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ABSTRACT
In this paper, we describe two attacks on IEEE 802.11 ba-
sed wireless LANs[2]. The first attack is an improved key
recovery attack on WEP, which reduces the average number
of packets an attacker has to intercept to recover the secret
key. The second attack is (according to our knowledge) the
first practical attack on WPA secured wireless networks, be-
sides launching a dictionary attack when a weak pre-shared
key (PSK) is used. The attack works if the network is using
TKIP to encrypt the traffic. An attacker, who has about 12-
15 minutes access to the network is then able to decrypt an
ARP request or response and send 7 packets with custom
content to network.

Categories and Subject Descriptors
E.3 [Data Encryption]: Code breaking

General Terms
Security

Keywords
WEP, WPA, WLAN, 802.11, TKIP, RC4, cryptanalysis

1. INTRODUCTION
IEEE 802.11[2] is a standard family for wireless networks.

Such networks can be found in home, office, and enterprise
environments and are quite popular today. If sensitive infor-
mation are transmitted over a wireless network, privacy and
integrity is a concern and must be taken care of.

The first version of the IEEE 802.11 standard supported
a basic mechanism for protecting such networks named Wi-
red Equivalent Privacy (WEP). WEP requires all clients and
access points in the network to share up to four different se-
cret symmetric keys, which is clearly not optimal for a larger
installation where users change frequently. Most installati-
ons just use a single secret key named the root key. WEP
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has some major design flaws and was completely broken in
2001[4, 13] by Fluhrer, Mantin, and Shamir. They showed
that an attacker can recover the secret key of the network
with an average consumer laptop in 1-2 hours. More ad-
vanced attacks were published in the last years making it
possible to recover the secret key of the network in less than
60 seconds[15]. To fix the problems of WEP, a new standard
named Wi-Fi Protected Access (WPA) was released in 2003,
now part of the IEEE 802.11 specifications[2].

The structure of this paper is as follows: In Section 2, we
give an introduction to the technical details of WEP and
WPA and introduce the notation used in the rest of this pa-
per. In Section 3, we give an overview over a selected number
of attacks on WEP. In Section 4, we present a new attack
on WEP, which reduces the number of packets an attacker
needs to intercept to recover the secret root key compared
to previous attacks. In Section 5, we present a new attack
on WPA, which allows an attacker, who has about 12-15 mi-
nutes access to a WPA protected network to send 7 packets
to the network with chosen payload and decrypt a single
ARP[11] packet. According to our knowledge, this is the first
practical attack on WPA protected networks, besides laun-
ching a dictionary attack against a weakly chosen pre-shared
key.

2. NOTATION
We use a similar notation as in [14, 15] for our paper.

Numbers are always written in decimal notation, for example
12 is the number twelve. The signs + and · are addition
and multiplication. (Z/nZ)+ is the additive group of the
numbers 0 to n − 1, where all additions are done mod n.
When operations are done in (Z/nZ)+, we write a + b as a
short form of a+b mod n. For arrays, we use the [·] notation
as used in many programming languages like C or Java.
The first element in the array S is S[0]. Permutations are
written as arrays too. If S is a permutation, S−1 is the inverse
permutation. For example, if S[i] = j holds, then S−1[j] = i
holds. When two arrays A and B are concatenated to a new
array C, we write C = A||B. F2 is the finite field with just
the two elements 0 and 1. F2[X] is the ring of polynomials
over F2. We use the ≈ sign to note that a formula or a value
is only a good approximation, but not absolutely accurate.

Because WEP is mostly based on the RC4 stream ci-
pher[12], we need to introduce a notation for analyzing the
RC4 stream cipher. RC4 consists of two algorithms, the
RC4-KSA, which transforms a key of length 1 to 256 by-
tes into an initial permutation S of the numbers 0 to 255.
The internal state of RC4 consists of this permutation S and
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two numbers i and j used as pointers to elements of S. The
RC4-PRGA generates a single byte of keystream from such
a state and then updates the state.

Listing 1: RC4-KSA

1 for i ← 0 to 255 do
2 S[ i ] ← i
3 end
4 j ← 0
5 for i ← 0 to 255 do
6 j ← j+S[i]+K[i mod len(K)] mod 256
7 swap(S, i , j)
8 end
9 i ← 0

10 j ← 0

Listing 2: RC4-PRGA

1 i ← i + 1 mod 256
2 j ← j + S[i] mod 256
3 swap(S, i , j)
4 return S[ S[ i ] + S[j] mod 256 ]

To analyze the cipher, we will write Sk and jk for the state
of S and j, after exactly k rounds of the loop starting in line
5 in Listing 1 have been executed. To make the paper more
readable, we write n for the constant value 256. Accordingly,
we write Sk+n and jk+n for the state of S and j, after the
state was initialized by the algorithm in Listing 1 and exactly
k bytes of output have been produced by the algorithm in
Listing 2. When a key K is used for RC4 and a keystream
X of arbitrary length is produced, we write X = RC4(K).
Please note that an attacker who knows the first k bytes of
an RC4 key K also knows Sk and jk.

In a WEP protected network, all stations usually share
a single symmetric key Rk named root key. A single packet
can easily be lost in an IEEE 802.11 network due to a trans-
mission error, so WEP needs to encrypt all packets inde-
pendently. Because RC4 does not support an initialization
vector by itself, WEP generates a per packet key for every
packet. A three byte initialization vector IV is chosen and
prepended to the root key Rk which results in the per packet
key K = IV||Rk. A keystream X = RC4(K) is generated from
K. To protect the integrity of the transmitted data, a 32 bit
long CRC32 checksum named ICV is appended to the data.
The resulting plaintext is then encrypted by XORing the
plaintext (including the CRC32 checksum) with the genera-
ted keystream. The ciphertext together with the correspon-
ding unencrypted initialization vector IV is then send over
the air.

WEP originally only specified a 40 bit secret key Rk, but
most vendors implemented an additional mode where Rk
had a length of 104 bits. The length of the corresponding
per packet keys K where 64 or 128 bit, and these variants
were mostly marketed as 64 or 128 bit WEP. We restrict
ourselves to the 104 bit variant, but our attacks can easily
be adopted for networks with different key lengths with only
minor modifications.

3. PREVIOUS ATTACKS ON WEP
A number of attacks on WEP have been published in the

past.

3.1 The FMS attack
Fluhrer, Mantin and Shamir published[4, 13] the first key

recovery attack on WEP in 2001. Their attack is based on
the following ideas: An attacker who listens passively to the
traffic of a WEP protected network can record a lot of en-
crypted packets including the initialization vectors used for
these packets. Because the first bytes of the plaintext of most
packets are easily predictable, the attacker is able to reco-
ver the first bytes of the keystreams used to encrypt these
packets. The initialization vector is transmitted unprotected
with the packets, so the attacker initially also knows the first
3 bytes of the per packet key for all packets. All following
bytes of the per packet key are the same for all packets, but
are initially unknown to the attacker.

Lets assume that an attacker knows the first l bytes of an
RC4 key used to generate a keystream X. He can therefore
simulate the first l steps of the RC4-KSA and knows Sl and
jl. In the next step of the RC4-KSA, jl+1 = jl + K[l] + Sl[l]
and Sl[l] is swapped with Sl[jl+1]. If the attacker could reveal
Sl+1[l], he could easily recover K[l] by calculating the diffe-
rence S−1

l [Sl+1[l]] − jl − Sl[l]. Fluhrer, Mantin, and Shamir
used the following trick to reveal this value:

Assume that the following conditions hold after the first l
steps of the RC4-KSA:

1. Sl[1] < l

2. Sl[1] + Sl[Sl[1]] = l

3. S−1
l [X[0]] 6= 1

4. S−1
l [X[0]] 6= Sl[1]

In the next step of the RC4-KSA, a value k = Sl[jl+1] will
be swapped to Sl+1[l]. If j changes randomly for the rest
of the RC4-KSA, the values S[1],S[S[1]], and S[l] won’t be

altered with a probability of approximately
`

1
e

´3
during the

remaining RC4-KSA.
When the first byte of output is produced by the RC4-

PRGA, j will take the value Sn[1] and Sn[1] and Sn[j] are
swapped. After the swap, S[1] + S[S[1]] = l still holds and
the first bye of output of the RC4-PRGA X[0] will be S[l].
If conditions 3 or 4 wouldn’t hold, this would indicate that
S[1] or S[S[1]] has been altered. In a nutshell, if these four
conditions hold, the fuction:

Ffms(K[0], . . . ,K[l − 1],X[0]) = S−1
l [X[0]]− jl − Sl[l] (1)

will take the value of K[l] with a probability of about`
1
e

´3 ≈ 5%. We will refer to such a set of conditions to-
gether with such a function as a correlation for RC4. Flurer,
Mantin, and Shamir referred to these conditions (or at least
to the first two conditions) as the resolved condition.

A full key recovery attack on WEP can be built using
this correlation. An attacker captures packets from a WEP
protected network and recovers the first byte of keystream
used to encrypt these packets by guessing the first byte of
plaintext. There are also various active techniques to gene-
rate traffic on a WEP protected network even without the
key, which allow the recovery of more than the first 1000 by-
tes of keystream per packet[1]. He selects the packets where
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the resolved condition holds and calculates Ffms for these
packets. Each result of Ffms can be seen as a vote for the
value of Rk[0]. After enough packets have been captured,
the attacker makes a decision for the value of Rk[0] based on
the number of votes generated by Ffms. If the decision was
correct, the attacker knows the first l = 4 bytes of all per
packet keys and can continue with Rk[1]. Please note that all
packets need to be reevaluated whether the resolved condi-
tion holds, because this check depends on the value of Rk[0].
After all bytes of Rk have been determined, the attacker
checks the resulting key for correctness using a number of
trial decryptions. If the key is correct, the attacker has suc-
ceeded. If the resulting key is incorrect, the attacker looks
for a decision for Rk[i], were an alternative value for Rk[i]
was also very likely. The attacker corrects the decision in the
decision tree at depth i and continues the attack with the
alternate decision.

Although the 5% success probability of Ffms looks im-
pressive, the attack needs 4,000,000 to 6,000,000 packets to
succeed with a success probability of at least 50%, depen-
ding on the exact environment and implementation[14, 13].
The reason for this is that the resolved condition holds only
for a small amount of randomly chosen initialization vectors.

3.2 The KoreK attack
In 2004, a person under the pseudonym KoreK posted[9,

3] an implementation of an advanced WEP cracking tool
in an internet forum. KoreK used 16 additional correlations
between the first l bytes of an RC4 key, the first two bytes
of the generated keystream, and the next keybyte K[l]. Most
of these correlations have been found by KoreK himself, a
few had been discussed[5] in public before. KoreK assigned
names like A u15 or A s13 to these attacks, the original
FMS attack is called A s5 1 here.

Nearly all correlations found by KoreK use the approach
that the first or second byte of the keystream reveals the
value of jl+1 under some conditions, if 2-4 values in S have a
special constellation and are not changed during the remai-
ning RC4-KSA after step l + 1. An interesting exception is
the A neg correlation, which doesn’t vote for a certain va-
lue of K[l]. Instead a value can be excluded from the list of
possible candidates for K[l], which can be seen as a negative
vote for K[l].

The overall attack structure is the same decision tree ba-
sed approach as for the FMS attack. The number of captured
packets is reduced to about 700,000 for 50% success proba-
bility[14]. Again, the exact numbers depend on the exact
environment and the implementation and parameters used
for the attack. One important factor is if the initialization
vectors are generated by a PRNG algorithm or if they are
generated sequentially by a counter.

3.3 The PTW attack
In 2007, a new generation of WEP attacks was publis-

hed[15, 14] by Tews, Weinmann, and Pyshkin. Their attack
introduced two new concepts:

1. All previous correlations used required 2-4 values in S
not to change during the remaining RC4-KSA. They
also had a lot of preconditions which need to hold to
use the correlation. Therefore, only a small number of
packets could be used to vote for a certain keybyte.

In 2005, Klein showed[7] that l−X[l−1] takes the value

of S[l] with a probability of 2
n

. If Sl[l] remains unchan-
ged until X[l − 1] has been produced, the function:

FKlein(K[0], . . . ,K[l − 1],X[l − 1])

= S−1
l [l − X[l − 1]]− (Sl[l] + jl)

(2)

takes the value of K[l] with a probability of 2
n

. This
result is also known as the Jenkins correlation[6]. Sl[l]
remains unchanged with a probability of approxima-
tely 1

e
. If Sl[l] is modified before X[l − 1] is produced,

FKlein takes a more or less random value. In total,
this results in the following probability for FKlein ta-
king the value of K[l]:„„

1

e

«
2

n

«
+

„„
1− 1

e

«
1

n

«
≈ 1.37

n
(3)

This correlation makes no requirements on the internal
state of RC4 or the keystream, so that every packet can
be used.

2. The second new concept is a change in the attack struc-
ture. Until now, every key recovery attack had a de-
cision tree based structure and some kind of best first
search strategy was used to determine the key byte per
byte.

Assume than an attacker knows the first l bytes of
an RC4 key and manages to recover k = Sl+2[l + 1]
instead of Sl+1[l]. Now S−1

l+1[k] − Sl+1[l + 1] − Sl[l] −
jl = K[l] + K[l + 1] holds and an attacker would have
recovered the value of K[l] + K[l+ 1]. With a very high
probability S−1

l+1[k] = S−1
l [k] and Sl+1[l+ 1] = Sl[l+ 1]

holds and S−1
l [k]−Sl+1[l+1]−Sl[l]−jl takes the value

of K[l] + K[l + 1].

We will call such correlations between the first l bytes
of an RC4 key, the generated keystream, and the next i
bytes of the key a multibyte correlation and write σi for
the sum

Pi
k=0 Rk[k]. Tews, Weinmann, and Pyshkin

modified FKlein to vote for the sum of the next m
keybytes for every m ∈ {1, . . . , 13}. This results in the
following functions:

Fptwm(K[0], . . . ,K[l − 1],X[l +m− 2])

=S−1
l [l +m− 1− X[l +m− 2]]−

 
l+m−1X

a=l

Sl[a]

!
(4)

which only depend on the first 3 bytes of the per packet
key (IV) and vote for σi instead of Rk[i].

The PTW attack now works as follows: First an at-
tacker captures packets and recovers their keystreams
as for the FMS and KoreK attack. The attacker knows
the first l = 3 bytes of all per packets keys. He now eva-
luates Fptwm for every packet and every
m ∈ {1, . . . , 13} and gets votes for σ0 . . . σ12. After
all packets have been processed, the resulting root key
is calculated using Rk[0] = σ0 and Rk[i] = σi−σi−1. If
the key is correct, an alternative decision is made for
one of the values σi and the key is updated using just
12 single subtractions without the need to reevaluate
all packets.
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The attack needs just about 35,000 to 40,000 packets[14,
15] for 50% success probability, which can be collected in
less than 60 seconds on a fast network. Only a few seconds
of CPU time is needed to execute the attack.

Some modifications of the PTW attack have been propo-
sed[16, 10] which reduce the number of packets needed or
allow the usage of the PTW attack in some special cases
where the recovery of full key streams is difficult.

3.4 The Chopchop attack
The chopchop attack[8, 14] allows an attacker to interac-

tively decrypt the last m bytes of plaintext of an encrypted
packet by sending m ·128 packets in average to the network.
The attack does not reveal the root key and is not based on
any special properties of the RC4 stream cipher.

We can summarize the chopchop attack as follows: Be-
fore encryption, a four byte CRC32 checksum named ICV
is appended to the data of the packet. The packet with
the trailing checksum P can be represented as an element
of the polynomial ring F2[X]. If the checksum is correct,
P mod PCRC = PONE holds, where PONE is a known po-
lynomial and PCRC is a known polynomial too, which is
irreducible. We can write P as QX8 +R. Here R is the last
byte of P and Q are all remaining bytes. When the (encryp-
ted) packet is truncated by one byte, Q will most probably
have an incorrect checksum.

Assume that the attacker knows R. Adding
PONE + (X8)−1(PONE + R) to Q corrects the checksum
again. If R was incorrect here, the resulting packet will have
an incorrect checksum. This addition can also be done on
the encrypted packet.

Most access points can be used to distinguish between en-
crypted packets with correct and incorrect checksum. For
example if a client is not authenticated, and an access point
receives a packet from this client, the access point will gene-
rate an error message. Packets with an incorrect checksum
are silently discarded.

An attacker can use this to interactively decrypt packets.
The attacker selects a captured packet for decryption. He
truncates the packet by one byte, guesses R, corrects the
checksum and sends the packet to the access point to find
out if his guess for R was correct. If the guess for R was
correct, the attacker now knows the last byte of plaintext
and can continue with the second last byte. If the guess war
incorrect, he makes another different guess for R. After at
most 256 guesses and in average 128 guesses, he has guessed
the correct value of R.

4. AN IMPROVED ATTACK ON WEP
Unfortunately, after the release of the PTW attack, only

little attention was drawn towards the old KoreK attack.
Compared to the PTW attack, the KoreK attack has the
advantage that it only needs the first two bytes of the key-
streams of all captured packets. Usually, the recovery of the
first two bytes of keystream is much easier than recovering
the first 15 or 31 bytes. A pleasant exception is the work
done by Vaudenay and Vuagnoux[16], who showed that the
correlation used in the FMS attack can also be rewritten to
vote for σi instead of Rk[i]. This correlation is one of the 17
correlations used in the KoreK attack.

To improve the performance of the PTW attack, we star-
ted rewriting all correlations used by KoreK to vote for σi

instead of Rk[i]. Surprisingly, we where able to successfully

modify almost all correlations used by KoreK, with a few
exceptions:

The correlations A 4 s13, A 4 u5 1, and A 4 u5 2 in the
original KoreK attack can only be used to vote for Rk[1]
when Rk[0] is known. Using these correlations for Rk[2], Rk[3]
or any other keybyte besides Rk[1] has not been implemented
by KoreK. The modification of these correlations results in
new correlations which vote only for σ1, even with Rk[0] or
σ0 being unknown.

KoreK assigned labels with comments to some correlati-
ons. The correlation A u5 3 is the only correlation labeled
with the comment no good. When we tried to modify A u5 3
to vote for σi, the resulting correlation did not produce any
useful results.

The correlation A neg was used by KoreK to exclude va-
lues from being Rk[i]. The modification of this correlation
results in a new correlation which can exclude values from
being σi with a high probability. To implement this additio-
nal feature, a negative weight is assigned to this correlation.

Another interesting extension of the PTW attack was sug-
gested by [16] and [10] independently. First they showed that
it is possible to get four times more votes for σ13 than for
all other values of σi. This makes it much easier for an at-
tacker to decide on the value of σ12 than all other values
of σi. Secondly, they found out, that the correlation used
in the PTW attack can easily be modified to vote for the
value of σ12 + σi, even when the value of σ12 is unknown at
this moment. After the attacker has decided on the value of
σ12, he can get additional votes for each σi, by subtracting
the value of σ12 from these votes. To use these additional
correlations, an attacker needs the keystream bytes X[15] to
X[30], which can sometimes be recovered too.

Using all these ideas, we modified an implementation of
the PTW attack1 resulting in a new WEP cracking tool,
which clearly needs fewer packets than previous implemen-
tations of the PTW attack. We decided to use the same key
ranking strategy as used for the original PTW attack. We
limited the number of keys the implementation tests befo-
re failing to 220. The same limit has been used by previous
publications about WEP attacks, so that it should be easier
to compare our attack to previous attacks.

After we made the first version of this paper public, we
found out that Vaudenay and Vuagnoux[16] did also experi-
ment with modifications of the KoreK attack. However their
implementation of the attack needs more packets than our
implementation. We had to choose weights for combining
all the votes from the KoreK attack and the PTW attack to
a single vote. We think that our weights are more optimal
than the weights chosen by Vaudenay and Vuagnoux and
are mainly responsible to the difference in the experimental
results. The key ranking strategy and some differences in the
rewritten KoreK correlations might also be responsible for
the difference in the experimental results.

Figure 1 shows the success rate of our implementation.
For a 50% success rate, the attack only needs about 24,200
packets, compared to 32,700 for the VX attack[16] and 35,000
to 40,000 for various implementations of the PTW attack
[15, 14].

1http://trac.aircrack-ng.org/browser/branch/ptw2/
src/aircrack-ptw2-lib.c
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Figure 1: Success rate of the new WEP attack

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6

pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

number of sessions collected / 10,000

Random IV generation
Counter mode IV generation

5. BREAKING WPA
Our second contribution is an attack on WPA[2]. WPA

standardizes two modes how payload can be protected du-
ring transmission, Temporal Key Integrity Protocol (TKIP)
and (AES-)CCMP. For this paper, we will concentrate on
TKIP. TKIP is a slightly modified version of WEP. TKIP
implements a more sophisticated key mixing function for
mixing a session key with an initialization vector for each
packet. This prevents all currently known related key at-
tacks because every byte of the per packet key depends on
every byte of the session key and the initialization vector.
Additionally, a 64 bit Message Integrity Check (MIC) named
MICHAEL[2] is included in every packet to prevent attacks
on the weak CRC32 integrity protection mechanism known
from WEP. To prevent simple replay attacks, a sequence
counter (TSC) is used which allows packets only to arrive in
order at the receiver.

TKIP was designed so that legacy hardware only sup-
porting WEP should be firmware or driver upgradeable to
TKIP. Therefore, the RC4 stream cipher is still used and
the ICV is still included in every packet.

We will now show that it is still possible to decrypt traf-
fic in a chopchop like manner and to send packets with a
custom content: Assume that the following conditions are
met: The network being attacked is using TKIP for client to
access point communication. The IPv4 protocol is used with
an IP range where most bytes of the addresses are known
to the attacker (for example 192.168.0.X). A long re-keying
interval is used for TKIP, for example 3600 seconds. The
network supports the IEEE 802.11e Quality of Service fea-
tures[2] which allow 8 different channels (named TID - traffic
identifier) for different data flows and a station is currently
connected to the network.

These assumptions seem to be quite realistic for most net-
works currently deployed in the wild. To attack such a net-
work, an attacker first captures traffic, until he has found
an encrypted ARP request[11] or response. Such packets can
easily be detected because of the characteristic length. Ad-
ditionally, the source and destination Ethernet addresses are
not protected by WEP and TKIP and ARP requests are al-
ways sent to the broadcast address of the network. Most of
the plaintext of this packet is known to the attacker, except
the last byte of the source and destination IP addresses, the
8 byte MICHAEL MIC and the 4 byte ICV checksum. MIC
and ICV form the last 12 bytes of the plaintext.

An attacker can now launch a modified chochop attack as
against a WEP network to decrypt the unknown plaintext
bytes. TKIP mainly contains two countermeasures against
chopchop like attacks:

• If a packet with an incorrect ICV value is received by
a client, a transmission error is assumed and the re-
sulting packet is silently discarded. If the ICV value
is correct, but the MIC verification fails, an attack is
assumed and the access point is notified by sending a
MIC failure report frame. If more than 2 MIC verifi-
cation failures occur in less than 60 seconds, the com-
munication is shut down, and all keys are renegotiated
after a 60 second penalty period.

• When a packet has been received correctly, the TSC
counter for the channel it was received on is updated.
If a packet with a lower value than the current counter
is received (the packet is received out of order), the
packet is discarded.

Nevertheless, it is still possible to execute a chopchop at-
tack. An attacker needs to execute the attack on a diffe-
rent QoS channel than the packet was originally received
on. Usually, there will be a channel with no or low traffic
where the TSC counter is still lower. If the guess for the last
byte during the chopchop attack was incorrect, the packet is
still dropped silently. If the guess was correct, a MIC failure
report frame is sent by the client, but the TSC counter is not
increased. The attacker needs to wait for at least 60 seconds
after triggering a MIC failure report frame to prevent the cli-
ent from engaging countermeasures. Within a little bit more
than 12 minutes, the attacker can decrypt the last 12 bytes
of plaintext (MIC and ICV). To determine the remaining un-
known bytes (exact sender and receiver IP addresses), the
attacker can guess the values and verify them against the
decrypted ICV.

The exact attack time depends on the implementation.
A conservative programmer could choose to wait up to a
second for a MIC failure report frame. If speed is more im-
portant than reliability, a programmer could choose to wait
only a few milliseconds before guessing another value. The
reliability also depends on the speed the access point is able
to generate a MIC failure report frame.
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After the MIC and the plaintext of the packet is known,
an attacker can simply reverse the MICHAEL algorithm and
recover the MIC key used to protect packets being sent from
the access point to the client. The MICHAEL algorithm is
not designed to be a one-way function and reversing the
algorithm is as efficient as calculating the algorithm forward.

At this point, the attacker has recovered the MIC key and
knows a keystream for access point to client communication.
He is now able to send a custom packet to the client on every
QoS channel, where the TSC counter is still lower than the
value used for the captured packet. In most networks in the
wild, all traffic is just transmitted on channel 0, so that the
attacker is now able to send 7 custom packets to the client.
The IEEE 802.11 standard allows 16 different QoS channels,
but a client does not always need to accept the values 8-15
(see section 6.1.1.2 Interpretation of priority parameter in
MAC service primitives). All wireless stacks we checked did
not make a difference between channel 0-7 and 8-15 and
would therefor allow us to send 15 packets to the client.

The attack is also possible, when the IP range used on
the network is unknown to the attacker. He just needs to
decrypt additional 6 bytes using chopchop, which adds at
least 6-7 minutes to the total execution time of the attack.

After the attack has been successfully executed, an at-
tacker can recover an additional keystream much faster. As-
sume that the attacker captures an additional ARP response
to the client. If the attacker is uncertain about the last byte
of the IP addresses in the packet, he just needs to decrypt
the 4 byte ICV using chopchop. He can then guess the IP
addresses, calculate the MIC and verify the guess against
the decrypted ICV. This will only trigger 4 MIC failure re-
port frames. If the attacker is certain about the IP addresses
used in the packet, he can calculate the MIC and ICV and
allready knows the entire keystream.

To cause damage, the attacker could for example send
messages triggering IDS systems which work on the IP layer.
Alternatively, traffic could be rerouted using fake ARP re-
sponses. The attacker could try to establish a bidirectional
channel to the client, if the client is connected to the inter-
net using a firewall blocking incoming traffic, but allowing
outgoing traffic. The responses of the client cannot be read
over the air by the attacker, but could be routed back over
the internet.

We created a proof of concept implementation of this at-
tack2 to verify that the attack actually works. We managed
to attack hardware from various vendors, confirming that
this attack is really applicable against real world networks.

Even if the network does not support the IEEE 802.11e
QoS features, the attack still seems to be possible. Here,
the attacker needs to prevent the client from receiving the
data packet he chooses for the chopchop attack, and must
disconnect the client from the access point for the time of
the attack, so that the TSC counter is not increased by
the packet or following packets. After the attacker has suc-
cessfully executed the chopchop attack, he can send a single
data packet to the client. However, we did not implement
this attack mode.

If an attacker would manage to recover a keystream still
valid for a QoS channel and the MIC key for both direc-
tions (our attack only recovers a keystream and the MIC
key for access point to client communication), he would be

2http://trac.aircrack-ng.org/browser/trunk/src/
tkiptun-ng.c

able to use them to recover additional keystreams. The at-
tacker needs to send a packet to the client or access point
which triggers a known response. For example an ARP re-
quest could be used for this. The response will be encrypted
using a fresh keystream so that a single recovered keystream
can be used to recover at least additional 7 keystreams. This
allows the attacker to send a unlimited number of packets
with custom plaintext.

What prevents the attack from recovering the MIC key for
the other direction is, that the access point does not report
a MIC failure to the client, if a packet with a correct ICV
but an incorrect MIC is received. But if two such packets are
received within 60 seconds, the access point launches coun-
termeasures, and renegotiates all keys. If the same random
numbers are used as in the previous handshake when rene-
gotiating the new keys, the resulting keys will be the same.
In this scenario, an attacker will be able to recover the MIC
keys for both directions. The attacker needs to send every
packet twice. If the access point launches countermeasures,
the guess was correct and the attacker needs to wait un-
til the keys have been renegotiated. If nothing happens, he
continues with the next guess.

Recovery of the group key is also possible, if only a single
client is connected to the network. If there are two or more
clients is the network, both clients will report the MIC fai-
lure, and both frames will arrive at the access point within
60 seconds, triggering countermeasures.

5.1 Countermeasures
To prevent this attack, we suggest using a very short re-

keying time, for example 120 seconds or less. In 120 seconds,
the attacker can only decrypt parts of the ICV value at the
end of a packet. Alternatively disabling the sending of MIC
failure report frame frames on the clients would also prevent
the attack. The best solution would be disabling TKIP and
using a CCMP only network.

The OpenBSD team has implemented a countermeasure
in their client stack. If a MIC failure occurs, no packet is
send and the event is logged. If a second MIC failure occurs
within 60 seconds, two packets are send to the access point
and the client launches countermeasures.

6. CONCLUSION
WEP is known to be insecure since 2001, however we think

that key recovery attacks against WEP are still of interest.
On the one hand, WEP is still used in the wild and on the
other, some companies are selling hardware using modified
versions of the WEP protocol, they claim to be secure. Se-
condly, the TKIP protocol used by WPA is not much dif-
ferent from WEP, so that attacks on WEP can affect the
security of networks using TKIP, as seen in the paper.

Our attack on TKIP in Section 5 shows that even WPA
with a strong password is not perfectly secure and can be
attacked in a real world scenario. Although this attack is
not a complete key recovery attack, we suggest that vendors
should implement countermeasures against this attack. Be-
cause the problem can be fixed in a high level part of the
protocol, we think that updates can easily be developed and
deployed with new drivers.
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