
Querying Data Sources That Export Infinite Sets of Views

Bogdan Cautis
Telecom ParisTech

cautis@telecom-paristech.fr

Alin Deutsch∗
UC San Diego
deutsch@cs.ucsd.edu

Nicola Onose∗
UC San Diego
nicola@cs.ucsd.edu

ABSTRACT
We study the problem of querying data sources that accept
only a limited set of queries, such as sources accessible by
Web services which can implement very large (potentially
infinite) families of queries. We revisit a classical setting
in which the application queries are conjunctive queries and
the source accepts families of conjunctive queries specified as
the expansions of a (potentially recursive) Datalog program.

We say that query Q is expressible by the program P if it
is equivalent to some expansion of P. Q is supported by P
if it has an equivalent rewriting using some finite set of P’s
expansions. We present the first study of expressibility and
support for sources that satisfy integrity constraints, which
is generally the case in practice.

1. INTRODUCTION
The recent proliferation of data sources accessible via Web

services has renewed interest in the problem of querying
sources with restricted querying capabilities [20, 15, 22, 23].
One reason is that, due to commercial, load-control or pri-
vacy considerations, Web sources do not typically accept
arbitrary application queries against their schema. Instead,
they allow only a (potentially infinite) family of parameter-
ized queries implemented by the Web services. For instance,
Amazon provides a service that takes an author name as pa-
rameter and returns the corresponding books, but will not
allow queries that list all the available books. We refer to
the queries accepted by a source as views.

In this setting, an application query issued against the
source schema can experience two levels of service. It can be
fully answerable at the source when the query is equivalent
to some view exported by the source (provided the right
view can be identified). In many cases, the set of answerable
queries is extended by a source wrapper [20], which intercepts
client queries and answers them by automatically identifying

∗Partially funded by an Alfred P. Sloan fellowship and NSF
grants IIS-0705589, IIS-0415257 and IIS-0347968.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
ICDT 2009, March 23–25, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-423-2/09/0003 ...$5.00

a series of relevant views, issuing the corresponding Web
service calls and post-processing their results locally.

In this paper, we revisit the setting of [15, 23], in which the
application queries are conjunctive queries and the source
accepts families of possibly parameterized conjunctive queries
specified as the expansions of a (potentially recursive) Dat-
alog program. The program is said to generate these views.
As argued in [15, 23] and illustrated below, the choice of Dat-
alog as the view specification formalism enables concise yet
expressive descriptions of large (even infinite) sets of views
over a given schema.

We say that query Q is expressible by the program P if
it is equivalent to some view generated by P. Expressible
queries can therefore be evaluated at the source, requiring
no post-processing at the wrapper. Q is supported by P
if it has an equivalent rewriting R using some finite set V
of views generated by P. Note that finding such R and V
witnessing support enables the following execution plan at
the wrapper: call the Web services implementing the queries
in V, materialize their results locally and run query R over
the materialized database.

The problem of deciding support is also of interest for im-
plementing security policies. For security reasons, a source
would only allow data access via a set of authorized views,
which are meant to enforce security policies and check user
credentials [18, 21]. This type of access control is provided
in particular by the so-called “non-Truman” access control
model [21], in which the only allowed queries are those that
are equivalent to authorized views or a combination thereof.
The difference with respect to the previous scenario is that
the system does not actually need to build a rewriting, as it
will run the original query, provided that support holds.

The challenge in deciding expressibility and support lies
in the fact that the family of views to pick from can be very
large or even infinite. This renders infeasible any systematic
enumeration of views. Remarkably, the two problems were
previously shown to be decidable [15], however only when
ignoring any knowledge of constraints satisfied by the source.
In this work, we investigate the effect of source constraints.

The following example shows that source constraints gen-
erate new opportunities for detecting support, calling for
algorithms which exploit them. (Example 1.1 illustrates a
limited-query-capability setting and will be our running ex-
ample in this paper.)

Example 1.1. Consider a travel information source con-
forming to the following schema:

flight(origin, destination) shuttle(origin, destination)
train(origin, destination) bus(origin, destination).

84

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1514894.1514905&domain=pdf&date_stamp=2009-03-23

The source admits only views concerning arbitrary-length
itineraries by plane, such that Paris is reachable by train
or bus from the destination airport. This family of views
is described as the set of all expansions of the distinguished
IDB predicate ans in program P below:

ans(A, B) :− f(A, C), ind(C, B)

ind(C, B) :− f(C, B), b(B, “Paris”)

ind(C, B) :− f(C, C′), ind(C′, B)

ind(C, B) :− f(C, B), t(B, “Paris”)

Consider a query that asks for 2-leg itineraries ending in
an airport from which Paris is reachable by train, bus and
shuttle.

Q : q(A,B) :− f(A,C), f(C,B), t(B, “Paris”),

b(B, “Paris”), s(B, “Paris”)

Clearly, Q is neither expressible nor supported by P be-
cause the views generated by P do not even mention shut-
tle information. However, suppose we knew the following
constraint to hold on the source (stating that any city pair
connected by train and bus is also connected by shuttle):

∀A, S t(A, S) ∧ b(A, S) −→ s(A, S). (1)

Then we would like the wrapper to find the rewriting

(R) r(A, B) :− V b
1 (A, B), V t

1 (A, B)

where {V b
i }i≥1 (resp. {V t

i }i≥1) are families of views gener-
ated by P, returning endpoints of itineraries of i flight legs
where the destination has a bus link (resp. a train link) to
Paris. Indeed, it can be checked that R is equivalent to Q on
all databases satisfying (1). Therefore Q is supported by P
when (1) holds.

Contributions. In this paper, we carry out the (to the
best of our knowledge) first study of the problems of express-
ibility and support under source constraints. In particular,
our contributions include:

Most permissive restrictions for decidability. We identify
practically relevant restrictions on the program which ensure
decidability under a mix of key and weakly acyclic foreign
key constraints and beyond. The restrictions are partic-
ularly useful as they enable decidability via a reduction to
the constraint-free case, which allows one to modularly“plug
in” any existing algorithm to this end (such as those in [15,
22, 23] or the one we propose here for an improved upper
bound). We show that these restrictions are as permissive
as possible, since their slightest relaxation leads to undecid-
ability in the presence of even a single key constraint. This
result is counter-intuitive, since the existence of a rewriting
of a conjunctive query using a finite set of non-parameterized
conjunctive query views under key constraints (and beyond)
is known to be decidable in NP.

A widely-applicable sound test. It is unsatisfactory in
practice to refuse to test support and expressibility when

the decidability restrictions are violated. A more useful ap-
proach consists in devising an algorithm which functions as
a decision procedure under these restrictions, yielding only a
best-effort “approximation” otherwise. One pragmatic artic-
ulation of what “approximation” could mean in this context
is the following: the algorithm should be sound (i.e. no false
positives) yet it may return false negatives (i.e. is not com-
plete) for inputs that do not obey the decidability restric-
tions. We present such an algorithm for both expressibility
and support, applicable to arbitrary programs under weakly
acyclic sets of embedded dependencies [1], which are suffi-
ciently expressive to capture key and foreign key constraints
and beyond. The algorithm runs in deterministic exponen-
tial time in the size of the query, the size of the program
and the maximum size of a constraint, which is as good as
the best algorithm for rewriting queries using a finite list of
views.

As a side-effect of our investigation, we settle two open
problems left from prior work in the constraint-free setting.

Improved, practically tight upper bounds. We improve
the previously best known upper bounds for deciding sup-
port in the constraint-free case: from non-deterministic ex-
ponential time in [23] and doubly-exponential time in [15],
to deterministic exponential time in combined query and
program size. Notice that in a practical implementation,
the non-deterministic exponential time upper bound of [23]
would still result in a doubly-exponential algorithm. The
improvement is achieved using the sound algorithm men-
tioned above, which provably acts as an exponential-time
decision procedure in the absence of constraints. We show
our algorithm to be optimal in the program size (we give a
deterministic EXPTIME lower bound for fixed query) and
optimal for practical purposes in the query size (we give
an NP lower bound for fixed program). The question of the
tightness of this NP lower bound remains open. An interest-
ing consequence of our new upper bound is that, in practical
implementations, rewriting using an infinite set of views is
no more expensive than using finitely many views listed in-
dividually (still deterministic exponential time).

The relationship between expressibility and support. We
establish that expressibility and support are inter-reducible
in PTIME in both the absence and the presence of con-
straints. This enables us to characterize the complexity of
expressibility as well, and to employ the same algorithm
for solving both problems. The result comes as a pleasant
surprise, since prior work reports distinct upper bounds for
these problems, suggesting (in line with intuition) that find-
ing a rewriting of the query using program expansions is
harder than finding a single equivalent expansion.

A one-size-fits-all solution. It is remarkable (and practi-
cally appealing) that all our upper bound results are based
on the same algorithm for support, which serves simulta-
neously as (i) an essentially optimal decision procedure in
the constraint-free case, improving prior upper bounds, (ii)
a decision procedure under constraints in all known decid-
able cases, (iii) a sound procedure in general, and (iv) all
of the above for the problem of expressibility, due to our
inter-reducibility result.

85

Parameters. For presentation simplicity, in this paper we
ignore the presence of parameters in the views generated
by the program, handling parameters in the extended ver-
sion [4].

Paper outline. After introducing preliminary concepts,
results and notation in Section 2, in Section 3 we establish
the PTIME inter-reducibility of expressibility and support.
Section 4 presents decidable restrictions and Section 5 con-
tains a sound algorithm in the case of general constraints.
We also show there the improved upper bounds for the
constraint-free setting (Section 5.1). We map the bound-
aries of decidability in Section 6. We discuss related work
in Section 7 and conclude in Section 8. The extended ver-
sion [4] contains the proofs.

2. PRELIMINARIES
We denote with CQ the language of conjunctive queries.
Constraints. We consider constraints ξ of the form

∀ū∀w̄ φ(ū, w̄) −→ ∃v̄ ψ(ū, v̄)

where φ (the premise) and ψ (the conclusion) are conjunc-
tions of relational or equality atoms. Such constraints are
known as embedded dependencies and are sufficiently ex-
pressive to specify all usual integrity constraints, such as
keys, foreign keys, inclusion, join, multivalued dependen-
cies, EGDs, TGDs etc. [1]. We call φ the premise and
ψ the conclusion. If v̄ is empty, then ξ is a full depen-
dency. If ψ consists only of equality atoms, then ξ is an
equality-generating dependency (EGD). If ψ consists only of
relational atoms, then ξ is a tuple-generating dependency
(TGD). If the premise and conclusion of a TGD contain one
atom each, we call it an inclusion dependency (IND). An
IND in which the variables ū appear precisely in the key
attributes of the relation mentioned in the conclusion is a
foreign key constraint. A key constraint on relation R can
be expressed by the EGD ∀ū, v̄1, v̄2 R(ū, v̄1) ∧ R(ū, v̄2) −→
v̄1 = v̄2. We write A |= C if the instance A satisfies all the
constraints in C.

Containment and Equivalence. Query Q1 is con-
tained in query Q2 under the set C of constraints (denoted
Q1 vC Q2) iff Q1(D) ⊆ Q2(D) for every database D |= C,
where Q(D) denotes the result of Q on D. Q1 is equiva-
lent to Q2 under C (denoted Q1 ≡C Q2) iff Q1 vC Q2 and
Q2 vC Q1.

Mappings. A partial mapping from CQ query Q1 to CQ
query Q2 is a function h from the variables and constants
of Q1 to the variables and constants of Q2 such that (i) h
is the identity mapping on all constants, and (ii) for every
relational atom (also called subgoal) R(X̄) of Q1, if h is
defined for all variables in (X̄), then R(h(X̄)) is a subgoal
of Q2. A homomorphism from a set of subgoals C1 to a set of
subgoals C2 is a partial mapping from the query Q1() :− C1

to the query Q2() : − C2 which is defined on all variables
of Q1. A containment mapping from CQ query Q1 with
tuple of head variables X̄1 to CQ query Q2 with tuple of
head variables X̄2 is a homomorphism h from Q1 to Q2 such
that h(X̄1) = X̄2. We represent mappings as sets of pairs
associating variables with either variables or constants, and
use the notation X : Y for the pair (X,Y). The union of
two mappings is simply the union of their sets of pairs. A
mapping is consistent if it does not map the same variable
to two distinct values. A set of mappings is compatible if

their union is consistent. Composition of mappings is the
standard function composition, denoted by the operator ◦.

Expansion using views. Given a CQ query R formu-
lated in terms of a set of view names V(where the views are
also CQs), the expansion of query R w.r.t. the views in V
(denoted expandV(R)) is the query E obtained as follows:
every subgoal V (X̄) in R is replaced by a copy of the body
of V , in which the head variables of V are renamed to X̄
and all other variables are replaced by variables occurring in
no other view bodies introduced during the expansion. It is
easy to see that this variable renaming defines a homomor-
phism h from V into the expansion E, which we refer to as
the expansion homomorphism.

Rewriting using views. We say that a conjunctive
query R formulated in terms of view names V is a rewrit-
ing of a query Q using V under a set C of dependencies iff
Q ≡C expandV(R).

Equivalence under views and constraints. Given
queries R1, R2 formulated in terms of the view names in V
and a set of dependencies C, we say that R1 is equivalent to
R2 under V and C, denoted R1 ≡VC R2, iff
expandV(R1) ≡C expandV(R2).

The chase. We will use the classical chase procedure
for rewriting conjunctive queries using a set of embedded
dependencies [1]. For arbitrary sets C of dependencies, the
chase is not guaranteed to terminate. The least restrictive
condition on C known to date which is sufficient to ensure
termination of the chase with C regardless of the query Q
is called weak acyclicity [10] (see also [9]). Weak acyclic-
ity of C implies termination of the chase of Q with C in
time polynomial in the size of Q and exponential in the size
of C. Assuming termination of the chase, we denote with
chaseC(Q) the query obtained by chasing conjunctive query
Q with C to termination (this query is unique up to equiva-
lence). Besides introducing new variables (for instance due
to chasing with TGDs), the chase may equate the original
variables of Q to constants or to each other (for instance due
to chasing with key constraints) [1]. Denoting this variable
renaming with r, it is a well-known fact that r is a homomor-
phic mapping from Q into chaseC(Q), also called the chase
homomorphism [1].

Datalog expansions. A finite expansion (in short “ex-
pansion”) of an IDB predicate p of a Datalog program P is
a CQ query with head p(X̄) and body obtained as follows:
initialize the body to body := p(X̄), then apply the following
expansion step a finite number of times until no more IDBs
are left in the body: for every IDB goal gi in the body, pick
a rule ri in P defining gi and collect all picked rules in a list
V. Treating V as views, replace body with expandV(body),
where each gi is expanded using ri. The set of expansions
of P is infinite if P is recursive.

Convention. In the remainder of this paper, unless ex-
plicitly stated otherwise, all queries and views are conjunc-
tive queries, all programs are Datalog programs, and all de-
pendencies are embedded dependencies.

3. EXPRESSIBILITY VERSUS SUPPORT
We say that a view V is generated by program P if V is a

CQ expansion of P.

Definition 3.1. Given a Datalog program P, a conjunc-
tive query Q and a set of embedded dependencies C, we say
that

86

1. Q is supported by P under C (denoted SuppCP(Q)), iff
there is a finite set of views V generated by P and a
conjunctive query rewriting of Q using V under C.

2. Q is expressible by P under C (denoted ExprCP(Q)),
iff Q is equivalent under C to some view V generated
by P.

In previous work, the problems of support and express-
ibility were introduced separately (in [15], respectively [23]).
They were shown to be decidable, yet their reported com-
plexity upper bounds were different even in the absence of
constraints: doubly-exponential deterministic time for sup-
port [15], and EXPTIME for expressibility [23]. These re-
sults seemed to follow the intuition that finding a rewriting
of the query using some expansions of the program is harder
than finding a single equivalent expansion.

We establish a counter-intuitive relationship between the
two problems, showing them to be inter-reducible in poly-
nomial time even in the presence of dependencies.

Theorem 3.1. Let C be a weakly acyclic set of embedded
dependencies. Then there is a reduction from the problem of
support of a query Q by a program P under C to an instance
of the expressibility problem, which is in PTIME in the size
of Q and P and in EXPTIME in the size of C.

Corollary 3.1. If the size of the schema (with depen-
dencies) is bounded by a constant, then there is a PTIME
reduction from support to expressibility provided the set of
embedded dependencies is weakly acyclic.

Corollary 3.2. In the absence of dependencies, there is
a PTIME reduction from support to expressibility.

The next result shows the existence of a polynomial-time
reduction in the other direction, requiring no restrictions on
the embedded dependencies.

Theorem 3.2. Expressibility reduces in PTIME to sup-
port.

In particular, since dependency-free support is known to
be decidable [15], Theorem 3.2 implies decidability of dep-
endency-free expressibility, with the same complexity.

4. DECIDABLE CASES
In this section, we give restrictions under which the prob-

lems of expressibility and support are decidable under con-
straints. As will be seen in Section 6, the restrictions are
needed because the two problems are in general undecid-
able, and they are fairly tight, in the sense that even slight
relaxations thereof lead to undecidability.

Because it is interesting in its own right, we show a partic-
ular route to decidability based on reducing to the depend-
ency-free setting, which is known to be decidable [15]. How-
ever, this does not yet provide the improved upper bound,
which requires improving prior results for the dependency-
free case. We shall do so in Section 5, obtaining a more
general result: a novel algorithm that does not rely on re-
duction to the dependency-free case, but serves as an op-
timal decision procedure when dependencies are absent or
when they satisfy the restrictions presented in this section,
and gracefully degenerates to a sound procedure otherwise.

We introduce properties of the program and of the views
it generates that suffice for our reduction to the dependency-
free case. The idea is to pre-process the program to explicitly
incorporate into it the knowledge about the dependencies, so
that these can then be ignored, thus reducing the problem
to dependency-free expressibility and support for the new
program. The pre-processing technique relies on the chase
procedure. This was a natural choice, as the chase tool has
been traditionally employed successfully to reduce classical
decision problems (such as query equivalence or implication
of dependencies [1]) from the presence of dependencies to
their absence. We start with expressibility.

Given a Datalog program P, we denote with chaseC(P)
the program obtained by chasing each rule of P with C.

Definition 4.1 (C-Local Program). Let C be a weak-
ly acyclic set of dependencies. We say that a program P is
C-local iff for every view V generated by P there is a view
W generated by chaseC(P), and for every view W gener-
ated by chaseC(P) there is a view V generated by P, such
that chaseC(V) is equivalent to W even in the absence of
dependencies.

The intuition behind C-locality is as follows. Recall that
when checking expressibility under C, one needs to exhibit
some view V generated by P, such that Q ≡C V . By the
chase theorem [1, 17], if the chase terminates, the equiv-
alence under C reduces to the following equivalence in the
absence of dependencies (i.e. under the empty set of de-
pendencies): chaseC(Q) ≡∅ chaseC(V). C-locality ensures
that the chase of view V can be avoided by simply search-
ing among the views generated by chaseC(P). These must
include some W with W ≡∅ chaseC(V), so the existence of
V as above is equivalent to the existence of W generated by
chaseC(P), with chaseC(Q) ≡∅ W . This in turn is by defi-
nition dependency-free expressibility of query chaseC(Q) by
program chaseC(P). Indeed, we can show the following.

Theorem 4.1. Let Q be a conjunctive query, C a weakly
acyclic set of dependencies, and P a C-local program. Then
ExprCP(Q) holds iff Expr∅chaseC(P)(chaseC(Q)) holds.

The reduction of support to the dependency-free case re-
quires an additional restriction on the views generated by
the program. In this case, we need to exhibit a set V of
views generated by P and a rewriting R of Q in terms
of V. Again by the chase theorem [1, 17], this is equiv-
alent (provided the chase terminates) to exhibiting V and
R such that chaseC(Q) ≡∅ chaseC(expandV(R)). The idea
behind the reduction is to require the views to be such
that no matter how they are used in R, chasing R’s ex-
pansion gives the same result as first chasing each view in-
dividually and then expanding R with the chased views:
chaseC(expandV(R)) ≡∅ expand{chaseC(V1),...,chaseC(Vn)}(R).
Now if P is C-local, then the chased views are equivalent
to some views W = {W1, . . . ,Wn} generated by chaseC(P),
and we have chaseC(Q) ≡∅ chaseC(expandW(R)), which is
the definition of dependency-free support of chaseC(Q) by
chaseC(P). We formalize this intuition next.

Definition 4.2 (C-Independent View Set). Let C be
a weakly acyclic set of dependencies. We say that a set of
views V = {V1, . . . , Vn} is C-independent iff, for every query
R′ formulated in terms of V, there exists query R also for-
mulated in terms of V, such that

87

(i) R′ ≡VC R,

(ii) and such that

chaseC(expand{V1,...,Vn}(R))

is equivalent even in the absence of dependencies to

expand{chaseC(V1),...,chaseC(Vn)}(R).

Notice that we do not require property (ii) in Definition 4.2
to hold for all queries R′ over V, since there are potentially
many equivalent forms of R′. It sufficies if one of them
satisfies (ii). In that case, we can show the following.

Theorem 4.2. Let Q be a conjunctive query, C a weakly
acyclic set of dependencies, and P a C-local program. Then,
if the views generated by P are C-independent, then SuppCP(Q)

iff Supp∅chaseC(P)(chaseC(Q)).

We next provide various syntactic restrictions on the de-
pendencies in C and on P to guarantee C-independence and
C-locality.

Theorem 4.3. Let C be a weakly acyclic set of inclusion
dependencies. Then any Datalog program P is C-local and
every finite subset of its generated views is C-independent.

Theorems 4.1, 4.2 and 4.3 immediately imply that for
weakly acyclic sets of inclusion dependencies, expressibility
and support reduce to the dependency-free versions:

Corollary 4.1. If C is a weakly acyclic set of inclu-
sion dependencies, then for any program P and query Q,
ExprCP(Q) iff Expr∅chaseC(P)(chaseC(Q)) and

SuppCP(Q) iff Supp∅chaseC(P)(chaseC(Q)).

Example 4.1. Consider a source for travel data using the
following schema:

train(origin, destination, operator)
bus(origin, destination,operator)

where each origin-destination pair is connected by a non-stop
leg. It accepts queries for train itineraries with arbitrary
many legs in which the same operator is used. It returns
the origin, the destination, one intermediary stop and the
operator. This family of queries is described by program P:

(P) ans(A, B, C, O) :− ind(A, B, O), ind(B, C, O)

ind(B, C, O) :− t(B, B′, O), ind(B′, C, O)

ind(B, C, O) :− t(B, C, O)

Let Q be an application query searching for a one-way trip
with connection in Paris, such that starting from Paris one
can either continue the trip by bus, and stay with the first
operator, or take another train with any available operator.

(Q) q(A, B) :− t(A, C, O1), b(C, B, O1), t(C, B, O2), C = “Paris”

Notice that Q is not supported by P in the absence of
constraints (the source does not even allow views mentioning

the bus predicate): Supp∅P(Q) does not hold.
Assume that the source satisfies C which contains the in-

clusion dependency (2) below, stating that an operator will

also cover by bus any leg important enough to be covered by
train.

∀X, Y, O t(X, Y, O) −→ b(X, Y, O) (2)

Since C is (trivially) a weakly acyclic set of INDs, by
Corollary 4.1 SuppCP(Q) holds if and only if so does

Supp∅chaseC(P)(chaseC(Q)).
Chase steps apply on the extensional parts of the second

and third rules of P, yielding the new rules (we underline
the newly added tuples):

ind(B, C, O) :− t(B, B′, O), b(B, B′, O), ind(B′, C, O)

ind(B, C, O) :− t(B, C, O), b(B, C, O)

The new program chaseC(P) generates the views Vij de-
noting the expansion with i legs from the origin to the in-
termediary point and j legs from the intermediary point to
the destination. This includes the view V11, which gives the
shortest itineraries:

(V11) v(A, B, C, O) :− t(A, B, O), b(A, B, O), t(B, C, O), b(B, C, O)

By chasing also the query, we obtain Q′ = chaseC(Q):

(Q′) q(A, B) :− t(A, C, O1), b(A, C, O1), b(C, B, O1),

t(C, B, O2), b(C, B, O2), C = “Paris”

Observe that Supp∅chaseC(P)(chaseC(Q)) (and SuppCP(Q)) still
does not hold because all the views Vij require that only one
operator be used. To enforce this requirement on Q′, one
would need a constraint enforcing that the subgoals b(C,B,O1)
and b(C,B,O2) from Q′ refer to the same operator, making
the equality O1 = O2 hold.

Key safety. We next introduce the notion of a pro-
gram being “key-safe”, which guarantees C-locality and C-
independence in the presence of key constraints.

Let R be a relation with an n-attribute composite key
and let P̄ = (p1, . . . , pk) be an ordered sequence of k distinct
values in the range 1 to n. We say that a rule of P outputs the
key of R, by positions P̄ , into the sequence of head variables
X̄ = (Xi1 , . . . , Xik) if X̄ appears in the rule body either

• in the positions p1, . . . , pk of the key attribute sequence
of some R-subgoal, with the remaining n− k positions
(if any) of the key being bound to constant values, or
• in the positions j1, . . . , jk of some p-subgoal, where
p is an IDB predicate with at least one rule that in
turn outputs the key of R by key positions P̄ into the
sequence of head variables with indices j1, . . . , jk.

We say that a subgoal g outputs the key of R, by posi-
tions P̄ = (p1, . . . , pk), into the sequence of variables X̄ =
(Xi1 , . . . , Xik) if

• g uses EDB predicate R and X̄ appears in positions
p1, . . . , pk in the key attributes of g, with the remaining
n − k positions (if any) of the key being bound to
constant values, or

88

• g uses IDB predicate p and there exists some rule defin-
ing p which outputs the key of R, by the key positions
P̄ , into variables X̄.

We say that a rule is safe for the key constraint on R
if whenever one of its IDB subgoals outputs the key of R
by some sequence of k key positions P̄ into k variables X̄ =
(Xi1 , . . . , Xik), no other subgoal does the same (for the same
key positions P̄). Notice that several EDB subgoals may
output the key of the same R by the same key positions and
into the same sequence of variables X̄, as long as no IDB
goal does.

Example 4.2. Suppose that, in Example 4.1, C contains
also a key constraint on the b table, stating that bus operators
cover disjoint legs:

∀X, Y, O b(X, Y, O), b(X, Y, O′) −→ O = O′ (3)

Notice that chaseC(P) is the same as in Example 4.1 because
no chase step applies with the key constraint.

The rules in chaseC(P) are safe. Indeed, in the second
rule, b outputs the key into the sequence B,B′, while ind
outputs it into B′, C. The two subgoals in the first rule also
output the key, but into different sequences: A,B and B,C
respectively.

Intuitively, safety of the rules in a program P is designed
to guarantee C-locality. It disallows two IDB goals in a rule
from outputting the key of some EDB R into the same vari-
ables because this could lead, in the expansion of the rule, to
two R goals agreeing on the key attributes and thus trigger-
ing a chase step with the key constraint. Since the R goals
would come from the expansion of distinct IDB goals in the
rule, the effect of this chase would not be reproducible by
chasing the program rules in isolation (as in the definition
of chaseC(P)).

We now give a condition ensuring that every set of views
generated by P is C-independent. This requires additional
restrictions on the rules of the distinguished predicates.

Definition 4.3. A program P is key-safe for a set of key
constraints K if

1. each rule is safe for all key constraints in K, and
2. for all distinguished predicates ans of P, all defining

rules r of ans, and all relational symbols R in the
schema, if r outputs the key attributes Ā (as defined
above) of some goal R(Ā, B̄), it also outputs all non-
key attributes B̄ (by the same definition that applied to
the key attributes).

If I is a set of weakly acyclic INDs, we say that P is
key-safe for C = K ∪ I if chaseI(P) is key-safe for K.

Note that key-safety can be checked in PTIME in the size
of P and K.

Example 4.3. Continuing Example 4.2, we observe that
distinguished predicate ans outputs the pairs of key attributes
A,B and B,C, but it also outputs O, the only non-key at-
tribute. Therefore, P is key-safe.

Intuitively, the key safety condition on the distinguished
predicates ensures that, given query R′ in terms of some
views V generated by P, there is query R ≡VC R′ such that no

chase step with a key constraint will apply to expandV(R).
This is because, if two view atoms in R′ happen to output
the key of some EDB goal G into the same variables Ā,
then by key-safety they each must also output all non-key
attributes of G, say in variables B̄1, respectively B̄2. But
then there is a query R, equivalent to R′, obtained by adding
to R′ the equalities B̄1 = B̄2. This equality is preserved in
expandV(R), so the chase step with the key constraint does
not apply on expandV(R). More formally, we can show the
following.

Theorem 4.4. Let C consist of key constraints and an
acyclic set of inclusion dependencies. Any Datalog program
P that is key-safe for C is also C-local and all views generated
by it are C-independent.

Corollary 4.2. If C consists of key constraints and an
acyclic set of INDs and P is key-safe for C, then for any
query Q, ExprCP(Q) iff Expr∅chaseC(P)(chaseC(Q)) and

SuppCP(Q) iff Supp∅chaseC(P)(chaseC(Q)).

Example 4.4. Continuing Example 4.3, a chase step with
(3) applies on Q′, introducing the equality atom O1 = O2.

With this, Supp∅chaseC(P)(chaseC(Q)) holds, as witnessed by
the rewriting

q(A,B) :− V11(A, “Paris”, B,O).

Remarks. The definition of key-safety described above is
over-conservative: it considers all constants as being equat-
able in a chase step. This is because it only keeps track of
the positions bound to constants, ignoring the actual con-
stant values. We describe in Appendix B a refined version
of key-safety that takes into account these values. This re-
fined notion of key-safety is implied by the one presented
here and detects strictly more decidable cases, but, for ease
of presentation, it is omitted from the main text.

According to the results presented so far in this section,
and in Section 3, under the decidability restrictions (C-indep-
endence and C-locality), we can solve expressibility under C
even by using our favorite solver for dependency-free support
(first reduce to dependency-free expressibility, then reduce
to dependency-free support). Symmetrically, we can solve
support under C using any solver for dependency-free ex-
pressibility. It turns out that the same cross-use of solvers
can be achieved by first reducing from expressibility under
C to support under C (using Theorem 3.2), and then to
dependency-free support (using Theorem 4.1) (and symmet-
rically for support), as the reductions preserve restrictions
for decidability. The formal results are presented in [4].

5. A WIDELY APPLICABLE SOUND TEST
We next present a sound algorithm for testing support, ap-

plicable to any program and set of weakly acyclic dependen-
cies. It is a decision procedure (no false negatives) under the
decidability restrictions of Section 4, and in the dependency-
free case (where it provides an exponentially better upper
bound than previous work).

Our solution is based on the following overall strategy.
Since a systematic enumeration of all (potentially infinitely
many) views generated by a program P is infeasible, we in-
stead “describe the behavior” (in a sense formalized shortly)
of any view generated by P w.r.t. a decision procedure (de-
scribed below) for the existence of a rewriting under C us-
ing finitely many views. This description will abstract away

89

from the view body, focusing on how the view behaves in
essential tests performed by this decision procedure. As it
will turn out, under our decidability restrictions, there are
only finitely many distinct behaviors, each exhibited by a
possibly infinite set of views. It suffices therefore to find one
representative view from each set, thus reducing the prob-
lem of checking support by P to checking the existence of
a rewriting using the finitely many representatives. This
problem is known to be decidable under weakly acyclic de-
pendencies (Lemma 5.1 below). We start by describing the
associated decision procedure.

Canonical Rewriting Candidate. Given a finite set
of views V, an acyclic set of constraints C, and a query Q,
call the canonical rewriting candidate of Q using V under C,
denoted CRC CV(Q), the query obtained as follows: (i) it has
the same head variables as Q, and (ii) its body is constructed
by evaluating each view V ∈ V over the body of chaseC(Q)
(viewed as a symbolic database, also known as the canonical
instance [1]) and adding the subgoal V (t) for every tuple t
in the result of the evaluation.

We show next that the canonical rewriting candidate yields
a decision procedure for the existence of a rewriting. This
result reformulates a theorem in [9] (see also [8])1:

Lemma 5.1 (Corollary of [9]). Q has a rewriting us-
ing V under C iff CRC CV(Q) is one. Moreover, this in turn
holds iff (a) CRC CV(Q) is safe (its head variables appear in
its body), and (b) there is a containment mapping from Q
into the result of chasing with C the expansion of CRC CV(Q):
chaseC(expandV(CRC CV(Q))) v Q.

Example 5.1. Revisiting Example 1.1, consider the fol-
lowing set of views V = {V1, V2}:

(V1) ans1(Z1, Z2) : − f(Z1, X), f(X, Z2), t(Z2, “Paris”)

(V2) ans2(Z1, Z2) : − f(Z1, Y), f(Y, Z2), b(Z2, “Paris”)

generated (among others) by P. We will follow, step by step,
the rewriting algorithm from [9]. The first step consists in
finding mappings from the view queries into the body of Q
and adding, to Q, atoms corresponding to the head of the
view query. V1 is mapped into Q by m1 = {Z1 : A;X :
C;Z2 : B}, which leads to adding ans1(A,B). Similarly, for
V2 we discover the mapping m2 = {Z1 : A;Y : C;Z2 : B}
and add ans2(A,B). We stop here, since no more mappings
can be inferred. The result is an expanded query

U : q(A,B) :− f(A,C), f(C,B), t(B, “Paris”),

b(B, “Paris”), s(B, “Paris”),

ans1(A,B), ans2(A,B)

in which the newly added atoms are underlined. U is called
the universal plan in [9], and it is guaranteed that any exact
rewriting of Q is a subquery of U .
R = CRC CV(Q) is then obtained from U by keeping only

the atoms from the view schema:

R(A,B) :− ans1(A,B), ans2(A,B).

1Lemma 5.1 is a corollary of [9], where it is also proven that
there are only finitely many rewritings of Q using V that
are minimal under C, and that all of them are subqueries of
CRC CV(Q).

R is equivalent to Q under dependency (1), as can be verified
by first constructing the expansion E = expandV(CRCCV(Q))
as:

E(A,B) :− f(A,X ′), f(X ′, B), t(B, “Paris”),

f(A, Y ′), f(Y ′, B), b(B, “Paris”)

which chases with (1) to query (cE):

cE(A,B) :− f(A,X ′), f(X ′, B), t(B, “Paris”),

f(A, Y ′), f(Y ′, B), b(B, “Paris”),

s(B, “Paris”)

into which there is a containment mapping from Q, cmq =
{A : A,B : B,C : X ′}. The reverse containment also holds,
as witnessed by the containment mapping from cE into Q,
cme = {A : A,B : B,X ′ : C, Y ′ : C}, hence R is indeed a
rewriting.

Note that both views contribute to the rewriting, since both
t and b atoms are needed as images of the t and b atoms from
Q. The contribution of V1 consists in mv1, a partial mapping
of Q into cE, obtained by restricting the domain of cmq to
the first three atoms of Q:

mv1 = {A : A,B : B,C : X ′}.

In this case, the image of mv1, E1, is the entire expansion
of ans1:

E1 = f(A,X ′), f(X ′, B), t(B, “Paris”).

The contribution of V2 is enabled by a partial mapping

mv2 = {B : B}

from (the b atom of) Q into the expansion of ans2, with the
image

E2 = b(B, “Paris”).

mv1 and mv2 agree on the common B variable, and, since
together they cover the whole of the body of Q, we obtain
by combining them the containment mapping cmq that maps
the entire Q into cE.

Redundant views Let us add now to program P a new rule,
corresponding to the definition of the view V3 given below:

(V3) ans3(Z1, Z3) :− f(Z1, T), f(T, Z2), b(Z3, “Paris”).

Running the same rewriting algorithm as above on the set

V ′ = {V1, V2, V3}, we discover that V3 maps into Q by m3 =
{Z1 : A, T : C,Z2 : B,Z3 : B}, which leads to a rewriting
candidate CRC CV′(Q) of the form

R′(A,B) :− ans1(A,B), ans2(A,B), ans3(A,B).

V3 does not modify the way in which the expansion query
(which already had t and b atoms) chases, hence the resulting
chased expansion of R′ is:

cE′(A,B) :− f(A,X ′), f(X ′, B), t(B, “Paris”),

f(A, Y ′), f(Y ′, B), b(B, “Paris”),

f(A, T ′), f(T ′, T ′′), b(B, “Paris”),

s(B, “Paris”)

We can argue here that V2 and V3 are mutually redundant
w.r.t. finding a rewriting of Q. The partial mapping mv3 =
{B : B} from Q into the expansion of ans3, with the im-
age b(B, “Paris”), is isomorphic to the partial mapping mv2

90

from Q into the expansion of ans2. To this, add the fact that
both mappings from the bodies of the two views into Q, v2

and v3, agree on the images of the distinguished variables,
mapping them into variables A and B of Q. Without going
into further details, this would be enough to allow us to dis-
card one of the two views and to obtain as a rewriting either
ans1(A,B), ans2(A,B) or ans1(A,B), ans3(A,B).

According to Lemma 5.1 and the observations above, in
order for a view to contribute to the rewritability of Q

(i) it must generate a subgoal g of the canonical rewriting
candidate
e.g. V1 generates ans1(A,B), introduced by the map-
ping m1 from V1 into Q;

(ii) g’s expansion may participate in the chase with C of
the expansion E of the canonical rewriting candidate
e.g. the expansion E1 of ans1(A,B) contains the atom
t(B, “Paris”), which, together with the expansion of
V2, E2 = b(B, “Paris”), allows a chase step with de-
pendency (1) to apply;

(iii) since Q maps into the chase of E, the expansion of g
must include (after the chase) the image of a partial
map from Q
e.g. E1 is the image of mv1.

We shall therefore describe a view V with respect to its
behavior for (i), (ii) and (iii), using the notion of descriptor.

Normalized program. For uniformity of treatment, we
will assume from now on w.l.o.g. that the program P is nor-
malized as follows. For every k-ary IDB predicate p, every
rule for p has the head variables Z̄ = Z1, . . . , Zk, in that
order. Furthermore, for every EDB predicate e, introduce a
new IDB e′, replace each occurrence of e in P with e′, and
add the rule e′(Z̄) :− e(Z̄). The normalized program has
only two kinds of rules: those whose bodies consist of a single
EDB subgoal (called EDB rules), or solely of IDB subgoals
(called IDB rules). For technical reasons, we additionally
compute (as in [15]), the closure of the program, which con-
sists in adding for every rule r in P all rules obtained from
r by systematically equating in all possible ways the head
variables of r with each other and with the constants in Q.

Definition 5.1 (Descriptors). For a query Q and a

program P, E(p(t),fr) is called a descriptor w.r.t Q and P iff
• p is an IDB predicate from P,
• E is a conjunctive query body over EDBs from P,
• P generates as expansion of p a query of head variables
Z̄, p(Z̄) :− body,
• there is a homomorphism to : body → chaseC(Q) s.t.

to(Z̄) = t,
• fr is a partial variable mapping from Q into chaseC(body)

such that the image of Q under fr is E.
We call E the expansion fragment described by the descrip-
tor, and (p(t), fr) the adornment of E. We call variables
{Z1, . . . , Zk} (where k is the arity of p) the distinguished
variables of the descriptor, while all other variables in the
range of fr are hidden.

In the following, when referring to a descriptor we will
omit the program P and the query Q if they are obvious
from the context.

Example 5.2. In the setting of Example 5.1, d1 =

E
(p1(t1),fr1)
1 and d2 = E

(p2(t2),fr2)
2 below are descriptors for

the views V1 and V2, respectively:

d1 : E1 = [f(Z1, X), f(X, Z2), t(Z2, “Paris”)],

p1(t1) = ans(A, B), fr1 = {A : Z1, C : X, B : Z2}
d2 : E2 = [b(Z2, “Paris”)],

p2(t2) = ans(A, B), fr2 = {B : Z2}

Note that, though the two views contribute the same
ans(A,B) goal to the canonical rewriting candidate, the two
descriptors distinguish among V1 and V2 by the images of Q
into the view bodies (E1 includes the image of Q’s t and two
f goals, E2 only the b goal).

Before explaining in detail how descriptors are found, we
show how they can be used to soundly infer support. Intu-
itively, a descriptor represents the fragment of a chased view
generated by P that serves as image of the partial mapping
from Q. Our goal is to put together such fragments in a
consistent way to create (if it exists) the image of Q under
a containment mapping.

Partial rewriting candidate. More formally, consider
a finite set of descriptors w.r.t. to query Q, program P and

dependencies C: D = {E(pi(ti),fri)
i }1≤i≤n, where all pi are

(not necessarily distinct) distinguished IDBs of P. Introduce
for each predicate pi a fresh predicate pi

i (using the rank i
of the predicate in an arbitrary ordering of the descriptor
set) such that pi

i 6= pj
j for all 1 ≤ i, j ≤ n, i 6= j. Assuming

w.l.o.g. that Q’s tuple of head variables is X̄, we call the
query

R(X̄) :− p1
1(t1), . . . , pn

n(tn)

the partial rewriting candidate described by D. The set
V := {VFi : pi

i(Z̄) :− Ei}1≤i≤n is called the view fragments
described by D. The view fragments VFi are not necessarily
safe queries, if not all the head variables serve as image of
the partial mapping fri.

Example 5.3. For the set of descriptors D = {d1, d2}
from Example 5.2, the fresh view goals are ans1, ans2 re-
spectively. The partial rewriting candidate described by D
is

R(A,B) :− ans1(A,B), ans2(A,B)

(it happens to coincide with the canonical rewriting candi-
date shown in Example 5.1). The view fragments are

(VF1) ans1(Z1, Z2) :− f(Z1, X), f(X, Z2), t(Z2, “Paris”)

(VF2) ans2(Z1, Z2) :− b(Z2, “Paris”).

Notice how VF1’s,VF2’s bodies are isomorphic to fragments
of the bodies of V1, respectively V2 from Example 5.1. Also,
VF2 is not safe as variable Z1 does not appear in the body.

The following result allows us to test support, as in Lemma 5.1,
but using descriptors instead of explicit views. The key idea
is to use the partial rewriting candidate instead of the canon-
ical rewriting candidate.

Corollary 5.1 (of Lemma 5.1). Let D be a finite set
of descriptors w.r.t. query Q, program P and dependencies

C: D = {E(pi(ti),fri)
i }1≤i≤n. Denote with

• R the partial rewriting candidate described by D,

91

• V the view fragments described by D,
• E the expansion expandV(R).

If (a) R is safe and (b) there exists a containment mapping
cfr from Q into chaseC(E), then Q is supported by P under
C.

We say that any set D as in Corollary 5.1 witnesses support.
Notice that conditions (a) and (b) in Corollary 5.1 reformu-
late the corresponding conditions from Lemma 5.1 in terms
of descriptors.

Example 5.4. The set of descriptors D in Example 5.3
witnesses support for the query, program and dependency
in our running Example 1.1. Indeed, if we apply the test
of Corollary 5.1 to the partial rewriting candidate R and
the view fragments VF1 and VF2 described by D(shown in
Example 5.3), we obtain

• the expansion

EF(A, B) :− f(A, X′), f(X′, B), t(B,“Paris”),

b(B,“Paris”)

• the result (cEF) of chasing EF with dependency (1),

cEF(A, B) :− f(A, X′), f(X′, B), t(B,“Paris”),

b(B,“Paris”), s(B,“Paris”)

Notice that EF and cEF are fragments of E, respectively cE
from Example 5.1. Let cfr be the mapping {A : A,B : B,C :
X ′}. Observe that (a) R is safe; and (b) cfr is a containment
mapping from Q into cEF, thus satisfying the conditions of
Corollary 5.1.

The number of descriptors is infinite due to the unbounded
set of hidden variables, but there are only finitely many iso-
morphism types of descriptors modulo renaming of the hid-
den variables, in the following sense:

Definition 5.2 (Similarity). Two descriptors

E
(p1(t1),fr1)
1 and E

(p2(t2),fr2)
2 are similar iff p1 = p2 (and

hence the distinguished variables of the descriptors are the
same), t1 = t2, and there is an isomorphism i between the
ranges of fr1 and fr2 which is the identity on the distin-
guished variables, and i witnesses the isomorphism of E1

and E2.

Intuitively, the condition on fr1 and fr2 ensures that the
partial containment mapping of Corollary 5.1, restricted to
the view fragment, is the same for both descriptors. It is
easy to see that similarity is an equivalence relation, and that
there are only finitely many equivalence classes of descriptors
under similarity. Indeed in E(p(t),fr), p is a predicate from
P; t a tuple of variables and constants from chaseC(Q), thus
the number of distinct values it can take is polynomial in
the size of chaseC(Q) and exponential in the arity of p; the
number of distinct (up to isomorphism) partial mappings fr
is exponential in the number of variables in Q.

Similarity plays a key role in our support test. Indeed we
can show that any representative of a similarity equivalence
class is as good as any member of the class for the purpose
of witnessing support, in the following sense:

(†)
if descriptor d1 is similar to d2, then for any set D
of descriptors, D∪{d1} is a support witness if and
only if D ∪ {d2} is one.

Algorithm findDescriptors. We next present a bottom-
up algorithm for computing representatives of descriptor
equivalence classes under similarity. The algorithm findDe-
scriptors consists in initializing a set of descriptors D to the
empty set, then repeatedly carrying out the rule steps de-
scribed below until D reaches a fixpoint (under similarity),
finally returning D.

EDB rule step. Consider an EDB rule

e′(Z1, . . . , Zk) :− e(Z1, . . . , Zk)

For every variable mapping to from Z1, . . . , Zk into Q’s
variables and constants, such that the goal e(to(Z1), . . . , to(Zk))
appears in chaseC(Q); and every partial variable mapping
fr from the variables of Q to {Z1, . . . , Zk} (including the

empty-domain one), add to D the descriptor E(e(to(Z̄)),fr),
where E = e(Z̄). Note that descriptors with empty-domain
mappings capture the situation when none of the query goals
maps into the described e goal2.

IDB rule step. Consider an IDB rule

p(X̄) :− p1(X̄1), . . . , pn(X̄n)

If there exists a homomorphism h from the rule body into
chaseC(Q), and a set of descriptors

E
(p1(h(X̄1)),fr1)
1 , . . . , E(pn(h(X̄n)),frn)

n

in D, then:
Construct the views Vi : pi(Z̄i) :− Ei. Denote with E the

expansion of the rule body using these views, and with xhi

the corresponding expansion homomorphism xhi : Ei → E
(i.e. the variable renaming performed on each Vi during
expansion). Chase E with C and denote with ch the cor-
responding chase homomorphism ch : E → chaseC(E). If
the set {ch◦xhi ◦ fri}1≤i≤n of partial mappings from Q into
chaseC(E) is compatible, construct the combined mapping
cfr :=

Sn
i=1 ch◦xhi◦fri, otherwise exit the rule step. For ev-

ery partial mapping fr from Q into chaseC(E) which extends
cfr (including the trivial extension fr = cfr) by mapping ad-
ditional variables of Q into fresh variables added during the

chase, compute the descriptor d = F (p(h(X̄)),fr), where F is
the image under fr of all goals in Q such that fr is defined
on all their variables. If d is not similar to any descriptor in
D, add it to D.

Example 5.5. We next illustrate the rule steps of algo-
rithm findDescriptors for Example 1.1 showing how de-
scriptors d1 and d2 from Example 5.2 are derived. First,
observe that no chase step applies on Q, so Q = chaseC(Q).

For brevity, we work on the unnormalized program P. Ap-
plications of EDB rule steps produce (among others) the fol-

2Technically, descriptors for EDB rule IDBs using empty-
domain partial mappings do not fully conform to Defini-
tion 5.1 as the expansion fragment contains a goal that is
not the image under the partial mapping. As seen in the
IDB rule step, the definition holds for all other IDBs, which
are the pre-normalization IDBs.

92

lowing descriptors:

d3 = [f(Z1, Z2)](f(A,C),{A:Z1,C:Z2})

d4 = [f(Z1, Z2)](f(A,C),{})

d5 = [f(Z1, Z2)](f(C,B),{C:Z1,B:Z2})

d6 = [f(Z1, Z2)](f(C,B),{})

d7 = [t(Z1, “Paris”)](t(B,“Paris”),{B:Z1})

d8 = [b(Z1, “Paris”)](b(B,“Paris”),{B:Z1}).

Notice that for the same match of EDB goal f(Z1, Z2) into
goal f(A,B) of chaseC(Q), several partial mappings from the
query are considered. We show only two here (in descriptors
d3 and d4, where the latter uses the empty mapping, meaning
that no query variable is mapped into its fragment).
An IDB rule step for the fourth P rule combines the descrip-
tors d5 and d7 yielding a new descriptor:

(d9) [f(Z1, Z2), t(Z2, “Paris”)](ind(C,B),{C:Z1,B:Z2})

which combines with d3 using the first rule of P, yielding d1.
Descriptors d6 and d8 combine via an IDB rule step with

the third rule in P to

(d10) [b(Z2, “Paris”)](ind(C,B),{B:Z2})

which combines with d4 using the first rule of P, yielding d2.

We next prove that the inflationary process for descrip-
tor discovery implemented by algorithm findDescriptors
always terminates for weakly acyclic sets of constraints.

Lemma 5.2. If C is weakly acyclic, then algorithm find-
Descriptors is guaranteed to

(a) terminate in time exponential in the sizes of P, C, and
Q.

(b) output only descriptors, which are all pairwise dissim-
ilar.

Algorithm testSupport. Our algorithm for testing sup-
port amounts to deciding if the descriptors computed by
algorithm findDescriptors give a support witness (in the
sense of Corollary 5.1). According to Corollary 5.1, the ex-
istence of such a witness is sufficient for support, but, due to
our undecidability results, when the program is unrestricted
(see Section 6), it is not always a necessary condition. That
is why algorithm testSupport is in general only sound.

algorithm testSupport
input: query Q, program P, set of dependencies C;
begin
N := the normalization of P;
D := findDescriptors(Q,N , C);
D′ := all descriptors from D pertaining to

distinguished predicates of N ;
if D′ witnesses support (tested as in in Corollary 5.1)

then return true;
else return false;

end

Algorithm testSupport satisfies the following properties.

Theorem 5.1. If C is weakly acyclic, the following hold:
(1) algorithm testSupport is sound for testing support, and
(2) it runs in time exponential in the size of P, C, and Q.

Algorithm testSupport produces strictly less false nega-
tives than the approach of reducing away dependencies de-
scribed in Section 4. First, it is a decision procedure when-
ever the reduction succeeds:

Theorem 5.2. If C is weakly acyclic and P is a C-local
program generating C-independent views, then algorithm test-
Support is a decision procedure for support.

Corollary 5.2. If C is a weakly acyclic set of key and
foreign key constraints, and chaseC(P) is safe for the keys
in C, then testSupport is a decision procedure for support.

Second, the setting of Example 1.1 exhibits a case in which
the restrictions required in Section 4 for reduction to the
dependency-free case do not apply (they involve keys and
foreign keys, while dependency (1) is neither). Indeed, it is
easy to check that the chased program does not support the
chased query in the absence of dependencies. We therefore
need a qualitatively better approach, which is provided by
algorithm testSupport: Example 5.5 shows that the call
to findDescriptors yields (among others) the descriptors
d1, d2, which, according to Example 5.4, witness support.

Algorithm testExpressibility. While we could use the
reduction from expressibility to support used in Theorem 3.2,
the following variation on testSupport constitutes a direct
test: call findDescriptors, keep only the descriptors for
distinguished IDB predicates, and perform the test of Corol-
lary 5.1 only on singleton sets of descriptors.

Remark. In a setting in which sources expose limited
query capabilities it is not enough to decide support: one
would need to also find the actual witness for support and
to minimize it. These can be done by simple bookkeeping
extensions to our algorithm. The idea is to carry along with
the descriptors an arbitrarily chosen view that represents the
equivalence class of views described by the same descriptor.
Details are explained in the extended version [4].

5.1 Revisiting the Dependency-free Case
Based on algorithm testSupport, we now improve the

previously best-known upper bound for checking support in
the dependency-free setting. [15] reported a deterministic
doubly-exponential upper bound in the size of the query
and program. We obtain an exponentially improved upper
bound, implied by Theorem 5.2 and Theorem 5.1:

Corollary 5.3. In the absence of dependencies, algo-
rithm testSupport

(a) is a decision procedure for support of a query Q by an
arbitrary program P, and

(b) runs in deterministic EXPTIME in the sizes of P and
Q.

We next show that this upper bound is tight in the pro-
gram size, and tight for practical purposes in the query size.

Theorem 5.3. Supp∅P(Q) is NP-hard in the size of Q and
EXPTIME-complete in the size of P.

6. BOUNDARIES OF DECIDABILITY
We next justify the restrictions of Section 4 by exploring

the boundaries of decidability for the problems of express-
ibility and support. To calibrate our results, we start with

93

the following: allowing unrestricted sets of constraints im-
mediately leads to undecidability even if the program ex-
presses a single view. This result is unsurprising given that
unrestricted sets of embedded dependencies notoriously lead
to undecidability of many fundamental database decision
problems, such as equivalence of queries and implication of
dependencies [1]:

Theorem 6.1. If C contains arbitrary embedded depen-
dencies, ExprCP(Q) and SuppCP(Q) are undecidable even if
P expresses a single view.

Theorem 6.1 shows that decidability requires the set of con-
straints to conform at least to the restrictions yielding de-
cidability in the single-view case. The most permissive re-
striction known to date requires C to be a weakly acyclic
set of embedded dependencies [9, 10]. As we show below,
weak acyclicity turns out to be too generous for sets of views
described by unrestricted programs.

Indeed, it turns out that the interaction of recursion in
the program and the presence of dependencies leads to un-
decidability even under strong restrictions on the depen-
dencies and on the program which are known to lead to
decidability in many classical decision problems as long as
recursion and dependencies are mutually exclusive. For in-
stance, query rewritability using finitely many views (listed
explicitly, not described by a program) is known to be de-
cidable under weakly acyclic dependencies [9], in particu-
lar under only functional dependencies (which include key
constraints), or only full TGDs. In the absence of depen-
dencies, expressibility and support for arbitrary recursive
programs is decidable [15]. Moreover, many classical unde-
cidable Datalog-related problems, such as containment and
boundedness (undecidable by [12]) are known to become de-
cidable for recursive monadic programs [6]. However when
considering recursion and dependencies together, we obtain
surprisingly strong undecidability results.

Recall that a program is monadic if all its IDB predicates
have arity 1, and it is linear if each rule body contains at
most one intentional subgoal.

Theorem 6.2. If P is recursive and not key-safe, then
ExprCP(Q) is undecidable even if C consists of a single key
constraint, and P is a linear monadic program.

This justifies our key-safety restriction, showing that it is
maximally permissive. Theorems 6.2 and 3.2 immediately
yield:

Corollary 6.1. If P is recursive and not key-safe, then
SuppCP(Q) is undecidable even if C consists of a single key
constraint and P is a linear monadic program.

Sets of full TGDs are trivially weakly acyclic, and yet we
have:

Theorem 6.3. If P is recursive, then ExprCP(Q) is unde-
cidable even if C contains only full TGDs and P is a monadic
program.

Corollary 6.2. If P is recursive, then SuppCP(Q) is un-
decidable even if C contains only full TGDs and P is monadic.

Since INDs are a particular case of TGDs, it is interesting to
contrast Theorem 6.3 and Corollary 4.3. Notice that there is
no contradiction here, as weakly acyclic sets of INDs and sets
of full TGDs have incomparable expressive power: weakly
acyclic sets of INDs can express non-full TGDs, but INDs
allow only one atom in the premise, while full TGDs allow
multiple atoms.

7. RELATED WORK
The necessity of describing infinite families of views exported
by the source was first argued in [20] and the problem of de-
ciding support first solved (in the absence of constraints)
in [14, 15]. [15] pioneers the idea of reducing support to
rewriting the query using finitely many views. Views gen-
erated by the program are compared for interchangeability:
V1 and V2 are interchangeable if in every rewriting R of
Q, by replacing the V1 goals with V2 goals we still obtain a
rewriting. [15] shows that interchangeability induces finitely
many equivalence classes on the set of all views generated by
the program, and gives an algorithm to find one representa-
tive of each class. This finite set of representative views is
then used to check for a rewriting. The resulting algorithm
runs in doubly-exponential deterministic time. We can show
however that interchangeability under dependencies yields
infinitely many equivalence classes, thus precluding the re-
duction from [15] (see Example A.1 in Appendix A). Even in
the absence of dependencies, we observe that interchange-
ability is unnecessarily strong, leading to a refinement of
the view equivalence classes that yields exponentially more
representatives than truly needed. Intuitively, instead of in-
terchangeability in every rewriting of Q, the descriptor simi-
larity condition (†) from Section 5 detects interchangeability
with respect to only the canonical rewriting. This allows us
to manipulate mapping/partial mapping pairs rather than
sets thereof as in [15], which yields the upper bound improve-
ment from doubly-exponential to single-exponential time.

In the dependency-free setting, [23] improves the upper
bound for support of [15] to non-deterministic exponential
time in the combined query and program size. However for
practical purposes this still yields implementations that run
in doubly-exponential time. In addition to the extension
to constraints, our solution improves on [23] even in the
dependency-free case, by achieving an exponentially better
upper bound, proven to be essentially tight.

The problem of support strictly extends that of rewriting
queries using finitely many views. The latter was treated in
depth in the literature, considering various extensions per-
taining to the language of queries and views [13, 3, 2, 5],
to adding limited access patterns for the views [11, 19], to
adding constraints (see the references in [8]), and to mixing
such extensions [7]. The problem is NP-complete in the size
of the query and views, in practice leading to deterministic
exponential-time implementations, which is no better than
for support. Prior work on information integration [16] stud-
ied answering queries using a finite set of views with limited
access patterns with a different goal, namely finding maxi-
mally contained answers.

8. CONCLUSION
In this paper, we revisit the problem of deciding support

and expressibility of a conjunctive query by (possibly pa-
rameterized) views generated as the expansions of a Datalog
program, investigating for the first time the effect of source
constraints.

We identify practically relevant restrictions on the pro-
gram which lead to decidability for the most prevalent con-
straints in practice (weakly acyclic sets of keys and foreign
keys). Moreover, we show that even slight relaxations to
our restrictions lead to undecidability. We present an al-
gorithm which is applicable to unrestricted programs and

94

weakly acyclic sets of embedded dependencies, yielding a de-
cision procedure in all known decidable cases, and a sound
test in general.

We also settle two problems left open by work on the
constraint-free case. First, we show that in the absence of
constraints our algorithm is a decision procedure which im-
proves the previously known upper bounds for support in the
absence of constraints (from 2-EXPTIME [14] and NEXP-
TIME [23] to EXPTIME in the query and program size). We
also give practically tight lower bounds, showing EXPTIME-
hardness for fixed query and NP-hardness for fixed program.
Second, we show that expressibility and support are inter-
reducible in PTIME (even under constraints), which allows
us to use essentially the same algorithm for solving them.

Note that the support problem discussed in this paper
and in prior work decides whether a user query can be han-
dled by the source or not by testing the existence of an
exact rewriting using the generated views. This indeed rep-
resents the fundamental functionality one may expect in a
limited-query-capability setting. However, when no equiv-
alent rewriting exists, a user may also accept a best-effort
approach in which instead of the exact answer she obtains
its tightest approximations, either from below (contained in
the answer) or from above (containing the answer). These
approximations are known in the literature on view-based
query rewriting as the minimally containing and maximally
contained rewritings of the query. We leave for future re-
search the problem of answering approximately a query us-
ing a potentially infinite family of views.

9. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] F. N. Afrati, R. Chirkova, M. Gergatsoulis, and
V. Pavlaki. Finding equivalent rewritings in the
presence of arithmetic comparisons. In EDBT, pages
942–960, 2006.

[3] F. N. Afrati, C. Li, and P. Mitra. Answering queries
using views with arithmetic comparisons. In PODS,
2002.

[4] B. Cautis, A. Deutsch, and N. Onose. Querying data
sources that export infinite sets of views. Technical
Report CS2007-0886, UCSD, 2007. Available at
http://db.ucsd.edu/index.jsp?pageStr=publications.

[5] S. Cohen, W. Nutt, and Y. Sagiv. Rewriting queries
with arbitrary aggregation functions using views. ACM
Trans. Database Syst. (TODS), 31(2):672–715, 2006.

[6] S. Cosmadakis, H. Gaifman, P. Kanellakis, and
M. Vardi. Decidable optimization problems for
database logic programs. In STOC, pages 477–490,
New York, NY, USA, 1988. ACM Press.

[7] A. Deutsch, B. Ludaescher, and A. Nash. Rewriting
queries using views with access patterns under
integrity constraints. In ICDT, 2005.

[8] A. Deutsch, L. Popa, and V. Tannen. Query
reformulation with constraints. SIGMOD Record,
35(1):65–73, 2006.

[9] A. Deutsch and V. Tannen. Reformulation of XML
queries and constraints. In ICDT, 2003.

[10] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: Semantics and query answering. In
ICDT, 2003.

[11] D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu.
Query optimization in the presence of limited access
patterns. In SIGMOD, pages 311–322, 1999.

[12] H. Gaifman, H. G. Mairson, Y. Sagiv, and M. Y.
Vardi. Undecidable optimization problems for
database logic programs. Journal of the ACM
(JACM), 40(3):683—713, 1993.

[13] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and
D. Srivastava. Answering queries using views. In
PODS, pages 95–104, 1995.

[14] A. Y. Levy, A. Rajaraman, and J. D. Ullman.
Answering queries using limited external processors.
In PODS, pages 227–237, 1996.

[15] A. Y. Levy, A. Rajaraman, and J. D. Ullman.
Answering queries using limited external query
processors. J. Comput. Syst. Sci., 58(1):69–82, 1999.

[16] C. Li and E. Y. Chang. Query planning with limited
source capabilities. In ICDE, pages 401–412, 2000.

[17] A. Maier, A. Mendelzon, and Y. Sagiv. Testing
implications of data dependencies. In PODS, 1979.

[18] A. Motro. An access authorization model for relational
databases based on algebraic manipulation of view
definitions. In ICDE, pages 339–347. IEEE Computer
Society, 1989.

[19] A. Nash and B. Ludäscher. Processing first-order
queries under limited access patterns. In PODS, 2004.

[20] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina,
and J. D. Ullman. A query translation scheme for
rapid implementation of wrappers. In DOOD, pages
161–186, 1995.

[21] S. Rizvi, A. O. Mendelzon, S. Sudarshan, and P. Roy.
Extending query rewriting techniques for fine-grained
access control. In SIGMOD, pages 551–562, 2004.

[22] V. Vassalos and Y. Papakonstantinou. Describing and
using query capabilities of heterogeneous sources. In
VLDB, pages 256–265, 1997.

[23] V. Vassalos and Y. Papakonstantinou. Expressive
capabilities description languages and query rewriting
algorithms. J. Log. Program., 43(1):75–122, 2000.

95

APPENDIX
A. INTERCHANGEABILITY IS UNHELP-

FUL UNDER DEPENDENCIES
The following example shows that under dependencies,

there are infinitely many equivalence classes of views with
respect to interchangeability. This precludes the reduction
described in [15] from the problem of support to that of
rewriting using finitely many views, as it involves focusing
on representatives of the equivalence classes.

Example A.1. We have a program P that produces unary
views as follows:

V (X) : − e(X, a, Y), Cr(Y)

Cr(X) : − e(X, a, Y), Cr(Y)

Cr(X) : − e(X, b, Y), e(Y ′, b, Y), e(Y ′, a, Y ′),

e(Y, up, Z)

Cr(X) : − e(X, b, Y), e(Y ′, b, Y), e(Y ′, a, Y ′),

e(Y, down,Z)

Expansions are chains of a-labeled edges ending with a b-
labeled edge and one of up or down.

Consider the query Q:

Q() : − e(D, a,D), e(D, b,A),

e(A, up,B), e(A, down,C)

The source obeys also one key constraint for each l ∈
{a, b}:

∀X,Y ′, Y ′′ e(X, l, Y ′), e(X, l, Y ′′) −→ Y ′ = Y ′′.

We write Vn for the expansion with n a-labeled edges and
ending with up. We write Un for the expansion with n a-
labeled edges and ending with down.

We can see that, for any n, the rewriting Rn defined as

Rn() :− Vn(X), Un(X)

is an equivalent rewriting of Q.
However, replacing in Rn the Vn goal with any other view

(Vi or Ui) would not yield another equivalent rewriting. So
each Vn (and each Un) is in its own equivalence class w.r.t.
interchangeability in rewritings for Q. There are therefore
infinitely many such equivalence classes.

B. REFINED VERSION OF KEY-SAFETY
The notion of key-safety presented in the main text keeps

only track of the positions bound to constants, ignoring the
actual constant values that may appear in these positions.
As a consequence, it may fail to detect decidable instances of
expressibility or support, where the constraints can still be
ignored after the program and the query have been chased.
We give in this section a refined definition for the key-safety
restriction that addresses this problem, allowing us to solve
strictly more cases by reduction to the dependency-free case.

Let R be a relation with an n-attribute composite key. By
a template of constants (in short, template) for the key of
R we denote a sequence of values T = (v1, . . . , vn), where
each vi can be either a constant value or a special value
denoted blank. By the variable positions of T we denote the

ordered sequence of positions P̄T = (p1, . . . , pk) of T that
are occupied by blank.

We say that a rule of P outputs the key of R, by template
T , into the sequence of head variables X̄ = (Xi1 , . . . , Xik) if
X̄ appears in the rule body either
• in the positions P̄T = (p1, . . . , pk) of the key attribute

sequence of some R-subgoal, with the remaining n− k
positions (if any) of the key being bound to the constant
values given in T .
• in the positions j1, . . . , jk of some p-subgoal, where p

is an IDB predicate with at least one rule that in turn
outputs the key of R by the template T , into the se-
quence of head variables with indices j1, . . . , jk.

We say that a subgoal g outputs the key of R, by template
T , into the sequence of variables X̄ = (Xi1 , . . . , Xik) if
• g uses EDB predicate R and X̄ appears in positions
P̄T = (p1, . . . , pk) in the key attributes of g, with the
remaining n−k positions (if any) of the key being bound
to the constant values given in T , or
• g uses IDB predicate p and there exists some rule defin-

ing p which outputs the key of R, by the template T̄ ,
into variables X̄.

We say that a rule is safe for the key constraint on R if when-
ever one of its IDB subgoals outputs the key of R by some
template of constants T into k variables X̄ = (Xi1 , . . . , Xik),
no other subgoal does the same (for the same template T).
Notice that several EDB subgoals may output the key of the
same R by the same template and into the same sequence
of variables X̄, as long as no IDB goal does. A program P
is key-safe for a set of key constraints K if
• each rule is safe for all key constraints in K, and
• for all distinguished predicates ans of P, all defining

rules r of ans, and all relational symbols R in the
schema, if r outputs the key attributes Ā, by some tem-
plate, of some goal R(Ā, B̄), it also outputs all non-key
attributes B̄, by some template (using the same defini-
tion that applied to the key attributes).

If I is a set of weakly acyclic INDs, we say that P is key-safe
for C = K∪I if chaseI(P) is key-safe for K. Notice that this
new definition of key-safety can still be checked in PTIME
in the size of P and K.

Example B.1. Assuming the schema and constraints of
Example 4.3, consider the following modified program P ′

(P ′) ans(A, B, C, O) :− ind(A, B, O), ind′(B, O)

ind(B, C, O) :− t(B, B′, O), ind(B′, C, O)

ind(B, C, O) :− t(B, C, O)

ind′(B, O) :− indP (B, O), indSD(B, O)

indP (B, O) :− t(B, “Paris”, O)

indSD(B, O) :− t(B, “SanDiego”, O)

Notice that P ′ is not key-safe under the weaker restriction,
since the rule defining ind′ is not safe. But we can easily see
that the two constants appearing in the second attribute of
the key cannot be equated during the chase, and P ′ is indeed
key-safe under the refined definition.

More precisely, in the sixth rule, b outputs the key into the
sequence of variables B, by the template

T1 = (blank, “SanDiego”).

Similarly, in the fifth rule, b outputs the key into the sequence
of variables B, by the template

T2 = (blank, “Paris”).

96

Since T1 and T2 are different, the rule defining ind′ is safe.
Then, in the first rule, the ind′ subgoal outputs the key in
B, by any of these two templates. Finally, ans outputs the
key attributes in A,B (by the ind subgoal) and in B (by the
ind′ subgoal) but in both cases it also outputs O, the non-key
attribute.

97

