Towards a Theory for Securing Time Synchronization in
Wireless Sensor Networks

Murtuza Jadliwala
Laboratory for computer Communications and
Applications (LCA)
Ecole Polytechnique Fédérale de Lausanne
(EPFL)
Lausanne, CH-1015, Switzerland
murtuza.jadliwala @epfl.ch

ABSTRACT

Time synchronization in highly distributed wireless systems
like sensor and ad hoc networks is extremely important in
order to maintain a consistent notion of time throughout
the network and to support the various timing-based appli-
cations. But, cheating behavior by the participating nodes
in the network can severely jeopardize the accuracy of the
associated time synchronization process. Despite recent ad-
vances in this direction, a key fundamental question still
remains unanswered: Is it theoretically feasible to secure
distributed time synchronization protocols, given complete
(or global) time and time difference information in the net-
work?

In this paper, we attempt to answer this question with
the help of sound mathematical modeling and analysis. We
first formulate the problem of distributed time synchroniza-
tion as a Constraint Satisfaction Problem (CSP) in a graph-
based model of the network. Then, we prove that efficiently
eliminating cheating behavior in distributed time synchro-
nization protocols is combinatorially hard (N P-hard), i.e., it
is highly unlikely that there exists an algorithm that solves,
or even approximates, this problem in polynomial (in terms
of total number of nodes) time. Due to this negative re-
sult for the general case, we focus on studying the problem
for a special case of the graph-based model of the network,
namely completely connected graphs. We derive an upper
bound on the best possible solution quality for this problem,
propose two polynomial-time approximation strategies, and
present an empirical evaluation of their performance.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—
Security and protection; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WiSec’09, March 16-18, 2009, Zurich, Switzerland.

Copyright 2009 ACM 978-1-60558-460-7/09/03 ...$5.00.

Qi Duan, Shambhu Upadhyaya, and
Jinhui Xu
Department of Computer Science and
Engineering
State University of New York at Buffalo
_Buffalo, NY 14260, USA
{giduan, shambhu, jinhui}

@ cse.buffalo.edu

and Problems— Computations on discrete structures; G.2.2
[Discrete Mathematics]: Graph Theory—Network prob-
lems

General Terms
Algorithms, Security, Theory

Keywords

Approximation Algorithms, Time Synchronization, Wireless
Sensor Networks

1. INTRODUCTION

Wireless ad hoc networks such as sensor networks are fast
gaining popularity for a variety of outdoor monitoring and
emergency response applications including environment and
climate monitoring, forest fire monitoring, target tracking,
monitoring enemy movement during wars and intrusion de-
tection systems. Due to the critical nature of these applica-
tions, knowledge of the exact order and time of occurrence
of the monitored events is extremely essential. In order to
maintain time, each mote is normally equipped with an on-
chip local clock (generally, a quartz crystal oscillating at a
specific frequency), which at the time of deployment is syn-
chronized with the other motes in the network. Thus, at
the beginning all the nodes® in the network have the same
notion of time. But over a period of time, motes in the net-
work develop varying notions of time due to various network
and mote dependent factors such as fading battery power,
longer sleep periods and mote crystals oscillating at different
frequencies.

The process of updating the local clocks of each mote in
the network such that all the motes have the same notion
of time is referred to as time synchronization. Time syn-
chronization can be either absolute or relative. In absolute
synchronization, the clocks of all the motes are adjusted
to a real-time standard like UTC (Universal Coordinated
Time) or some other well-known global value. In relative
synchronization, such a global or standard value of time is
not known, and the nodes have to be synchronized relative to
each other. Several efficient protocols for time synchroniza-
tion in infrastructure-based computer networks exist in the

The term mote and node are used interchangeably

literature [32]. Cristian’s Remote Clock Reading method [4],
Arvind’s Time Transmission Protocol (TTP) [1], Set-valued
Estimation method [18] by Lemmon et al. and Mill’s Offset
Delay Estimation method employed by the Network Time
Protocol (NTP) [22] are a few example of such protocols.
These protocols estimate the time offset between the target
machine (that needs to synchronize its time) and a source
machine (generally a time-keeping server or a machine that
has the correct notion of time) using simple message trans-
missions and time stamping, and use this estimated time
difference to determine the local time of the target. But,
due to factors such as lack of infrastructure, limited power,
limited bandwidth, limited hardware and non-deterministic
delays at the MAC layer in sensor motes, the above schemes
cannot be directly applied to sensor networks.

Depending on the application, either relative or absolute
synchronization may be required by the network. But, for
most sensor network applications relative synchronization
is generally sufficient. Relative time synchronization al-
gorithms for wireless sensor networks can be further di-
vided into two broad types: sender-receiver synchroniza-
tion and receiver-receiver synchronization [32]. In sender-
receiver synchronization [10, 25, 20] the nodes synchronize
themselves with respect to a sender or beacon node. The
sender node periodically sends a message (beacon) with its
local time to the receiver. The receiver then synchronizes
with the sender using the local time-stamp it receives from
the sender. The message delay between the sender and the
receiver is calculated by measuring the total round-trip time,
from the time a receiver requests a time-stamp until the time
it actually receives a response. In the receiver-receiver syn-
chronization [5, 29, 21, 33], instead of interacting directly
with a sender, receivers exchange with each other the time
at which they received the same message from the same
sender, and compute the time offset between them based on
the difference in reception times. One thing that is common
to all the time synchronization techniques mentioned above
is that each mote that wants to synchronize itself, attempts
to estimate the time offset (difference) to its neighboring
nodes. The number and type of neighboring nodes that the
target node estimates time differences to, and the technique
used to estimate these time offsets vary and depend on the
individual schemes.

In the case when all the nodes behave honestly during
time synchronization, all the estimated time differences in
the network should follow the triangle law, as shown in Fig-
ure 1. Figure 1(a) shows that if nodes A, B and C honestly

0B 04,8

(a) da,B+9dB,c +0c,a=0 (b)da,B+dBc+dc,p+Ip,a=0

Figure 1: Triangle law for time offset

compute their time offsets and if §4,p is the time offset of

node A with respect to node B, and dp,¢ is the time offset of
node B with respect to node C, and so on, then the sum of
the time differences d4,B, dB,c and d¢c, 4 is zero. This obser-
vation was also used by Ganeriwal et al. [9] in their design
of secure group synchronization protocol. (In practice, this
sum should be less than some constant o, which denotes
an upper bound on the measurement error in the network.
Currently, we do not focus on modeling the effects of mea-
surement errors on time synchronization. Thus, the current
exposition is simplified by assuming no measurement error.
Although the proposed network model assumes a zero mea-
surement error, the related results are general enough and
also hold for a non-zero measurement error.) In other words,
if the sum of the time differences is non-zero for a set of nodes
in the network then it implies that at least one of the nodes
in this set cheats or drastically deviates from correctly exe-
cuting the protocol. Such inconsistencies in time difference
estimates between nodes can severely jeopardize the accu-
racy of the time synchronization protocol associated with the
network. In order to secure time synchronization protocols,
one needs to eliminate in an efficient fashion such inconsis-
tent time offset data that is introduced by the cheating or
byzantine behavior of the participating nodes. To decide if
this problem is feasible or not, is the crux of this paper.

In order to gain a better understanding of the problem of
eliminating inconsistent time offset data, a rigorous math-
ematical formulation of the time synchronization problem
itself is extremely crucial. Such a formulation is useful in un-
derstanding both the combinatorial and the security related
properties of the time synchronization problem. In this di-
rection, we first formulate the time synchronization problem
as a Constraint Satisfaction Problem (CSP) in a special type
of graph-based model of the network, called the time differ-
ence graphs. We next prove an intuitive but fundamental
result, which states that the time synchronization problem
has a solution (in this model) if and only if the associated
time difference graph is consistent, i.e., there exist no incon-
sistent time offset estimates in the graph. We refer to a time
difference graph containing inconsistent time offset values as
a partially consistent time difference graph. The problem of
eliminating inconsistent time offset values (or cheating be-
havior) can then be modeled as an optimization problem
that determines the largest consistent subgraph of the cor-
responding partially consistent time difference graph of the
network. We also refer to this problem as the Maximum
Consistent Time Difference Graph or MCTD. We prove that
it is combinatorially infeasible to solve the MCTD problem
and show that it is unlikely to even have a polynomial-time
approximation algorithm. Due to this negative result for the
general case, we study the MCTD problem for a restricted
version of time difference graphs, namely completely con-
nected time difference graphs. We prove that even in this
case, the MCTD problem is combinatorially hard. But un-
like the previous case, there exist polynomial-time approxi-
mation algorithms for the completely connected graphs. We
prove that the best possible solution quality of these algo-
rithms is bounded by n%%, for some constant € > 0, where
n is the number of nodes. We also propose two heuristics for
this problem. The first heuristic is based on a greedy selec-
tion strategy, while the second is a linear programming based
optimization technique. In order to verify the practical ef-
ficiency and performance of these heuristics, an empirical
evaluation is also presented towards the end.

1.1 Background and Related Work

The problem of time synchronization in the presence of
malicious motes was first studied by Ganeriwal et al. [9].
They outlined a few attacks on existing time synchronization
schemes, including the pulse delay attack, where an adver-
sary deliberately delays the transmission of synchronization
messages in order to magnify the time offset between it and
the neighboring nodes. The authors also proposed secure
single-hop, multi-hop and group time synchronization pro-
tocols for wireless sensor networks. Song et al. [30] also
proposed two approaches to detect and accommodate the
delay attack. The authors proposed schemes that make use
of the fact that if there are no malicious motes then the
time offsets among the sensor motes should follow the same
(or similar) distribution. Sun et al. [31] also proposed se-
cure and resilient pairwise and global time synchronization
protocols that use authenticated MAC layer time-stamping
and the u-TESLA broadcast authentication protocol to over-
come attacks by malicious motes. The authors claim that
their scheme is secure against compromised nodes and ex-
ternal attacks such as sybil attacks. Li et al. [19] proposed
a secure time synchronization protocol that verifies the syn-
chronization process between each synchronizing node pair
using the node’s neighbors as verifiers. Recently, Xianglan
et al. [34] proposed a secure light-weight scheme that elim-
inates the requirement of loose synchronization in the u-
TESLA broadcast authentication protocol.

In summary, all the above schemes only viewed the prob-
lem of secure time synchronization from a local or a per-node
perspective, which is completely different when observed
from a network-wide standpoint. For a large wireless sensor
network consisting of thousands of nodes, a set of time offset
values might be consistent within a neighborhood (or group)
of nodes, but might not be consistent with the rest of the
network (or other groups). This issue is more pronounced
in de-centralized or infrastructureless time synchronization
protocols such as the ones used for sensor networks. We
could not find any concrete feasible solution in the literature
for securing time synchronization from a network-wide per-
spective. Although Ganeriwal et al. [11] proposed a group
synchronization protocol, their solution works well only for
small groups of nodes with a limited number of adversarial
nodes. Thus, it is very important to solve the secure time
synchronization problem from a global perspective in order
to achieve network-wide security. In addition to these issues,
we discovered that an elegant formal treatment of the time
synchronization problem itself was missing in the literature.
Such a formal treatment is very useful in deriving guaran-
tees and fundamental limits on the level of security that can
be achieved, and the cost for achieving that. In this work,
we attempt to address these unanswered questions.

1.2 Paper Organization

In Section 2, we outline the network and adversary model,
introduce the notion of time difference graphs and formu-
late the problem of time synchronization as a CSP. In Sec-
tion 3, we state the MCTD problem for general time dif-
ference graphs and derive the related combinatorial results.
In Section 4, we analyze the MCTD problem for completely
connected time difference graphs and present two approxi-
mation strategies for it. In Section 5, we discuss the initial
simulation results. We conclude the paper with a summary
of results in Section 6.

2. MATHEMATICAL FORMULATION

We begin by providing a brief overview of some important
concepts and terminology in complexity theory that will be
used throughout this paper. More details on these topics
can be found in [13].

2.1 Preliminaries: Complexity Theory

NP is the class of decision problems that have efficiently
verifiable proof systems. A decision problem S C {0, 1}* has
an efficiently verifiable proof system if there exist a polyno-
mial p and a polynomial-time verification algorithm V such
that the following two conditions hold:

e Completeness: For every x € S, there exist y of length
at most p(|z|) such that V(z,y) = 1.

e Soundness: For every z ¢ S and every y, it holds that

A polynomial-time computable function f is called a karp-
reduction of S to S’ if, for every z, it holds that = € § if
and only if f(z) € S’. In this case, S is said to be many-one
reducible (or karp reducible) to S’ in polynomial time. A
set S is NP-complete if it is in NP and every set in NP
is karp-reducible to it. A set S is NP-hard if every set in
NP is karp-reducible to it, but its membership within NP
is not known. It is not known whether every problem in
NP can be efficiently solved (in polynomial time). But, if
any single problem in the set of N P-complete problems can
be solved efficiently, then every problem in NP can also be
solved efficiently. Thus, N P-complete problems are consid-
ered “harder” than N P problems in general, and are believed
to have no polynomial-time (efficient) exact solutions. Algo-
rithms for such hard problems, also called optimization prob-
lems, that run in polynomial time and produce a near-exact
or sub-optimal solution are called approzimation algorithms.
Approximation algorithms that can guarantee that the solu-
tion output by it can be no more (if minimization problem)
or less (if maximization problem) than a factor o times the
optimum solution is called a o-approzimation algorithm for
that problem.

In this paper, we model the problem of securing distributed
time synchronization protocols in wireless sensor networks
as an optimization problem. In the following section, we
first outline the network model for this problem.

2.2 Network Model

Let N = {1,2,...,n} denote the set of n motes in the
network. Let P = (p1,p2,...,pn) be the local clock vector
such that each p; is a function of time p; : ¢ — R™, and
gives the local clock value on the mote i at any instant in
time ¢t. At the time of network deployment, i.e., at ¢ = 0,
pi(t) = p;(t), Vi,j € N, but this equality ceases to hold
with time due to factors such as clock drift, clock skew, etc.
[32, 23]. Now, a time difference graph, G = (V,E, w, §), for
the network at any instant in time can be defined as follows
(see Figure 2). The set V = {v;]i € N} contains a vertex
corresponding to each operating mote in the network at that
instant. A directed edge (vi,v;) € E exists between two ver-
tices v; and v; in the graph G if and only if ¢ and j are neigh-
bors of each other, and the direction of the edge depends on
the role of the nodes during time difference estimation. This
is discussed shortly. But first, by “neighbors” we mean that
both i and j are in the radio range of each other, and can

we = {5,5}

Figure 2: Time difference graph

communicate with each other directly. We assume that each
mote is able to securely determine its neighborhood [24].

Assuming that the degree (combined in and out degree) of
a vertex v; is denoted by d;, the graph G is associated with
a clock function w that assigns a vector w; = {]R"'}d"' of d;
real values to each vertex v; in the graph. Each scalar value
Wy, ,v; in this vector signifies the local clock value advertised
by ¢ to each of its neighbors j at time t. Ideally, for every
vertex v; € V, w; = {p;(t)}%, i.e., the node should advertise
its actual local clock value to each of its neighboring node.
But in reality, this equality may or may not hold depending
on whether the node is honest or not about advertising its
actual local clock value, i.e., every scalar value in the clock
function vector w; may not be identical and not necessarily
equal to the node ¢’s actual local clock value p;(t). For exam-
ple, as shown in Figure 2, the clock function vector for node 2
is w2 = {Wyy,0; =5, Wog,vg = 6, Wog,vy = 5, Wey,us = 6}, 1€,
node 2 advertises a clock value of 5 to nodes 1 and 4, while
a clock value of 6 to nodes 3 and 5. We shall discuss this in
detail later in Section 2.4. It is important to note here that
for any node 4, wy, v; is known only to j and not to any other
neighbors of i. Now, in each pair of neighboring nodes, one
node acts as a sender node and the other node is a receiver,
and the receiver node always computes its time difference
with respect to the sender. Thus, if 7 is a sender node and
j is a receiver node then the edge (v;,v;) is directed from
v; to v;. Intuitively it may seem that such a representation
only models the sender-receiver type of time synchronization
protocols, but the current graph-based model is very general
and also captures the receiver-receiver type of protocols. In
the receiver-receiver type of protocols, two nodes estimate
the time offset with respect to each other by exchanging
the receipt times of a packet from a common node. So in
the current model, these two nodes will be modeled both as
a sender and a receiver, and there will be a directed edge
between the nodes in both directions.

Each edge (vi,v;) € E is associated with a real weight
dv;,0;, which is nothing but the estimated time offset (dif-
ference) computed by the receiver to the sender. Formally,
the graph G is associated with a time difference function 6,
0 : E — R, such that ¢ assigns a weight to each edge in the
graph signifying the estimated value of the time difference
between the two vertices (motes) connected by that directed
edge. The weight d,,0, is positive (> 0) if the receiver node
lags the sender node, 6y, ., is negative (< 0) if the receiver
node leads the sender node, and §y,,; is zero if there is no

time difference between the receiver and the sender node.
We also assume here that the time difference function § can
be efficiently computed. An example of one such efficient
implementation of the time difference function was given
by Ganeriwal et al. [10], where the receiver computes the
time difference by receiving time stamped messages from
the sender. In order to simplify the current exposition, we
assume here that the graph G is a simple, connected, di-
rected graph, i.e., there are no self loops and every vertex
is reachable from every other vertex through a sequence of
edges. In the following section, we present a formulation of
the time synchronization problem, given the time difference
graph model of the network.

2.3 The Time Synchronization Problem

Given a time difference graph G = (V,E, w, d) of the net-
work, as defined above, the problem of time synchroniza-
tion can be formulated as a Constraint Satisfaction Prob-
lem (CSP). Suppose that |V|| = n, i.e., all motes are opera-
tional. We define a set of n variables x1, 2, ..., zn, one for
each vertex v; € V in G. These variables are also referred to
as adjustment variables [28]. Each adjustment variable x;
has a non-empty domain, which is the set of real numbers
R. Each directed edge (vi,v;) € E defines two constraints.
The first constraint, denoted as Cl(v,;,vj)a gives the relation-
ship between z;, x; and the time difference function §, and
is given as

Cl(vi,vj) =T —xi = 6(’01’71)]') (1)

The second constraint, denoted as Cg(vi’vj), gives the rela-
tionship between x;, ; and the clock function w,

C2(v,1,vj) = wvi,vj +x; = wvj,vi =+ T (2)

Thus, there are a total of 2 ||[E|| constraints in the system.
The state of the above CSP is defined by an assignment
1 = Mmi, T2 = Ma2,...,Tn = My, where m; € R, to some or
all the adjustment variables. An assignment that does not
violate any constraints is called a consistent or legal assign-
ment. A complete assignment is one in which every variable
is mentioned, and a solution to the CSP is a complete as-
signment that satisfies all the constraints. Given a time
difference graph, G = (V,E, w,d), the problem of time syn-
chronization then reduces to determining a complete consis-
tent assignment to the adjustment variables x1,x2,...,Tn.
Intuitively, x1 = mi1,x2 = ma,..., T, = m, represents the
values by which the clocks of the nodes 1,2,...,n must be
adjusted such that all the nodes have the same notion of
time. The problem of time synchronization, as formulated
above, is feasible or solvable if such a complete assignment
exists. If such a complete assignment does not exist then it
implies that some of the constraints cannot be satisfied, and
time synchronization is infeasible or partially feasible. This
infeasibility can be due to the cheating or byzantine behav-
ior of the participating nodes, as discussed in the following
section.

2.4 Adversary Model and Inconsistencies in
Time Synchronization

From the point of view of time synchronization, an honest
node always accurately advertises its own local clock values
and accurately estimates the time difference to its neighbor-
ing nodes. On the other hand, nodes can also cheat during
time synchronization, as discussed below.

1. Advertise incorrect local clock value: As discussed be-
fore, each node advertises its local clock value to each
of its neighboring nodes during time difference estima-
tion. A node can cheat by advertising incorrect local
clock information to its neighboring nodes. Such a
cheating behavior translates to the clock function w
assigning incorrect weight vectors to the vertices in
the corresponding time difference graph model G of
the network, i.e., wy,,v; # p;(t) for some node i and
its neighbor j.

2. Manipulating time difference estimation: During time
synchronization, a cheating node can also manipulate
message transmissions, for example, by introducing
unnecessary delays or changing packet time stamps.
This may affect the time difference estimation process
and translate to the time difference function § assign-
ing incorrect weights to the edges in the corresponding
time difference graph model G.

There are some important observations that we make at
this point. First, the advertised local clock vector w; of
an honest node i always follows the equality w; = {p:(t)}%,
while the local clock values advertised by a cheating node are
arbitrarily chosen by the adversary. Also, the time difference
function ¢ depends on the clock function w for time differ-
ence estimation, for example [10]. As a result, any cheating
by a node in the advertised local clock value also translates
to an incorrect time difference value between the node and
its corresponding neighbors. Moreover, from Equations (1)
and (2), we can see that in order to successfully mislead
the time synchronization protocol, the cheating node has to
maintain consistency between its advertised local clock value
and the estimated time offset between it and its neighboring
node. Otherwise, it is trivial for a neighboring node to ob-
serve the inconsistency between the advertised clock value
and the estimated time difference, and as a result, detect
the cheating node. In this work, we assume that the adver-
sary is smart and wants to avoid trivially being detected by
its neighbors. The adversary will make sure that its adver-
tised local clock value is consistent with the time difference
estimate with each neighbor. In other words, cheating on
the local clock value translates into a corresponding manip-
ulation of the time difference estimate and vice versa. In
either case, if a node cheats with some neighboring node,
its association with the other nodes will fail the triangle law
verification, as discussed in Section 1. We refer to this as an
inconsistency and is described more formally next.

Before moving ahead, we would like to review some im-
portant definitions.

Definition 1. A Cycle or Circuit in a graph is an alternat-
ing sequence of vertices and edges, with each edge being in-
cident to the vertices immediately preceding and succeeding
it in the sequence such that all the vertices in the sequence
are distinct except the first and the last.

A directed cycle is a directed version of the cycle, with all the
edges being oriented in the same direction. In this paper,
whenever we refer to a cycle, it will always imply a directed
cycle. Also, here we assume simple cycles, i.e., a cycle with
no repeated vertices except the first and the last vertex.
Now, recall from Section 1 that the triangle law for time
offset (time difference) outlined the necessary condition for
time difference consistency for a group of three nodes. Let

us present a more general notion for this condition, called a
consistent cycle.

Definition 2. Given a time difference graph, G = (V,E, w,
d), any cycle of G consisting of three or more vertices is called
a consistent cycle if and only if the sum of the time difference
function values dy,,.; of all the edges (v;,v;) in the cycle is
exactly zero.

A cycle of three or more vertices in which the sum of the
time difference function values for all the edges is anything
except zero (positive or negative) is called an inconsistent
cycle. A time difference graph that contains no inconsistent
cycles is called a consistent time difference graph. A time
difference graph that contains inconsistent cycles is called
an inconsistent or partially consistent time difference graph.
A similar notion was used by Jadliwala et al. in [15] to
represent inconsistencies in localization systems.

Cheating behavior by nodes during time synchronization
can lead to an inconsistent or partially consistent time dif-
ference graph. But, one problem with the current definition
of time difference graphs is the presence of connected acyclic
loops, as defined in the following section, which are also pos-
sible in such directed time difference graphs. Graph consis-
tency, as defined above, considers the consistency of only all
(directed) cycles, and none of the connected acyclic loops
are verified for consistency. We overcome this problem by
adding redundancy, as discussed in the following section. A
time difference graph that does not have any directed cycles
or connected acyclic loops is always consistent.

2.5 Time Difference Graphs - Revisited

In a directed graph such as the time difference graph (from
Section 2.2), it is possible that some vertex combinations are
connected by edges but do not constitute a (directed) cycle
because all these edges are not oriented in the same direc-
tion. We call such vertex combinations as connected acyclic
loops. An example of such an acyclic loop (v2,v3,vs) in a
time difference graph is shown in Figure 2. Due to such
acyclic loops, it is not possible to determine the consistency
of the time difference graph just based on the consistency of
all the directed cycles. In order to overcome this problem, we
add some redundancy to our initial definition of time differ-
ence graphs. Given a time difference graph, G = (V,E, w, §),
we define a new graph G’ = (V' E',w’,§’) as follows. The
vertex set V' and the clock function w’ of G’ are the same
as that of G. For each edge (vi,v;) € E, (vi,v;) € E’
and (vj,v;) € E'. Also, if (vi,v;) € E and §(vi,vj) # 0
then &' (vi,v;) = §(vi,v;) and &' (vj,v;) = —1 x 6(vs,v5). If
8(vi,v;) = 0 then 8" (v, v;) = §'(vj,v;) = 0. This new graph
does not add any new information to the time difference
graph, and is referred to as a Redundant Time Difference
Graph. A redundant time difference graph for the time dif-
ference graph of Figure 2 is shown in Figure 3. As we can
see from Figure 3, for each edge in the time difference graph,
a new edge between the same pair of nodes in the opposite
direction is added in the corresponding redundant time dif-
ference graph. This edge is called the redundant edge as its
time difference value is just opposite in sign to the time dif-
ference value of the actual edge and it does not provide any
new information. This is also intuitive because if a node,
say A, lags another node, say B, by m, then the same thing
can also be interpreted as B leads A by m. Redundant time
difference graphs eliminate acyclic loops in time difference

wi = {5,5}

Figure 3: Redundant time difference graph

graphs by converting each such loop into a directed cycle
that can be verified for consistency. This brings us to our
first result that gives the relationship between the solution
of the time synchronization problem and the consistency of
the redundant time difference graph.

PROPOSITION 2.1. The time synchronization problem for
a redundant time difference graph G' = (V',E’,w’,d8") has a
solution if and only if G’ is consistent.

PrOOF. We first prove the reverse direction. We will
show that if the graph G’ is consistent then the time synchro-
nization problem for G’ has a solution. In other words, if the
graph G’ is consistent then the CSP for the time synchro-
nization problem has at least one assignment to the adjust-
ment variables x1,x2,...,x, such that all the constraints
(Equations (1) and (2)) are satisfied. We prove this by a
contradiction argument. Since the graph G’ is consistent,
by definition of consistency all simple cycles in G’ are con-
sistent, i.e., sum of time difference values of all edges in
each cycle is zero. Now, let £1 = m1,x2 = ma,...,Tn = my,
be one assignment to the adjustment variables such that
there is at least one constraint that is not satisfied. Let this
constraint (which is not satisfied) be on the edge (vi, vi+1),
i.e., Ti+1 — T4 75 (5(’[}1',’01'4,_1). Thus, 5(1}1',1)1'4_1) 75 mi+1 —
m;. Without loss of generality, assume that §(vi,viy1) <
mi+1 — m;. Also, let this edge be on some cycle C' =

(Ul,vg), (UQ,U;;), ey (Ui,UH_l), (’Ui.t,.l,’l}i.»,_g), o (UH_T,’Ul). NOVV7

since G’ is consistent, the cycle C’ is consistent. Thus,

0(vi,v2) + 0(v2,v3) + ... + 8(vie1,vi) +

d(vi,vit1) + 0(Vit1, Vit2) + ... + 6(Vigr,v1) =0
= (r2—z1)+(x3—x2)+ ...+ (i —xiz1) +

0(vi,vig1) + (Tig2 — Tit1) + ...+ (1 — Tigr) =0
= (m2—mi)+ (ms—m2)+...4+ (m;i—mi—1)+

0(vi,vig1) + (Mig2 — mig1) + ...+ (M1 — Mmigr) =0

— mifmi+1+5(v¢,vi+1) =0
- 5(vi,vi+1) = Mit+1 — My

which is a contradiction. This proves the reverse direction.

Now for the forward direction, let us assume that the time
synchronization problem for the graph G’ has a solution, i.e.,
the CSP formulation has at least one assignment to the ad-
justment variables, x1 = mi,x2 = ma,...,Tn = My, such
that all the constraints (Equations (1) and (2)) are satis-
fied. Also, assume that G’ is not consistent. Without loss of

generality, let C' = (v1,v2), (v2,v3), ..., (Vie1,vi), (Vi, Vig1),
(Vit1,Vig2), - - . (Vigr, v1) be the cycle such that

(5(’[}1,’02) + (5(’[}2,’03) + ...+ (5(’[}1'_1,’1}1') =+
8(vi, vig1) + 0(vit1, vit2) + - + I(Vigr,v1) £ O
But, this implies that,

(x2 — 1)+ (w3 —x2) + ...+ (xi —wio1) +
(i, Tit1) + (Tite — @ig1) + ...+ (x1 — Tigr) # O
ie.,

(m2 —ma) + (m3 —m2) + ...+ (mi —mi—1) +
(mi7mi+l) + (m¢+2 - mi+1) + ...+ (m1 - mi+r) #0

which is a contradiction. Thus, there can be no such cycle.
Thus, G’ is consistent. Thus, the proof. [

Readers should note that from this point onwards the term
time difference graph in this paper would always imply a re-
dundant time difference graph. Given the time difference
graph model for time synchronization and the adversary
model, we now focus on the problem of securing time syn-
chronization in the following sections.

3. ELIMINATING INCONSISTENCIES

Up to this point, we have formulated the distributed time
synchronization problem as a constraint satisfaction problem
in a graph-based model of the network, called time difference
graphs, and proved that a solution to the time synchroniza-
tion problem exists if and only if the corresponding time
difference graph is consistent. We have also established that
cheating behavior by nodes during time synchronization re-
sults in inconsistencies in the corresponding time difference
graph model of the network. Thus, in order to secure the
time synchronization process in the network, the first step
would be to eliminate these inconsistencies in an efficient
fashion. In other words, we need to address the problem
that given a partially consistent time difference graph, how
to obtain the largest consistent subgraph of this graph. This
can be formulated as a (graph-based) optimization problem,
as formally stated next.

3.1 Maximum Consistent Time Difference
Graph (MCTD) Problem

A consistent subgraph of a partially consistent time dif-
ference graph is obtained by eliminating vertices (and the
corresponding edges) until the resulting induced subgraph
is consistent, i.e., all simple cycles in the induced subgraph
are consistent. The size of the consistent subgraph is the
cardinality of its vertex set. The edge size is the cardinality
of its edge set. A consistent subgraph is mazimal if its vertex
set is not a proper subset of the vertex set of any other con-
sistent subgraph of that time difference graph. A mazimum
consistent subgraph is a maximal consistent subgraph with
maximum size. Now, given a time difference graph G, the
problem of obtaining the largest consistent subgraph can be
formulated as an optimization problem that finds the maxi-
mum consistent subgraph of G. We refer to this problem as
the Maximum Consistent Time Difference Graph problem
or MCTD. A decision (or parametrized) version of MCTD
can be stated as,

Input: A partially consistent time difference graph G =
(V,E,w,) and a positive integer k s.t. k < ||[V]|.

Question: Does G contain a consistent time difference sub-
graph of size k or more?

3.2 Hardness of the MCTD Problem

Intuitively, the MCTD problem appears to be hard. Ac-
tually, MCTD does belong to the class of highly intractable
problems. Currently, we do not have sufficient proof that
it even belongs to NP, i.e., the class of non-deterministic
polynomial-time algorithms. This is because, it is highly
unlikely that MCTD even has a polynomial-time verifier.
Given a time difference graph, G = (V,E,§)? and an inte-
ger k < ||V|, it is not possible to verify in polynomial time
whether a subgraph of G (of size k) contains only consistent
cycles. In order to verify the consistency of the subgraph, all
the simple cycles in the subgraph have to be verified for con-
sistency. The total number of cycles in the subgraph itself
could be exponential, in the worst case. But, we do show
that MCTD is NP-hard, i.e., it is at least as hard as every
problem in NP. We prove this result by a straightforward
polynomial-time many-one (hardness preserving) reduction
from a well-known N P-complete problem, the VERTEX-
COVER [16] problem. A vertex cover of a directed graph
G = (V,E) is a subset of vertices C' C V that contains
at least one vertex of every directed edge (,9) € E, and
the (minimum) VERTEX-COVER problem is to find such
a subset C' of the smallest cardinality. The hardness of the
MCTD problem is given by Theorem 3.1.

THEOREM 3.1. The Mazimum Consistent Time Differ-
ence Graph (MCTD) problem is NP-hard.

PrOOF. We show that VERTEX-COVER <” MCTD,

i.e., VERTEX-COVER many-one (m) reduces in polynomial
time to the MCTD problem.
Construction: We describe a polynomial-time construction
that maps an instance G = (V, E) of the VERTEX-COVER
problem to an instance G = (V,E, §) of the MCTD problem
such that G has a vertex cover of size < k (k < ||V if and
only if G has a consistent subgraph of size > ||V||— k. Since,
consistency can be verified using just the time difference
function §, we can ignore the clock function w. Let, a > 1
be some small constant and ||V|| = n. The construction is
shown in Figure 4.

(a) (b)

Figure 4: Reduction from VERTEX-COVER TO
MCTD (a) Input graph G = (V,E) for VERTEX -
COVER (b) Input graph G = (V,E) for MCTD

2We can ignore w from this point onwards since it is not
used in the consistency check of the time difference graph

1. For each vertex v in the vertex set V of C;', place a
vertex v in the vertex set V of G.

2. For each vertex pair u,v € V such that edge (u,v) ¢ E
and (v,u) ¢ E, add edges (u,v) and (v,u) in E of G.
For each such edge, define 6(u,v) = 0 and (v, u) = 0.
These edges are shown as dotted lines in Figure 4(b).

3. Initialize some counter 8 = 1. Select a directed edge
(u,v) € E. Add edges (u,v) and (v,u) in E, if they
are not already present in E. These edges are shown
as solid lines in Figure 4(b). Assign 6(u,v) = a” and
8(v,u) = —a®. Increment 8 by 1. Repeat this proce-
dure till every directed edge (u,v) € E is covered.

It is clear that the above construction can be completed in
polynomial time. We now show that G has a vertex cover of
size k if and only if G has a consistent time difference graph
of size ||V — k.

Suppose the graph C;', as shown in Figure 4(a), has a vertex
cover C (C C V) of size k (||C|| = k). Since C is a vertex
cover, V(u,v) € E, either u or v or both are in C. By
our construction, ¥(u,v) € E, §(u,v) # 0 and §(v,u) # 0
in G. In other words, C covers all edges with non-zero time
difference values in G. This implies that V—C would contain
only edges with time difference values 0, i.e., V — C would
contain no cycle such that the sum of the time difference
values of all the edges in that cycle is not equal to 0. Thus,
the subgraph induced by V—C'is a consistent time difference
graph of G of size ||V|| — k.

Now, we prove the other direction. From the above con-
struction, it is clear that the solid edges in G are assigned
time difference (§) values in a geometric progression. From
the property of the progression, the only way the sum of
edge weights or time difference values § in any simple cycle
can be zero is if all the edge weights 0 in the cycle are zero.
Now, let C’ be the vertex set representing the consistent
time difference subgraph of G of size k (k < ||V]|). Thus, C’
should contain no edges with a non-zero § values, i.e., there
can be no edges in ¢’ with time difference values either a”
or —a®, where 8 > 1 and a > 1. Otherwise there will be
at least one inconsistent cycle in C’. This implies, V — C’
covers all edges in E with time difference values or —gﬁ .
From our construction, it is clear that the edge set E of G is
a subset of all edges with time difference values a® or —a®
in E. Thus, V — C' covers all the edges in G and is a vertex
cover of G of size ||V|| — k i.e., ||V| — k since |V = |[V].

Thus, VERTEX-COVER many-one reduces in polynomial
time to the MCTD problem. Since VERTEX-COVER is
N P-complete, MCTD is NP-hard. [

Theorem 3.1 implies that it is unlikely that MCTD will have
a deterministic polynomial-time algorithm. Whether it has
an efficient approximation algorithm is still an open ques-
tion. The next result shows the equivalence of the MCTD
problem to another combinatorially hard problem, namely
the Feedback Vertex Set problem or FVS, which further
undermines the possibility of the existence of an efficient
polynomial-time approximation algorithm for the MCTD
problem.

3.3 Solving the MCTD Problem

Before outlining the next result, we need to introduce an-
other graph-based optimization problem, namely the Feed-
back Vertex Set problem or FVS [12]. The FVS problem is

defined as: given a directed or undirected graph, G = (V, E),
find a subset F' C V of vertices in the graph such that G— F
is acyclic. In simpler words, the FVS problem is to find a
(minimum) subset of vertices that covers all the cycles in G.
The set F is called the feedback vertex set or FVS of G. Our
next proposition gives the relationship between the MCTD
problem and the minimum FVS problem.

PrOPOSITION 3.1. The MCTD problem for a time differ-
ence graph G is equivalent (or corresponds in a one-to-one
way) to finding the minimum feedback vertex set of all the
simple negative cycles in G.

A negative cycle is a cycle such that the sum of all the edge
weights of the cycle is strictly less than 0. We skip the
details of the proof for Proposition 3.1, as it follows from
a very straightforward polynomial time reduction from the
MCTD problem. One point to note here is that in redun-
dant time difference graphs, finding the minimum feedback
vertex set of all the positive simple cycles (strictly greater
than zero) would also give a solution to the MCTD problem.
But, that is not going to affect the hardness of the problem
because the construction of the redundant time difference
graph guarantees exactly same number of positive and neg-
ative simple cycles. Proposition 3.1 implies that (efficient)
algorithms for the negative cycle enumeration problem and
the minimum FVS problem in weighted directed graphs can
be used to obtain a (efficient) solution for the MCTD prob-
lem. Based on this result, a simple algorithm for the MCTD
problem can be outlined as shown in Algorithm 1.

1: Compute the set of all negative cycles C' in G.

2: Compute the feedback vertex cover F of C.

3: return G — F' as the maximum consistent time differ-
ence graph of G

Algorithm 1: Calculating maximum consistent subgraph

Both the negative cycle enumeration and the minimum
FVS problems are known N P-complete problems. Although,
deciding the existence and finding a negative cycle in a
weighted directed graph is polynomially solvable, and all
cycles of a directed or undirected graph can be enumerated
efficiently by a simple backtracking algorithm [27], Kachiyan
et al. [17] proved using Gallai’s results [8] that (directed)
negative cycles in a graph cannot be generated in polyno-
mial time, unless P = NP. Similarly, Karp et al. [16]
proved the N P-completeness of the minimum FVS prob-
lem. For undirected graphs, there are numerous results for
the FVS problem, for example, there are exact algorithms
that run in time O(1.9053™) [26] and in time O(1.7548™)
[7], where n is the number of vertices. There also exist a
polynomial-time 2-approximation algorithm for it that was
proposed by Bafna et al. [2]. In directed graphs, the FVS
problem becomes harder and there has been only a limited
progress on it, since Karp [16] proved that to find an FVS in
a directed graph of size bounded by some constant k is N P-
complete. No exact algorithms with running time within
O(c"no(l)), where ¢ < 2, and no polynomial time approxi-
mation algorithms with constant ratio have been found [6].
From Proposition 3.1 and the infeasibility result of Kachiyan
et al. [17], we can conclude that it is highly unlikely that
the MCTD problem will have a polynomial-time (or effi-
cient) approximation algorithm, let alone a constant ratio
polynomial time algorithm.

These negative results for the MCTD problem in con-
nected time difference graphs, prompted us to investigate
the combinatorial properties of the MCTD problem for a re-
stricted type of time difference graph, namely a completely
connected time difference graph. In the next few sections,
we present some analysis and results for this special case.

4. COMPLETELY CONNECTED TIME DIF-
FERENCE GRAPHS

A completely connected (or complete) time difference graph
is a special type of redundant time difference graph in which
there is an (directed) edge between every pair of vertices in
the graph (in both the directions). Although it is very dif-
ficult to model existing sensor networks (except extremely
dense networks spread over a small area) using such com-
pletely connected graphs, it will be worthwhile to study such
graphs in the context of the MCTD problem.

4.1 Properties

A complete time difference graph possesses the following
two properties.

PROPERTY 1. A complete time difference graph has a poly-
nomial number of exactly three node (vertex) cycles. Specifi-
n
3
n is the total number of vertices in the graph.

cally, there are a total of 2- three vertex cycles, where

PROPERTY 2. A complete time difference graph is consis-
tent if and only if all the three node (vertex) cycles in the
graph are consistent.

Property 1 follows from the definition of the complete time
difference graph, while Property 2 follows from Proposition
4.1, as discussed below.

PRrROPOSITION 4.1. In a complete time difference graph,
two k-node (k > 3) simple cycles with two or more common
vertices are independently consistent if and only if the simple
cycle containing all the vertices of these two k-node cycles,
and formed by the edges of these cycles, is consistent.

PrOOF. First we prove this result for the simple case of
k = 3. We then argue that the result holds for k£ > 3.

Let us first prove the forward direction for this case. With-
out loss of generality let us assume that {1,2,3,1} and {1,3,4,1}
are the two 3-node independently consistent cycles with the
common nodes 1 and 3, as shown in Figure 5. Thus, by defi-
nition of consistency, d12 + 023 + 031 = 0 and d13+ 34 + 041 =
0. The cycle containing all the four nodes and formed by the
edges of the above two 3-node cycles is {1,2,3,4,1}. Now,
let cycle {1,2,3,4,1} be not consistent. Thus,

012 4 023 + 034 + 641 # 0

012 + 023 + 031 — 931 + d34 + da1 # 0

—031 + 834 + 041 0 (012 + d23 + 031 = 0)
013 + 034 + 041 #0 (613 = —d31)

Cycle {1,3,4,1} is inconsistent

FEE

which is a contradiction. Thus, cycle {1,2,3,4,1} is consis-
tent. Similarly, the reverse direction is also very straightfor-
ward.

Now, we argue that this also holds for k > 3. It is easy
to see that two k-node cycles with two common vertices can

Figure 5: Illustration of property 2

be combined into a single cycle using the same set of edges
of the individual cycles if and only if both cycles have the
same orientation (i.e., either clockwise or anti-clockwise). As
a result, the first k-node cycle has one of the edges (in one
direction) between the two common nodes, while the second
k-node cycle has the other edge (in the other direction).
Since each k-node cycle is consistent, the d value of the edge
in the cycle that is between the common nodes is numerically
equal but opposite in sign to the sum of the § values of all the
other edges in the cycle. In other words, the sum of § value
of every edge except the edge between the common nodes
in the first k-node cycle is numerically equal in value but
opposite in sign to the corresponding sum of § values of the
edges of the other k-node cycle. When the two k-node cycles
are combined, the only edges not included in the combined
cycle are the ones between the common nodes. Thus, the
sum of the § values of the edges of the resulting cycle will
always be zero, which implies that the combined cycle will
always be consistent. Similarly, the reverse direction can be
proved for k > 3. [

4.2 Theoretical Results

Contrary to the initial intuition, theoretical analysis, as
discussed next, has shown that the MCTD problem is com-
putationally hard even for the completely connected case,
although, there exist polynomial-time approximations for it.

THEOREM 4.1. MCTD problem for completely connected
time difference graph is NP-complete.

This theorem follows from Theorem 4.3 and Lemma 4.1 dis-
cussed ahead. Before proceeding ahead, we need the follow-
ing result from Johan Hastad (2002) [14] for the CLIQUE
problem.

THEOREM 4.2. For any € > 0, unless NP = P there is
no polynomial-time algorithm that approximates CLIQUE

o 1_
within a factor n2 ~¢.

CLIQUE, a well-known N P-hard problem, for a given graph
with n vertices is to find a maximum size clique in it, i.e., a
complete subgraph of maximum size [16]. The best known
algorithm for approximating CLIQUE has a factor of O(Togmn
[3]. Our next result, proves the approximability of the MCTD
problem for complete time difference graphs.

THEOREM 4.3. For any ¢ > 0, it is NP-hard to approx-
imate the MCTD problem for a completely connected time
1
difference graph within a factor n2=¢ (e > 0).

)

PRrROOF. From Theorem 4.2, it is clear that CLIQUE, in
general, is not approximable to within n%_e, assuming P #
NP. We describe a reduction from CLIQUE to MCTD for
complete time difference graphs such that the approximation
ratio is preserved, and with only a quadratic blow-up in the
input size. ~ o

Suppose, we have an instance of CLIQUE, G = (V, F),
as shown in Figure 6(a). We can construct an instance G =

(a)
Figure 6: Reduction from CLIQUE to MCTD

(V,E,) of MCTD for a complete time difference graph as
follows. Let, a > 1 be some small constant and ||V] = n.
Refer to Figure 6 for an illustration of the reduction. The
vertex set of the graph G is the same as the vertex of G, i.e.,
for each v € V, add a vertex v to V. Now, for each edge in
the edge set of E, i.e., for each (v;,v;) € F, add two directed
edges (v;,v;) and (vj,v;) in E. Also, for each such edge in
E, §(vi,v;) = 0 and d(vj,v;) = 0. These edges are shown as
solid lines in Figure 6(b).

Initialize some counter 3 = 1. Select a vertex pair v;,v;
such that both edges (vi,v;) and (vj,v;) ¢ E. Add two
directed edges (vi,v;) and (vj,v;) in E, if they are not al-
ready present in [E. These edges are shown as dotted lines
in Figure 6(b). Assign §(vi,v;) = a® and §(v;,v;) = —a®.
Increment 3 by 1. Repeat this procedure till every pair of
vertices v;, v; for which edges (vi,v;), (vj,v;) ¢ E is covered.
It is easy to see that G is a complete time difference graph.
Moreover, we can observe that the above construction can
be done efficiently, i.e., in polynomial time (in terms of the
number of vertices) with only a quadratic increase in the size
of the input. This increase is due to the extra edges that are
added to the input, which is of the order of O(n?).

Next, we need to show that the above construction is ap-
proximation preserving, given by Lemma 4.1 below. This
completes the proof. [

LEMMA 4.1. For any positive integer p < |H~/H, the graph
G = (V,E) has a CLIQUE of size at most p if and only if
there is a consistent subgraph of the time difference graph
G = (V,E,§) of size at most p.

PROOF. From the construction in Theorem 4.3, it is clear
that the dotted edges in G are assigned time difference ()
values in a geometric progression. From the property of
the progression, the only way the sum of edge weights or
time difference values § in any simple cycle can be zero is
if all the edge weights § in the cycle are zero. Now, let
C C V be the vertex set representing the consistent time
difference subgraph of G of size p (p < ||V|). Thus, C
should contain no edges with a non-zero § values, i.e., there

can be no edges in C' with time difference values either a?
or —a®, where 8 > 1 and @ > 1. Otherwise there will be
at least one inconsistent cycle in C. Moreover since G is a
complete graph, C' is also a complete graph. This implies,
C is a clique of G of size p.

Similarly for the forward direction, let us assume that the
graph G = (V, E) has a CLIQUE C’ C V of size p. From
the construction in Theorem 4.3, it is clear that C’ is also
a consistent subgraph of the time difference graph G, and
there can be no other consistent graph larger than it. []

4.3 Heuristics

We now propose two heuristics for the MCTD problem in
complete time difference graphs. The first heuristic is based
on a greedy strategy, while the second is based on an Integer
Programming formulation of the MCTD problem.

4.3.1 Greedy Strategy

This heuristic greedily selects a vertex for inclusion into
the solution based on its Consistency Index (CI).

Definition 3. The Consistency Index (CI) of a vertex in
a complete time difference graph is the total number of con-
sistent 3-node cycles of the graph that the vertex is a part
of.

The heuristic begins by computing the CI for each vertex in
the graph. It then sorts the vertices based on their CI values
from the highest to the lowest. If there are no vertices with
CI greater than zero then there are no consistent three-node
cycles, and the heuristic concludes that there is no consistent
subgraph. Otherwise, it selects the vertex with the highest
CI and places it in the partial solution. It continues to select
vertices in the order of their CI's and adds them to the
partial solution if and only if they are consistent with all the
previous vertices in the partial solution, i.e., all the 3-node
cycles after adding the new vertex should be consistent. If
there is at least one inconsistent 3-node cycle then the vertex
is discarded and not added to the partial solution. During
the vertex selection step, if there are more than one vertex
with the same CI value then the heuristic picks a vertex
at random from such a group. The pseudo-code for this
heuristic is shown in Algorithm 2.

Require: Time Difference Graph G = (V,E,¢), ||[V||=n

: Compute CI for each vertex, v; € V

: Sort vertices based on CI from largest to smallest. Let
the sorted list be V' = {v1,v2,...,vn}

[N

3: if there is no vertex v; € V' with CI > 0 then

4: print “No consistent subgraph”

5: return ¢

6: else

7: Let T = v

8: for each vertex v; € V' (i =2 to n) do

9: if v; is consistent with every vertex in T (i.e., all
3-node cycles in T after adding v; are consistent)
then

10: Add v; to T

11: end if

12: end for

13: return T

14: end if

Algorithm 2: Greedy heuristic

The CI computation step of the greedy algorithm takes
O(n*) time, where n is the number of vertices. This is be-
cause there are at most O(n®) three-vertex cycles in the
complete time difference graph and it takes an extra O(n)
time to assign a CI for every vertex in the graph. Sorting
takes O(n.logn) and the verification and addition steps (4
through 8) take O(n*) in the worst case. Thus, the total
running time of the greedy algorithm is bounded by O(n?).

4.3.2 Integer Programming (IP) Formulation

One drawback of the greedy algorithm is that it makes
locally optimal decisions due to which it can get stuck in a
local optima, thus resulting in a poor solution quality. To
overcome this issue, we propose an alternative heuristic that
uses convex optimization to find a globally optimal solution.
More specifically, we formulate the MCTD problem for a
complete time difference graph as an Integer Program (IP),
also called a 0-1 Program, as shown below:

Maximize f= Zvi
i=1
Subject to (vi+vj + vk —2) 0k <0
Vi, g,k st. 4,5,k €{1,2,...,n} and
0ijk = 0ij + 05,k + Ok >0
and v, vj, v € {0,1}

Now, solving an Integer Program is a well-known NP-hard
problem [16]. But, a Linear Program (LP) relaxation for the
above Integer program can be solved in polynomial time us-
ing efficient techniques such as simplez. If the LP relaxation
has an integral solution then that can also be the solution
for the above IP. But due to the hardness of the MCTD
problem, as proved earlier, getting an integral solution is
highly unlikely. In that case approximation strategies such
as rounding and branch and bound can be used to obtain a
feasible solution.

S. EMPIRICAL EVALUATIONS

In this section, we discuss the results of some initial sim-
ulation experiments conducted for the greedy and the LP-
based heuristics. The greedy heuristic is implemented using
the C programming language, while the LP-based heuris-
tic is implemented in MATLAB using the linprog LP solver
of the MATLAB Optimization toolbox. These implementa-
tions are executed on a Pentium dual processor/2GHz/2GB
specification machine and running Debian Linux operating
system.

We execute the implementation of the greedy heuristic
with randomly generated complete time difference graphs
as input; the size (n) of these graphs are varied from 500
up to 2000 nodes during the simulations. In each simulation
run, we randomly choose k number of nodes as malicious,
and assign inconsistent § values to randomly chosen edges
out of each malicious node. The value of k is varied from
0 up to 250 nodes in steps of 25 nodes for each value of n.
The distance estimate function § assigns values only from
the set of integers (Z). It is easy to see that if we remove
all the malicious nodes and their corresponding edges then
the resulting subgraph becomes consistent. This subgraph
may or may not be the optimal solution, and we refer to
such a subgraph as the sub-optimal solution. Since it is
computationally infeasible to get the true optimal solution,

e e
i 40 1000 -
=] a8 =) & & =] 8 a i L:% é
e KR e e G 35 n=2000
K *)
> SR 2
2z e £ 30}
S z 2
<] s ® 25+
p4 123
09975 C 099 £ 20
3 2 =
@ E s 15[F—
s 3 -% =} B B G e o
s § 10+
wogl
n=500 —e— WK *
750
n=1000 % n=500 —8— or
n=1500 {3 098 | n=1000 +--%--
0.995 , , . , , , , L n=3000 | | . . \ L . L L n=fse0 B -5 P \ . , , L | | ,
25 0 25 50 75 100 125 150 175 200 225 250 25 0 25 50 75 100 125 150 175 200 225 250 25 0 25 50 75 100 125 150 175 200 225 250

Number of Malicious Nodes

(a)

Number of Malicious Nodes

Number of Malicious Nodes

(b) (c)

Figure 7: Experimental results for the greedy heuristic

especially for large graphs, we measure the solution quality
of the greedy heuristic by computing the ratio of the size
of the solution returned by the heuristic to the size of the
sub-optimal solution. Simulations for each set of parameters
is repeated 100 times. The simulation results for the greedy
heuristic are shown in Figure 7.

Figure 7(a) shows the variation of the mean or average
(over the 100 runs) value of the solution quality as the num-
ber of malicious nodes increase. We can see that the solution
quality decreases as the number of malicious nodes increases,
which is pretty intuitive. Moreover, as the graph becomes
larger in size, i.e., the ratio of malicious to honest nodes
decreases, the solution quality improves. In Figure 7(b), we
have plotted the solution quality and the confidence intervals
for n = 500, n = 1000 and n = 1500. We can see that the
confidence interval is much larger for n = 500 and becomes
smaller as the value of n increases. This shows that when
the ratio of malicious to honest nodes in the graph is high,
the greedy heuristic is much less predictable in its solution
quality. This improves when the ratio of malicious to honest
nodes decreases. To summarize, we can say that despite the
negative result in Theorem 4.3, the solution quality of the
greedy heuristic is good for lower values of n and that the so-
lution quality is never better than the sub-optimal solution.
Figure 7(c) shows the execution time of the greedy heuristic
for each value of n as the number of malicious nodes in-
creases. From the plot, we can see that there is not much
variation in the execution time as the number of malicious
nodes increases. But, the execution time increases sharply
as the size n of the complete time difference graph increases.

Next, we attempt to simulate the LP-based heuristic un-
der similar simulation parameters. Unfortunately, we are
unable to get similar extensive results for the LP-based heuris-
tic because of the inability to simulate the current imple-
mentation of the heuristic for very large values of n. From
Section 4.3.2, we can see that the total number of constraints
g . This makes the
LP solver very very slow even for reasonably large values of
n. For lower values of n(n < 50), the trends for the solution
quality of the LP-based heuristic is similar to the greedy
heuristic, i.e., it decreases with increase in the number of
malicious nodes, and the average solution quality is always
above 0.95. It would be interesting to study the efficiency
of the LP-based heuristic for very large complete time dif-
ference graphs using a better implementation. We plan to
undertake this exercise as a part of future work.

in the IP formulation is around 2 -

6. CONCLUSION

In this paper, we have provided a formal treatment for
the problem of eliminating cheating behavior in time syn-
chronization protocols for highly distributed systems like
wireless sensor networks. We have modeled the time syn-
chronization problem as a constraint satisfaction problem
using a graph-based representation of the network, called the
time difference graph. The problem of eliminating cheating
(or inconsistent) behavior was then formulated as an opti-
mization problem, called MCTD, in such graphs. We have
proved that MCTD for the general case is a combinatorially
hard problem. We have also showed that a restricted case of
MCTD, namely for complete time difference graphs, is also
hard (N P-complete) and that there is no algorithm that can
approximate it within a factor n%*, unless P = NP. We
have also outlined two simple heuristics for this case and
presented some analysis based on initial empirical results.

These hardness results for securing time synchronization
may assume less significance in small sensor networks con-
taining only a few nodes, as even exhaustive approaches
are feasible in such networks. But, most practical sensor
network applications usually consist of thousands of sensor
nodes spread over a vast area. In such large networks, the
significance of these results can no longer be ignored, as se-
curing network-wide time synchronization using exhaustive
techniques can quickly become infeasible.

7. REFERENCES

[1] K. Arvind. Probabilistic Clock Synchronization in
Distributed Systems. IEEE Transactions on Parallel
and Distributed Systems, 5(5):474-487, 1994.

[2] V. Bafna, P. Berman, and T. Fujito. A
2-Approximation Algorithm for the Undirected
Feedback Vertex Set Problem. STAM Journal on
Discrete Mathematics, 12(3):289-297, 1999.

[3] R. Boppana and M. Halldérsson. Approximating
Maximum Independent Sets by Excluding Subgraphs.
BIT, 32:180-196, 1992.

[4] F. Cristian. Probabilistic Clock Synchronization.
Distributed Computing, 3:146-158, 1989.

[5] J. Elson, L. Girod, and D. Estrin. Fine-grained
Network Time Synchronization using Reference
Broadcasts. ACM SIGOPS Operating Systems Review,
36:147-163, 2002.

[6] G. Even, J. Naor, B. Schieber, and M. Sudan.
Approximating Minimum Feedback Sets and

[7]

(12]

(13]

[14

[15

Multicuts in Directed Graphs. Algorithmica,
20(2):151-174, 1998.

F. V. Fomin, S. Gaspers, and A. V. Pyatkin. Finding
a Minimum Feedback Vertex Set in Time o(1.7548™).
In IWPEC 2006: Proceedings of the 2™ International
Workshop on Parameterized and Exact Computation,
pages 184-191, 2006.

T. Gallai. Maximum-minimum satze éiber graphen.
Acta Mathematicae, Academiae Scientiarum
Hungaricae, 9:395-434, 1958.

S. Ganeriwal, S. Capkun, C.-C. Han, and M. B.
Srivastava. Secure Time Synchronization Service for
Sensor Networks. In WiSe ’05: Proceedings of the 4t
ACM Workshop on Wireless Security, pages 97106,
2005.

S. Ganeriwal, R. Kumar, and M. B. Srivastava.
Timing-sync Protocol for Sensor Networks. In SenSys
’08: Proceedings of the 1° International Conference
on Embedded Networked Sensor Systems, pages
138-149, 2003.

S. Ganeriwal, C. Popper, S. Capkun, and M. B.
Srivastava. Secure Time Synchronization in Sensor
Networks. ACM Transactions on Information and
System Security (TISSEC), 11(4):1-35, 2008.

M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

O. Goldreich. Computational Complexity: A
Conceptual Perspective. Cambridge, 2008.

J. Hastad. Clique is Hard to Approximate within
n'~¢. Acta Mathematics, 182:105-142, 2002.

M. Jadliwala, Q. Duan, J. Xu, and S. Upadhyaya. On
Extracting Consistent Graphs in Wireless Sensor
Networks. International Journal of Sensor Networks
(IJSNet), 2(3/4):149-162, 2007.

R. Karp. Complexity of Computer Computations,
chapter Reducibility Among Combinatorial Problems,
pages 85—104. Plenum Press, 1972.

L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, and
V. Gurvich. Generating all Vertices of a Polyhedron is
Hard. In SODA ’06: Proceedings of the 17" Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
758-765, 2006.

M. D. Lemmon, J. Ganguly, and L. Xia. Model-based
Clock Synchronization in Networks with Drifting
Clocks. In PRDC ’00: Proceedings of the 2000 Pacific
Rim International Symposium on Dependable
Computing, pages 177-184, 2000.

H. Li, Y. Zheng, M. Wen, and K. Chen. A Secure
Time Synchronization Protocol for Sensor Network,
chapter Emerging Technologies in Knowledge
Discovery and Data Mining, pages 515-526. Springer
Berlin / Heidelberg, 2007.

Q. Li and D. Rus. Global Clock Synchronization in
Sensor Networks. IEEE Transactions on Computers,
55(2):214-226, 2006.

M. Maréti, B. Kusy, G. Simon, and Akos Ldeczi. The
Flooding Time Synchronization Protocol. In SenSys
’04: Proceedings of the 2" International Conference
on Embedded Networked Sensor Systems, pages 39—49,
2004.

(22]

(23]

(24]

D. Mills. Internet time synchronization: The network
time protocol. In Global States and Time in
Distributed Systems, IEEE Computer Society Press.
1994.

S. B. Moon, P. Skelly, and D. Towsley. Estimation and
Removal of Clock Skew from Network Delay
Measurements. Technical Report UM-CS-1998-043,
1998.

P. P. Papadimitratos, M. Poturalski, P. Schaller,

P. Lafourcade, D. Basin, S. Capkun, and J.-P.
Hubaux. Secure Neighborhood Discovery: A
Fundamental Element for Mobile Ad Hoc Networking.
IEEE Communications Magazine, 46(2), 2008.

S. Ping. Delay Measurement Time Synchronization for
Wireless Sensor Networks. Intel Research,
IRB-TR-03-013, June 2003.

I. Razgon. Exact Computation of Maximum Induced
Forest. In SWAT ’06: Proceedings of the 10t"
Scandinavian Workshop on Algorithm Theory, pages
160-171, 2006.

R. Read and R. Tarjan. Bounds on Backtrack
Algorithms for Listing Cycles, Paths, and Spanning
Trees. Networks, 5:237-252, 1975.

S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach, chapter Constraint Satisfaction
Problems, pages 137-160. 2 edition, 2002.

M. Sichitiu and C. Veerarittiphan. Simple, Accurate
Time Synchronization for Wireless Sensor Networks.
In WCNC 2003: Proceedings of the IEEE Wireless
Communications and Networking Conference, pages
1266-1273, 2003.

H. Song, S. Zhu, and G. Cao. Attack-Resilient Time
Synchronization for Wireless Sensor Networks. In
MASS 2005: Proceedings of the 2™¢ IEEE
International Conference on Mobile Ad Hoc and
Sensor Systems, pages 765—772, 2005.

K. Sun, P. Ning, and C. Wang. TinySeRSync: Secure
and Resilient Time Synchronization in Wireless Sensor
Networks. In CCS ’06: Proceedings of the 13" ACM
Conference on Computer and Communications
Security, pages 264277, 2006.

B. Sundararaman, U. Buy, and A. D. Kshemkalyani.
Clock Synchronization in Wireless Sensor Networks: A
Survey. Ad-Hoc Networks, 3(3):281-323, 2005.

J. van Greunen and J. Rabaey. Lightweight Time
Synchronization for Sensor Networks. In WSNA ’03:
Proceedings of the 2" ACM International Conference
on Wireless Sensor Networks and Applications, pages
11-19, 2003.

Y. Xianglan, Q. Wangdong, and F. Fei. ASTS: An
Agile Secure Time Synchronization Protocol for
Wireless Sensor Networks. In WiCom ’07: Proceedings
of the 3"¢ International Conference on Wireless
Communications, Networking and Mobile Computing,
pages 2808-2811, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

