the height and distance of the object
to which the action is directed.

We use the OpenCV Library to track objects with Con-
tinuously Adaptive Mean Shift based blob tracking for pre-
defined colors. The state of an object in the workspace is
specified with several blob properties. This includes mea-
sured properties: distance (obtained by the neck position
required to center the blob in the image, assuming it is on
the table), color, area (number of pixels), orientation, height
and width (length of major and minor axes); and derived
properties: eccentricity (ratio of major and minor axes) and
squareness (ratio of connected component area to the area
of the minimum enclosing rectangle). These are features
common in object affordance learning [11].

4.2 Software
Junior’s behavior system is implemented in C5M, a cog-

nitive architecture for interactive characters [2]. Junior’s
interaction with the objects is regulated with three behav-
iors. When there’s no object in the visual field a search
behavior randomly changes the head tilt until an object is
in view. Then a fixation behavior centers the object in the
visual field. The object interaction behavior triggers one of
the two actions when an object is stationary in the center of
visual field for about two seconds.

Junior also has a gazing behavior triggered by the error
situation, which occurs when the object is stationary but
cannot be centered in the visual field due to a joint limit
(i.e., objects too far or too close). The gaze action consists
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Figure 3: (a) Junior’s object set in the experiment
(b) Junior’s workspace

of moving the neck tilt to the upper limit and moving back
to the starting tilt angle; thus, it makes the assumption that
a person is sitting in front of it. In case the error condition
persists, Junior repeats the gaze after one second.

4.3 Learning Framework
In order to study learning about objects, we employ an

affordance learning paradigm. Junior interacts with objects
to learn the effects of its actions on various configurations
of each object. Junior obtains interaction experience tuples
during an exploration phase. Each tuple is of the form [ini-
tial object state; action; perceived effect/affordance], a com-
mon representational framework used in affordance learn-
ing [11]. This data set of experience is used to learn affor-
dance classifiers to predict action outcomes.

Junior learns about a set of five simple objects with differ-
ent geometrical shapes and bright, distinct colors (Fig. 3(a)).
The robot sits on a tabletop, and its workspace for our ex-
periments is a 5 inch straight line in front of it (Fig. 3(b)).
Action effects are perceived by the robot as changes in the
object state. We hand labeled each sample with the most
obvious affordance category. The effects for grasping are
(i)lifted: the object moved upwards until it was dropped,
(ii)opened: the cover of the box separated from the bottom,
and (iii)other: the object slipped and fell down, was moved
away or was thrown away during grasping. The effects for
poking are (i)rolled: the object kept moving in the poking di-
rection after contact was lost, (ii)moved: the object moved
(displaced, oriented or both) in the poking direction until
contact with the object was lost, and (iii)tipped: the object
fell over around one point. Both actions have the category
of (iv)no effect in which the object does not move at all.

5. EXPERIMENTS
Our experiments with Junior’s affordance learning are mo-

tivated by the following three questions:

1. What is the nature of a human teacher’s input in the
process of learning about objects in the environment?

2. How can the robot dynamically influence the teacher,
to provide a better input signal, improving its own
learning environment?

3. What impact does a socially collected data set have on
the underlying machine learning processes?

We explore these questions with two modes of affordance
learning: social and non-social. In the non-social case (also
referred to as the “systematic” case) the workspace and the
object configuration space are exhaustively explored with
both actions. Each object is moved at 0.25 inch intervals
on the workspace in several possible orientations. We con-
sider 2 orientations for the cube, 5 for the cuboid, 9 for
the box and one for each sphere. The cube can be parallel
(flat surface facing Junior) or diagonal; the cuboid can be
standing or lying (long edge normal or parallel to table), dif-
ferent edges facing Junior or diagonal; and the box can be
in its normal configuration (cover on top), or its two pieces
separately, round surface facing upwards, facing the side or
facing Junior. This results in 756 object interactions.

In the social case, a human teacher controls which objects
the robot interacts with, and decides where and how to place
the object in the workspace. We collected data in this social
case from 14 subjects, recruited from the campus community
(78% male). In the experiment introduction, subjects were
informed about Junior’s exploratory behavior and told that
their goal is to help Junior learn what it can do with the
five objects. They were told not to move the object once
Junior has started an action, and that the action ends when
Junior’s arms are back to their idle position. They were
asked to place one object at a time, horizontally centered on
the line indicating the workspace. The experiment duration
(number of object interactions) was the subjects’ decision.

Junior’s torso rotation is not used in the search and fix-
ation behaviors. Therefore, fixation consists of vertically
centering the object in the image and any horizontal devi-
ation results in an error condition, triggering the gaze be-
havior. Additionally, action arbitration is avoided to make
sure that the subject knows what action Junior will execute
next when they are configuring the workspace. Thus, each
subject started experimenting with one action and decided
when to switch to the second action (the action presented
first was counter balanced across subjects). Subjects were
not given any information about Junior’s gazing behavior.
In half of the social learning experiments the gazing behavior
is turned off, so we have gaze and no-gaze groups.

We collected video of the interaction, and people were
asked at the end of the experiment to answer 25 questions.
The following sections detail our analysis of the data with
respect to the three research questions raised above.

5.1 How do people teach?
We start by characterizing the data provided by human

teachers compared to the systematically collected data. This
section details six observations about how people approach
the task of teaching Junior about objects.

5.1.1 Balance of Positive/Negative Examples
Data sets in the social case were more balanced in terms of

positive/negative examples than the non-social case (in this
setting a positive example is an example where some effect is
seen, and negative is no-effect). Fig. 4 gives the distribution
of effects seen for actions on objects in the social and non-
social cases. For both actions the percentage of the no effect
category is much lower in the social case (“none” in Fig 4
(a) and (b)), and common effects such as lifted or moved is
higher. Rare effects like rolled and opened are approximately
doubled in the social case.
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Figure 4: Distribution of effects in the non-social
and social cases, for each action.

This is a result of people’s choice of orientation and lo-
cation. They presented more examples of objects in ori-
entations that have more affordances. For example, for
grasping, presenting the cube in a parallel orientation (61%)
rather than diagonally; and presenting the box with the
cover on top (43%) as opposed to the other 8 configura-
tions. Similarly, people mostly placed objects easily within
reach (Fig. 5).

5.1.2 Example Quantity Proportional to Complexity
The quantity of examples people gave for an object was

proportional to object complexity. The top graph in Fig. 6
shows the distribution of examples for each object, and the
other graphs show that this distribution was proportional to
the object’s affordance and configuration complexity.

Number of examples is primarily aligned with the number
of affordances an object has. For instance, the blue box has
a much larger number of configurations compared to other
objects (Fig. 6 bottom graph); however, the extra configu-
rations do not add proportionally as many affordances. Ac-
cordingly, people gave the most examples for the box object,
but in relation to number of affordances not configurations.

Another observation of the social data set, is that there
are more samples of the orange sphere compared to the red
(see Table 5.1.2), though they both have just one configura-
tion and afford rolling and lifting. Information not captured
in the distribution of affordances is how easily they are af-
forded. The two spheres differ not only in size/color but
also in texture and weight. The small size and rough tex-
ture of the orange sphere makes it liftable in a larger range
compared to the polished surface and high weight of the red
sphere. Therefore, people’s distribution of examples reflects
their perception of affordances through properties not ob-
servable to the robot. They take a broader view, i.e., not
just afford/not afford, but how easily it is afforded. One
measure of how easily an effect is afforded is the number of
times it is observed in the systematic experiment. The or-
ange sphere was lifted in 55% of the systematic grasp trials
performed on it, while the red one was lifted in 35%. Note
that the sphere object preference difference observed in Fig.
6 is caused mostly by the differences for the grasp action
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Figure 5: (Top) Histogram of reachable distances,
taken from systematic data (Bottom) Histogram of
distances where subjects placed objects.
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Figure 6: (Top) Dist. of examples given for each ob-
ject (Middle) Number of affordances of each object
(Bottom) Number of configurations of each object.

(the orange sphere was used almost twice as much as the
red in grasping trials, while they were presented equally in
poking trials, see Table 5.1.2). A similar observation can
be made for poking, where large objects are perceived to be
more easily poked than smaller ones. For instance subjects
presented the cuboid (which is twice the size of the cube)
about twice as many times as the cube in poking trials, while
they presented them equally during grasping.

The questionnaire supports this attention to affordance
complexity. When asked open questions about whether they
followed a certain order or emphasized any objects in their
teaching session, over half of the subjects said no. However,
several talked about objects being “boring,”“interesting,” or
“fun.” Thus, structuring complexity seems to be an intuitive
approach to the task of teaching, even if it was not a con-
scious effort.



Table 1: Examples presented by individuals for each object and action
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 Total

Cube 8 8 18 9 2 18 1 3 11 4 7 2 7 6 114
Cuboid 8 4 9 12 5 17 10 11 11 13 2 16 11 3 132

GRASP Box 26 18 12 11 3 20 14 10 15 3 2 8 10 11 163
Sphere(R) 3 7 2 4 0 5 6 4 8 3 1 5 7 3 58
Sphere(O) 3 3 2 4 0 10 9 5 34 10 3 9 7 5 104
Total 48 40 43 40 10 70 50 33 79 33 15 40 42 28 571
Cube 3 5 6 1 0 5 8 6 4 7 4 7 7 3 66
Cuboid 11 2 12 10 11 12 11 10 11 7 4 21 9 2 133

POKE Box 17 7 9 3 6 6 4 31 17 5 7 9 11 33 165
Sphere(R) 4 2 2 2 3 6 6 3 1 4 5 1 6 1 46
Sphere(O) 3 3 3 3 11 3 6 8 3 5 2 3 7 2 62
Total 38 19 32 19 31 32 35 58 36 28 22 41 40 41 472
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Figure 7: Distribution of starting object choice of
subjects for the grasping action.

5.1.3 People Start Simple
In addition to examples being proportional to complex-

ity, people start with simple examples, not complex one.
Fig. 7 gives the distribution across subjects of starting ob-
ject choice for the grasp action. The green cube followed by
the pink cuboid are most popular, both of which have flat
surfaces making them relatively easy to grasp. The orange
sphere also has a higher rate than the other two objects for
being light and having a rough surface. The starting sam-
ples are also easy in terms of location; 86% of the subjects
started by placing an object within Junior’s reach.

5.1.4 Structured in Object Chunks
The data provided by humans is also distinguishable from

the systematic data in the order objects are presented. Peo-
ple focus on one object at a time rather than switching be-
tween objects. Moreover, 85% of the chunks end with posi-
tive examples (examples in which the action has some effect
different from “other”) which is considerably higher than the
overall percentage of positive examples (70%).

In the questionnaire, when asked about teaching strat-
egy, one person described this “chunks” concept, saying they
stayed with an object until something significant happened.
Most people claimed no strategy, but when asked “Did you
present the same object several times? Why?” everyone
agreed they did the chunking. Several described staying
with one object until succeeding to demonstrate the affor-
dance. Thus people provided key environmental scaffolding,
focusing on one object until achieving at least one positive
example.

5.1.5 Pointing out Rare Affordances
Social learning provides the opportunity to see rare affor-

dances; outcomes that occur in very few object configura-
tions. For instance, opening the box occurs for the grasp

action in only one orientation and in a limited range of loca-
tions. Depending on the resolution with which the objects
are displaced in during the systematic exploration, the open-
ing effect could easily be left out of the non-social data set.
On the other hand if resolution is increased to insure the
effect is seen, the number of opening examples becomes rel-
atively very few since the number of non-opening samples
are multiplied. Hence it is hard to learn a rare affordance
from systematic data.

A social setting can provide the adaptive resolution to
overcome this problem. Humans experiment with the box
object by varying the distance in very small steps within
the range that it can be opened, but they provide sparse
samples outside this range. Similarly, they provide more
examples of the box being in its normal orientation com-
pared to other orientations in which it cannot be opened
(Sec. 5.1.1). This adaptive resolution becomes crucial with
increasing number or complexity of objects. For instance,
one of our subjects discovered the basket affordance while
experimenting with two objects: the bottom of the box (a
container) and a sphere (Fig. 8). When the sphere is placed
in front of the container, Junior grabs it and consistently
drops it into the container. Capturing this affordance with
a systematic experiment would require exploring combina-
tions of two objects in different relative positions and ori-
entations. This would produce roughly 67,000 experiments
and approximately 5 of these would result in the basket out-
come.

On the other hand, social experiments may fail to capture
affordances that occur in the non-social case. For example
29% of the subjects did not notice the tipping effect of the
poking action on some objects, thus providing no examples
of it. Similarly, most subjects did not notice that Junior
could grasp objects placed very close to it. They placed
objects at a comfortable distance at which a more natural
grasp would occur (Fig. 5). These oversights may occur due
to people’s inexperience with the robot as well as the inex-
perience with the objects. Self-exploration can therefore be
important in discovering affordances that are not predicted
by the human. This points to the mutually beneficial rela-
tionship between self and social learning.

5.1.6 Help in Parsing Action Goals
A final observation about the social learning case, is that

people’s action can help the robot parse its own actions in a



Figure 8: The basket affordance

goal oriented way. Our instructions explicitly asked subjects
not to interrupt Junior’s actions and informed them that the
end of an action is when its arms go back to their starting
position. We observed that this instruction was often vio-
lated. Instead of waiting, subjects started to reconfigure the
workspace as soon as the effect of the action was complete or
definite. For instance some subjects placed their hands be-
low a lifted object in order to catch it as it’s dropped, taking
it away before the action finished. Similarly, when the ac-
tion has no effect on the object several subjects repositioned
it before the unsuccessful action completes.

The moments at which the person takes their turn and
interrupts the trial can inform the robot that the salient part
of the effect has already occurred. For the first example the
salient part is the lifting (the rising of the object in the visual
field) rather than the dropping, and for the second example
the salient part is when the arms are joined together in the
front and start moving upwards without the object.

5.2 How can the robot influence the teacher?
Our second research question deals with the output from

the robot to the human, investigating the effects of Junior’s
gazing behavior. We hypothesize that gazing will improve
the interaction by informing the subjects about error situ-
ations, speeding up their response and inducing the correct
response. We compare the gaze and no-gaze groups on the
average time to respond to an error and the response given
in an error case. Data from two subjects in which the error
case occurred only once are excluded in this analysis.

Our data suggests that the robot is able to use gaze as a
transparency device, communicating when and what it needs
assistance with. Gaze improves the interaction by reducing
the time for recovery from the error. We calculate recovery
time by subtracting the individuals’ average normal interac-
tion time, from the time they take to respond to error cases,
in order to reduce the effect of individual interaction speed
differences. The average recovery time of subjects in the
no gaze case is 13.57sec (SD = 12.01), whereas in the gaze
case it is 11.69sec (SD = 15.89) which was not a significant
difference, t(95) = −0.65, p > .05. However, our hypothesis
holds for the majority of subjects (92%). When one outlier
is removed from the gaze group the average recovery time
the for the this group becomes 5.93sec (SD = 11.27) and
the difference becomes significant, t(72) = −2.58, p < .05.
We believe these results are due to the distractions and num-
ber of error cases in the outlier subject’s experiment, future
work will confirm these results.

In order to further investigate the influence of the gazing
behavior on the teacher, we analyze the change of two mea-
sures over time after the first occurrence of gazing: average
number of error occurrences and number of gazes before the
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Figure 9: (Left) Number of errors encountered and
(Right) average number of gazes before subject re-
sponds, over the four quarters of the experiment
duration.

human reacts. We find that both measures decrease in the
second half of the experiment (Fig. 9). This suggests that
people understand the error and get better at positioning the
object so less errors occur. Alternatively, it could be that
they learn that responding to the gazing by repositioning
the object solves the problem, even if they don’t exactly un-
derstand the problem. Either response leads to the desired
outcome from the robot learner’s perspective.

In the questionnaire, subjects were asked two questions
about gazing: whether Junior ever gazed at them and in
which situations it did so. The first question revealed that
all the subjects in the gaze case noticed the gazing (even if
it happened only once) and none of the subjects in the no-
gaze case confused Junior’s other head movements (during
object tracking or random search) to be a gaze directed to
themselves. This suggests the gazing behavior was notice-
able and distinct. Accordingly, subjects in the gaze case saw
the communication act and felt the need to respond in some
way. The fact that subjects could appropriately respond to
the gaze, even though they were not informed about the
behavior prior to the experiment, confirms that gaze is a
natural way to ask for assistance.

When error conditions occurred in the no-gaze case, sub-
jects kept waiting for Junior to do something, and hesitated
to move the object thinking it could start the action any-
time. Two experiments in the no-gaze case were interrupted
by the subjects asking for assistance, as nothing was hap-
pening, and the experimenter had to remind them that the
objects need to be horizontally centered for Junior to act on
them. This did not happen with any subjects in the gaze
condition.

When people in the gaze group were asked, “In what sit-
uation did Junior gaze at you?” none could precisely iden-
tify the problem. They said that it happened when Junior
couldn’t see the object or when Junior was confused. This
suggests that subjects were intuitively able to respond prop-
erly to solve the error without exactly knowing what it was.
We believe that the second half of the gazing in which Junior
looks back to the object is essential in communicating that
the problem for which assistance is needed is related to the
object. The first half of gazing, on the other hand, gets the
attention of the person and communicates that assistance is
needed in the first place.

Finally, we noticed that the robot could use the gaze be-
havior to learn the kinds of assistance it can get from the
human partner, learning the causal relationship between a
request for assistance and the response. In the no-gaze group
it would be difficult to associate an error with a response



Figure 10: The effect of gazing: three frames from
Junior’s camera captured at the start, middle and
end of the gaze, the effect of the gaze in this case is
repositioning of the object such that it is centered.

given by the human. The time after which an individual
will suspect an error can highly vary. On the other hand,
responses can easily be associated with gazes. In this re-
spect the robot could learn the effects of the gazing action
in a social context in a similar way that it learns the effects
of grasping and poking. In a sense, it could learn the af-
fordances of the human teacher. For example, given a few
perceptual experiences like the one seen in Fig. 10, one
could imagine that the robot would learn that the effect of
gazing at the human is that an un-centered object becomes
centered.

5.3 What is the Machine Learning impact?
Our third research question addresses the effect of so-

cial versus non-social exploration on the underlying Machine
Learning process. We hypothesize that humans are effective
teachers, providing a compact data set that efficiently cap-
tures the various object affordances. We analyze a specific
example of learning, using SVMs as affordance classifiers.

A two-class SVM is trained for each type of effect, using
the state of the object as the feature space and the affordance
(whether or not the action resulted in the corresponding
effect) as the target value. Separate SVMs are trained with
the social and non-social data sets, and test data sets are
obtained by randomly sampling equal numbers of positive
and negative examples from either the systematic or the
social data set. Thus, learned classifiers are compared with
two separate tests, one social and one systematic.

Fig. 11 compares the average successful prediction rate
for classifiers with four different training data sets: (i) the
complete set of examples collected systematically, (ii) the
combination of examples provided by all 14 individuals, (iii)
random subsets of the systematic data (size equal to the av-
erage number of examples given by one subject), and (iv) the
data sets obtained by individual subjects in the experiment.

5.3.1 Individuals vs. complete data sets
Our first observation is that the complete data sets (sys-

tematic and everyone) generally perform better than the
smaller data sets (random subsets and individuals). This
shows that the number of samples given by one individual
in a single sitting may not be sufficient for learning every-
thing. This points to the importance of self exploration (for
collecting large data sets with systematic experiments) as
well as long-term training by individuals (multiple sessions)
or by multiple teachers. Nonetheless, the variance in the in-
dividuals’ performance indicates that some individuals were
able to get close to the performance of the complete data
sets.

LIFTABLE OPENABLE ROLLABLE MOVEABLE
0

20

40

60

80

100

S
u
c
c
e
s
s
 R

a
te

 

 

LIFTABLE OPENABLE ROLLABLE MOVEABLE
0

20

40

60

80

100

S
u
c
c
e
s
s
 R

a
te

 

 

Systematic Everyone Random subsets Individuals

Social Test

Systematic Test

Figure 11: Learning results: Prediction success of
classifiers trained with the systematic (non-social)
data and the social data, on (Top) social test data
and (Bottom) systematic test data. Values averaged
over 10 randomly sampled test sets.

5.3.2 Benefits of focusing on rare events
The social training sets perform better on rolling and

opening affordances in both test cases. This is a result of
the balanced nature of the data provided in the social case
(Sec. 5.1.1). As these affordances are rare in the systematic
data set, the non-social training results in pessimistic clas-
sifiers that mostly predict a negative outcome. With more
frequent affordances such as lifting and moving, the social
data set is on par with the systematic training set or one is
slightly better depending on the test set.

We believe this result is related to what people focus on
during the experiment. While rolling and opening happen
rarely in the systematic experiment, because of the way it
was designed, they are obvious affordances to a person pre-
sented with spheres and a cylindrical box. Thus, they are
successfully taught to the robot in the social case. This is
a good example of how humans can indirectly transfer their
knowledge about the world to the robot. It may be difficult
for a robot to automatically devise an exploration strategy
to cover the affordances of the environment in a balanced
way, but humans can support robots by scaffolding the ex-
ploration, implicitly using their knowledge about the world.

5.3.3 General observations and future work
Depending on the employed machine learning method, the

differences in the data acquired socially and non-socially will
impact learning differently. For example, an algorithm that
is sensitive to data presentation order may give different re-
sults when presented samples structured by a human partner
as opposed to a systematically or randomly ordered set. In
our case, learning performance was altered by differences in
the balance between positive/negative samples in the data,
as well as the sizes of the data sets. In order to improve
performance, a robot could use prior knowledge about char-
acteristics of the data to apply different learning methods
in social and non-social situations. Devising such adaptive
learning methods is an interesting future challenge.



6. CONCLUSIONS
Our goal is to explore Socially Guided Machine Learning,

viewing robot learning as an interaction between an embod-
ied Machine Learner and an everyday human partner. In
this paper we take the context of learning about objects
with a human teacher. Using the Junior robot platform,
we collect training data for SVM classifiers in two different
settings: Social–the interaction is structured by a human
partner; and Non-social–the robot is presented a systematic
set of object configurations to explore.

This experiment makes three primary contributions. First
we characterize the input from a human teacher in this ob-
ject exploration setting. We have six observations about
how the social data set differs from the non-social data set:
People have a more balanced set of positive and negative
examples. They intuitively structure the environment with
respect to complexity, both in number of examples per ob-
ject and order of examples. Social data sets have a greater
representation of rare affordances. And people’s actions in
the workspace could be used to infer action goals.

Having analyzed the input portion of the learning process,
our second contribution is in the output channels. With half
of our human subjects, Junior used a gazing behavior to in-
dicate errors. Our data suggests that Junior was successfully
able to use gaze as a transparency device to communicate
that it needed assistance, leading to faster error recovery.

Finally, our third contribution is in analyzing the impact
that a socially collected training set has on a supervised
learning mechanism. We trained SVM affordance classifiers
with the social and non-social data sets. People provided
small data sets, but they were focused and effective. The
social SVMs were better at predicting rare affordances since
people focused on these, and they performed on par with
non-social SVMs on the more common affordances.

Robots operating in human environments will likely need
to interact with everyday people to learn new things. Our
research in SG-ML provides insight and guidance into how
these systems should be designed to more appropriately match
how everyday people approach the task of teaching.
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