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ABSTRACT
The inclusion of Regular Expressions (REs) is the kernel of
any subtype checking algorithm for XML schema languages.
XML applications would benefit from the extension of REs
with interleaving and counting, but this is not feasible in
general, since inclusion is EXPSPACE-complete for such ex-
tended REs. In [9] we introduced a notion of “conflict-free
REs”, which are extended REs with excellent complexity be-
haviour, including a cubic inclusion algorithm [9] and linear
membership [10]. Conflict-free REs have interleaving and
counting, but the complexity is tamed by the “conflict-free”
limitations, which have been found to be satisfied by the
vast majority of the content models published on the Web.

However, the most important use of subtype checking is
in the context of type-cheching of XML manipulation lan-
guges. A type checker works by testing the inclusion of
inferred subtypes in declared supertypes. The conflict-free
restriction, while quite harmless for the human-defined su-
pertype, is far too restrictive for the inferred subtype, whose
shape is difficult to constrain.

We show here that the PTIME inclusion algorithm can be
actually extended to deal with totally unrestricted REs with
counting and interleaving in the subtype position, provided
that the supertype is conflict-free. This is exactly the ex-
pressive power that we need in order to use subtyping inside
type-checking algorithms, and the cost of this generalized
algorithm is only quadratic, which is as good as the best
algorithm we have for the symmetric case (see [5]). The re-
sult is extremely surprising, since we had previously found
that asymmetric inclusion becomes NP-hard as soon as the
candidate subtype is enriched with binary intersection, a
generalization that looked much more innocent than what
we achieve here.
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1. INTRODUCTION
Different extensions of Regular Expressions (REs) with

interleaving operators and counting are used to describe the
content models of XML in the major XML type languages,
such as DTDs, XML Schema, and RELAX-NG. This fact
raised new interest in the study of such extended REs, and,
specifically, in the crucial problem of language inclusion.
The problem is EXPSPACE-complete [12, 8], but, in [9],
we introduced a class of “conflict-free” REs with interleav-
ing and counting, whose inclusion problem is in PTIME.
The class is characterized by the single occurrence of each
symbol and the limitation of Kleene-star to symbols. These
very strict constraints have been repeatedly reported as be-
ing actually satisfied by the overwhelming majority of con-
tent models that are published on the Web,1 which makes
that result very promising, and of immediate applicability
to the problem of comparing two different human-designed
content models.

However, the main use of subtype checking is in the con-
text of type checking, where computed types are checked for
inclusion into expected types. This happens when a function,
expecting a type for its parameter, is applied to an expres-
sion, whose type is computed; this happens when the result
of an expression is used to update a variable, whose expected
type has been declared; this happens when the final result
of a piece of code is compared with its expected type, in or-
der to declare the code type-correct. In all these cases, the
expected type is defined by a programmer, hence we can re-
strict it to a conflict-free type with little harm. However, the
1Quoting [3] “an examination of the 819 DTDs and XSDs
gathered from the Cover Pages (including many high-quality
XML standards) as well as from the web at large, reveals that
more than 99% of the REs occurring in practical schemas
are CHAREs (and therefore also SOREs)” (see also [11]);
our conflict-free types are more expressive than CHAREs;
similar results, in the high range of 90%, have been reported
in [1] and [4]
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computed type reflects the structure of the code. Hence, the
same symbol may appear in many different positions, and
Kleene star may appear everywhere. In this situation, the
ability to compare two conflict-free types is too limited, and
we have to generalize it somehow.

This seemed very hard for a time. The result in [9] is
based on an exact description of conflict-free types through
constraints, which reduces type inclusion to constraint im-
plication. The smallest generalization of the conflict-free
single-occurrence and Kleene-star limitations makes types
impossible to be exactly described by our constraints. This
problem does not arise if types are extended with intersec-
tion, since our constraints are closed by intersection. How-
ever, we showed in [9] that just one outermost use of binary
intersection in the subtype makes inclusion NP-hard.

Luckily enough, we prove here that we can generalize our
result without leaving PTIME if we embrace asymmetry,
and consider the mixed inclusion problem, i.e., the prob-
lem of verifying whether T is included in U , where T and
U belong to two different families of extended REs. In
this case, we find a surprisingly good result: inclusion is
still in PTIME, provided that the supertype is conflict-free,
while no limit is imposed on the subtype, where interleaving,
counting, and Kleene-star can be freely used. This means
that a programmer must only declare conflict-free types, but
the compiler can use the whole power of extended REs to
approximate the result of any expression. The key for this
result is understanding that, while the supertype has to be
exactly described by the constraints, this is not necessary
for the subtype.

2. TYPES AND CONSTRAINTS
Following the terminology of [9], we use the term “types”

as a synonym for “extended regular expressions”. Hence
a “type” denotes a set of words. A constraint is a simple
word property expressed in the constraint language we in-
troduce below; a constraint denotes the set of words that
satisfy it. We say that a type T satisfies a constraint F
when every word in T satisfies F , that is, when the deno-
tation of T is included in that of F . Hence, every type is
upper-approximated by the set of all constraints that it sat-
isfies. In [9] we introduced conflict-free types, where this
“approximation” is exact, meaning that a word belongs to a
conflict-free type if and only if it satisfies all of its associated
constraints.

Our algorithm is based on translating the supertype into
a corresponding set of constraints and verifying, in polyno-
mial time, that the subtype satisfies all of these constraints.
In a mixed comparison, constraints provide an exact charac-
terization for the conflict-free supertype, but just an upper-
approximation for the subtype; we will prove below that
this does not affect the correctness or completeness of the
algorithm.

2.1 The Type Language
We describe here the specific syntax that we use for our

extended REs, or “types”.
We adopt the usual definitions for words concatenation w1·

w2, and for the concatenation of two languages L1·L2. The
shuffle, or interleaving, operator w1&w2 is also standard,
and is defined as follows.

Definition 2.1 (v&w, L1&L2) The shuffle set of two words

v, w ∈ Σ∗, or two languages L1, L2 ⊆ Σ∗, is defined as fol-
lows; notice that each vi or wi may be the empty word ε.

v&w
def
= {v1 · w1 · . . .· vn · wn

| v1 · . . .· vn = v, w1 · . . .· wn = w,
vi ∈ Σ∗, wi ∈ Σ∗, n > 0}

L1&L2
def
=

⋃
w1∈L1, w2∈L2

w1&w2

When v ∈ w1&w2, we say that v is a shuffle of w1 and w2;
for example, w1 · w2 and w2 · w1 are shuffles of w1 and w2.

We consider the following type language for words over an
alphabet Σ:

T ::= ε | a | T [m..n] | T + T | T · T | T&T | T !

where: a ∈ Σ, m ∈ (N \{0}), n ∈ (N∗ \{0}), n ≥ m, and,
for any T !, at least one of the subterms of T has shape a.
Here, N∗ is N ∪ {∗}, where ∗ behaves as +∞, i.e., for any
n ∈ N∗, ∗ ≥ n.

Note that expressions like T [0..n] are not allowed, due
to the domain (N \{0}) of m, but the type T [0..n] can be
equivalently represented by T [1..n]+ε. The type T ! denotes
JT K \ {ε}. The mandatory presence of an a subterm in T !
guarantees that T contains at least one word that is different
from ε, hence T ! is never empty (Lemma 2.4), which, in turn,
implies that we have no empty types.

Definition 2.2 (S(w), S(T )) For any word w, S(w) is the
set of all symbols appearing in w. For any type T , S(T ) is
the set of all symbols appearing in T .

The semantics of types is inductively defined by the fol-
lowing equations.

JεK = {ε}
JaK = {a}

JT1 + T2K = JT1K ∪ JT2K
JT1 · T2K = JT1K· JT2K
JT1&T2K = JT1K&JT2K

JT !K = JT K \ {ε}
JT [m..n]K = {w | w = w1 · . . .· wj ,

∀i ∈ 1..j. wi ∈ JT K, m ≤ j ≤ n}

We will use � to range over product operators · and &
when we need to specify common properties, such as, for
example: JT � εK = Jε � T K = JT K. We will use � to range
over ·, &, and +.

Types that contain the empty word ε are called nullable
and are characterized as follows. Observe that N(T [m..n]) =
N(T ) because m cannot be 0.

Definition 2.3 N(T ) is a predicate on types, defined as fol-
lows:

N(ε) = true

N(a) = false

N(T !) = false

N(T [m..n]) = N(T )

N(T + T ′) = N(T ) or N(T ′)

N(T � T ′) = N(T ) and N(T ′)
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In this system, no type is empty, hence any symbol in
S(T ) appears in some word of T .

Lemma 2.4 (Not empty) For any type T :

JT K 6= ∅ (1)
a ∈ S(T )⇒ ∃w ∈ JT K. a ∈ S(w) (2)

2.2 Constraints
Constraints are simple word properties, expressed using

the following logic, where a, b ∈ Σ, a 6= b in a ≺ b, A ⊆ Σ,
B ⊆ Σ, m ∈ (N \{0}), n ∈ (N∗ \{0}), and n ≥ m:

F ::= A+ | A+ Z⇒ B+ | a?[m..n] | upper(A) | a ≺ b

We do not explicitly consider conjunctive constraints F ∧F ′
since we will always associate types with sets of constraints,
whose conjunction the type has to satisfy. Constraint se-
mantics is defined in Figure 1.

The following special cases are worth noticing.

ε 6|= A+ ε |= upper(A) ε |= a?[m..n]
ε |= a ≺ b b |= a ≺ b aba 6|= a ≺ b
w 6|= ∅+ w |= ∅+ Z⇒ A+ w |= ∅+ Z⇒ ∅+

Observe that A+ is monotone, i.e., w |= A+ and w is
subword of w′ imply that w′ |= A+, while upper(A) and
a ≺ b are anti-monotone.

A constraint F denotes the set of words that satisfy it,
and a set of constraints S denotes the words that satisfy
each F ∈ S, as follows.

Definition 2.5 (JF K) For any constraint F , set of constraints
S:

JF K def
= {w | w |= F}

JSK def
= ∩F∈SJF K

A type satisfies a constraint if all of its words do. The
previous definition allows us to express this as set inclusion.

Definition 2.6 (L |= F , T |= F , T |= S) For any set of words
L, type T , constraint F , set of constraints S:

L |= F
def⇔ L ⊆ JF K

T |= F
def⇔ JT K ⊆ JF K

T |= S
def⇔ JT K ⊆ JSK

2.3 Constraints and Subtyping
If we consider a function C mapping types to sets of con-

straints expressed in a language F , we may define three
properties that C may satisfy on a type T :

• soundness: C is sound for T if T |= C(T );

• F -completeness: a sound C is complete for F and T
if JC(T )K = J{F ∈ F | T |= F}K;

• exactness: C is exact for T if JT K = JC(T )K.

Soundness is the basic property. A sound function is com-
plete for T and F if its description of T cannot be made
more precise by adding more constraints from F : when C
is F -complete, for any F ∈ F s.t. T |= F , we have that

JC(T )K ⊆ JF K, i.e., any valid F is subsumed by the con-
straints in C(T ).

A function is exact for T if C(T ) is satisfied by no more
words than JT K. A complete function is not necessarily ex-
act; for example, no constraint set in our language is exact
for the type (aa) [1..2]. If a complete function is not exact,
no incomplete function may be exact. However, when an
F -complete function is exact, all and only the F -complete
functions are exact.

In [9] we defined a class of “conflict-free types”, defined as
those types that respect the following restrictions (hereafter
we will use the meta-variable U for conflict-free types):

• symbol counting : if U has a subterm U ′ [m..n], then
U ′ must be the type a, for some a ∈ Σ (only symbols
can be counted or subject to Kleene-star);

• single occurrence: if U has a binary subterm U1 � U2,
then S(U1) ∩ S(U2) = ∅ (no symbol appears twice).

The symbol-counting restriction means that, for exam-
ple, types like (a · b)∗ cannot be expressed. However, it
has been found that DTDs and XSD (XML Schema Defi-
nition) schemas use repetition almost exclusively as aop or
as (a + . . . + z)op (where op ∈ {+, ∗}, see [3]), which can
be immediately translated to types that only count sym-
bols, thank to the U1&U2 and U ! operators. For instance,
(a+. . .+z)∗ can be expressed as (a∗& . . .&z∗), where a∗ is a
shortcut for a [1..∗]+ ε, while (a+ . . .+z)+ can be expressed
as (a∗& . . .&z∗)!.

The main result of [9] is a complete constraint extraction
procedure for the set of conflict-free types, plus the following
exactness theorem.

Theorem 2.7 If a type U is conflict-free, then any con-
straint extraction function that is complete for our constraint
language is exact for U .

A function satisfying JUK = JC(U)K reduces asymmetric
inclusion to constraint-checking, as follows. The property
is asymmetric because U must admit an exact constraint-
extraction function, but T can be any type.2

Proposition 2.8 (Mixed subtyping) If C is exact for U ,
then JT K ⊆ JUK ⇔ T |= C(U).

This observation is obvious once it is framed in the right
context, but it provides a way to generalize our previous
results that is extremely interesting: rather than hunting
for small generalizations of the conflict-free family in the
narrow precinct of types which can be exactly described, we
can aim for the whole set of extended REs in the left hand
side of JT ′K ⊆ JT ′′K, if we stay modest with the right hand
side.

To exploit this observation, we need now to complement
the exact constraint-extraction of [9] with a procedure to test
for T |= C(U). In [9] we (indirectly) proved that the problem
is NP-hard when T ranges over conflict-free types with in-
tersection. We are going to give here a quadratic procedure
when T ranges over general types (with no intersection, of
course).

2We use the letter U since we apply this theorem to conflict-
free types only, but it actually holds for any type U that is
exactly described by C(U).
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w |= A+ ⇔ S(w) ∩A 6= ∅, i.e. some a ∈ A appears in w

w |= A+ Z⇒ B+ ⇔ w 6|= A+ or w |= B+

w |= a?[m..n] (n 6= ∗) ⇔ if a appears in w, then it appears at least m times and at most n times

w |= a?[m..∗] ⇔ if a appears in w, then it appears at least m times

w |= upper(A) ⇔ S(w) ⊆ A
w |= a ≺ b ⇔ there is no occurrence of a in w that follows one occurrence of b in w

Figure 1: Constraint semantics.

3. INCLUSION ALGORITHM
In [9], we defined a constraint-extraction function that is

exact for conflict-free types. For each type, this function ex-
tracts five classes of constraints: co-occurrence constraints
CC(U), order constraints OC(U), cardinality constraints
ZeroMinMax (U), lower-bound constraints SIf (U), and upper-
bound constraints upperS(U), that is, the exact function
that we are going to use is defined as

C(U) = CC(U) ∪ OC(U)∪
ZeroMinMax (U) ∪ upperS(U) ∪ SIf (U)

To apply Proposition 2.8, we now have to exhibit, for each
component Ci(U) (where Ci(U) is one of CC(U), OC(U),
etc.), an algorithm to verify whether, for each F ∈ Ci(U),
T |= F , where T is a general type. This will be done in the
following sections. In each section we will recall the defini-
tion of the corresponding component of C(U).

3.1 Co-Occurrence Constraints
The first component CC(U) of C(U) extracts a set of co-

occurrence constraints with shape A+ Z⇒ B+, and is de-
fined as follows, where {F | ¬N(U)} denotes the singleton
{F} when N(U) is false, and denotes the empty set other-
wise [9].

CC(ε) def
= ∅

CC(a [m..n])
def
= ∅

CC(U !)
def
= CC(U)

CC(U1 + U2)
def
= CC(U1) ∪ CC(U2)

CC(U1 � U2)
def
= {S(U1)+ Z⇒ S(U2)+ | ¬N(U2)}
∪ {S(U2)+ Z⇒ S(U1)+ | ¬N(U1)}
∪ CC(U1) ∪ CC(U2)

In this section, we define an algorithm to test T |= A+ Z⇒
B+ for any general type T .

This algorithm is based on the ability to discover which
subterms T ′ of T satisfy the simpler constraints B+ and
Σ+ Z⇒ B+, which we abbreviate as B++.

Definition 3.1 (A++) We define A++ def
= Σ+ Z⇒ A+.

Property 3.2 (JA++K)

JA++K = JA+K ∪ {ε}
T |= A++ ⇔ JT K \ {ε} |= A+

We focus on constraints with shape a+ Z⇒ A+ because of
the following property, that is an immediate consequence of
the definition of A+ Z⇒ B+.

Property 3.3 (Union) For any word w and constraint A+ Z⇒
B+:

w |= A+ Z⇒ B+ ⇔ ∀a ∈ A. w |= a+ Z⇒ B+

The reduction of a+ Z⇒ B+ to B+ and B++ exploits the
following lemmas (for reasons of space, most proofs are omit-
ted).

Lemma 3.4 For any type T1 � T2:

T1 � T2 |= a+ Z⇒ A+ ⇔
(T1 |= a+ Z⇒ A+ ∧ T2 |= a+ Z⇒ A+) ∨ T1 � T2 |= A+

Lemma 3.5 For any type T , T1 and T2:

ε 6|= A+

a |= A+ ⇔ a ∈ A
T [m..n] |= A+ ⇔ T |= A+

T1 � T2 |= A+ ⇔ T1 |= A+ ∨ T2 |= A+

T1 + T2 |= A+ ⇔ T1 |= A+ ∧ T2 |= A+

T ! |= A+ ⇔ T |= A++

ε |= A++

a |= A++ ⇔ a ∈ A
T [m..n] |= A++ ⇔ T |= A++

T1 � T2 |= A++ ⇔ T1 |= A+ ∨ T2 |= A+ ∨
(T1 |= A++ ∧ T2 |= A++)

T1 + T2 |= A++ ⇔ T1 |= A++ ∧ T2 |= A++

T ! |= A++ ⇔ T |= A++

We can now present the main result of this section, The-
orem 3.6. It specifies that T |= a+ Z⇒ B+ can be verified
by finding, for each occurrence ai of a inside T , a subterm
T ′ of T that contains ai and such that T ′ |= B+; T ′ may,
or may not, coincide with T . Intuitively, each w ∈ JT K has
a “parse tree” inside T , specifying one branch for each +.
When w |= a+, its parse tree must contain one a leaf and all
its ancestors up to the root of T . If one of these ancestors
enjoys T ′ |= B+, then the piece of w recognized by that T ′

must satisfy B+, hence w |= B+. The tricky part is proving
that this condition is necessary.

Theorem 3.6 (T |= a+ Z⇒ B+ from T ′ |= B+) For any type
T , T |= a+ Z⇒ B+ iff, for each occurrence of a inside T , the
occurrence is part of a subterm T ′ of T such that T ′ |= B+.

Moreover, when T |= a+ Z⇒ B+ and a 6∈ B, then, for each
occurrence of a inside T , the occurrence is part of a subterm
T1 � T2 of T such that T1 � T2 |= B+.

Proof. (⇒). Assume T |= a+ Z⇒ B+. We prove the
thesis by induction and by cases on the shape of T .
T = T1 +T2. Hence, T1 |= a+ Z⇒ B+ and T2 |= a+ Z⇒ B+.

By induction, each occurrence of a subterm a in T1 and in
T2 is part of a T ′ with T ′ |= B+, as required.
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T = T1 � T2. By Lemma 3.5, either T1 |= a+ Z⇒ B+ and
T2 |= a+ Z⇒ B+, or T1 � T2 |= B+. In the first case, we
reason as in the case for T = T1 + T2. In the second case, T
itself is the T ′ subterm with T ′ |= B+.
T = T ′ [m..n]: immediate by induction.
T = T ′!: T ′! |= a+ Z⇒ B+ implies that T ′ |= a+ Z⇒ B+,

since ε |= a+ Z⇒ B+, and the thesis follows by induction.
T = a: T |= a+ Z⇒ B+ implies that a ∈ B, hence we

choose T ′ = T = a.
T = b 6= a and T = ε: a does not occur inside T , hence

the thesis holds trivially.
(⇐). Assume that, for each occurrence of a inside T , the

occurrence is part of a subterm T ′ of T such that T ′ |= B+.
We want to prove that T |= a+ Z⇒ B+.

If T |= B+, by definition T |= a+ Z⇒ B+, hence we are
done; when T = a, a is the only subterm of T , hence the
hypothesis implies a |= B+, hence we are in the case T |=
B+. If T 6|= B+, we have two cases. When T = b 6= a or
T = ε, then T |= a+ Z⇒ B+ holds trivially. Otherwise, T
must be a composite type T1 � T2, T1!, or T1 [m..n], such
that each of the components T1 and T2 satisfies the theorem
hypothesis, hence, by induction, each of them satisfies Ti |=
a+ Z⇒ B+, hence T |= a+ Z⇒ B+.

The second sentence of the statement can be proved in
the same way.

We can now present the algorithm that we use to verify
that, for each A+ Z⇒ B+ ∈ CC(U), T |= A+ Z⇒ B+ (Figure
2). For space reasons, we present a version that only works
in absence of the T ! constructor, so that we can verify S(T )+

with no reference to S(T )++. This version is all we need to
discuss the time bound; generalization to the full language
is easy.

The auxiliary function MarkBPlus(T ,B) returns true iff
T |= B+, and also marks each subterm a of T that appears
inside a subterm T ′ of T such that T ′ |= B+, exploiting
Lemma 3.5. It is used by the function CoCheck, which ver-
ifies that T |= A+ Z⇒ B+ by first marking all subterms a of T
that appear inside a subterm T ′ of T such that T ′ |= B+, and
then checking that each occurrence of each a ∈ A has been
marked, according to Property 3.3 and to Theorem 3.6. The
NodesOfSymbol[] array associates each symbol a with the
set of leaves in T that are labeled by a, and can be easily ini-
tialized in time O(|T |). After preprocessing A and B so that
membership can be checked in constant time, MarkBPlus
can be computed in O(|T | + |B|) time, since MarkBPlus
and MarkAll never visit the same subtree twice, hence
CoCheck can be computed in O(|T | + |A| + |B|) time.
CoImplies invokes CoCheck once for each A+ Z⇒ B+ ∈
CC(U), i.e., at most twice for each � in U , hence CoImplies
has O((|T | + |U |) × |U |) worst case time complexity, which
is even better than the algorithm that we defined in [9] for
the pure conflict-free case.

3.2 Order Constraints
Let us define P(T ) as the set of all pairs of different sym-

bols (a, b) such that there exists a word in JT K where an a
comes before a b.

Definition 3.7 (Pairs)

P(T )
def
= {(a, b) | a 6= b,

∃w1, w2, w3. w1 · a · w2 · b · w3 ∈ JT K}

Order constraints specify which pairs cannot appear in a
word, hence P(T ) is related to order constraints as follows.

Property 3.8 T |= a ≺ b ⇔ a 6= b and (b, a) 6∈ P(T )

We verify whether a pair (b, a) ∈ P(T ) by testing, for
each instance of a and b in T , their Lower Common An-
cestor (LCA) in the syntax tree of T ; to this aim, we will
manipulate a decorated version of T , L(T ), where each in-
stance of a leaf is decorated with a distinct index i, and
is denoted as ai, and will consider the words generated by
L(T ).

For example, if T = a + b, then L(T ) = a1 + b2, and
the LCA of a1 and b2 in L(T ) (LCAL(T )[ai, bj ]) is +. This
LCA means that a1 and b2 never appear together, hence
(b2, a1) 6∈ P(L(T )), hence, since no other instance of a and
b is present in T , (b, a) 6∈ P(T ). In a1&b2, the LCA is &,
meaning that both (a, b) and (b, a) are in P(T ). The use of
LCA is justified by Lemma 2.4: with any two types T1&T2,
as soon as ai ∈ S(T1) and bj ∈ S(T2), then T1 has a word
with a and T2 has a word with b, hence (a, b) and (b, a) are
in P(T ). In a type a1 · b2, order is relevant: (a, b) ∈ P(T )
but (b, a) 6∈ P(T ). We express this by extending the usual
definition of LCAL(T )[ai, bj ], assuming that it returns a pair

�d, where the direction d is → if the leaf ai comes before
bj in T , and is ← otherwise; we ignore the direction when
� 6= · (see Example 3.11).

LCAL(T )[ai, bj ] ∈ {&,·→} implies that (a, b) ∈ P(T ), but
(a, b) ∈ P(T ) also holds when LCAL(T )[ai, bj ] ∈ {+,·←},
provided that the LCA is in the scope of a T [m..n] operator
with n > 1, as in (a+b) [1..2] or in (b·a) [1..2]; for this reason,
in L(T ), we mark as �r (for repeated) all binary operators
� in the scope of a T [m..n] with n > 1, and use �1 for all
the other operator instances. Finally, if many occurrences of
a and b appear in T , then (a, b) ∈ P(T ) as soon as one pair
(ai, bj) satisfies the test we described. This is formalized
here.

Definition 3.9 (L(T )) L(T ) is obtained from T by:

• rewriting each a as ai, so that no two leaves get the
same index;

• rewriting every instance of a binary operator � that is
in the scope of at least one instance of T [m..n] (with
n > 1) as �r; every other instance of a binary operator
is rewritten as �1.

Property 3.10 (Pairs) For any a 6= b:

(a, b) ∈ P(T ) ⇔ ∃ai, bj ∈ L(T ).
LCAL(T )[ai, bj ] ∈ {+r,�r,&1, ·→1 }

(b, a) 6∈ P(T ) ⇔ ∀ai, bj ∈ L(T ).
LCAL(T )[ai, bj ] ∈ {+1, ·→1 }

T |= a ≺ b ⇔ ∀ai, bj ∈ L(T ).
LCAL(T )[ai, bj ] ∈ {+1, ·→1 }

Example 3.11 (LCAL(T )[ai, bj ]) If T = a · ((b + a) [1..3]),
then L(T ) = a1 · 1((b2 +r a3) [1..3]), and LCAL(T )[ai, bj ] is
defined as in the following table. We avoid the arrow super-
script on +r, since the arrow direction is only significant in
the ·1 case.

a1 b2 a3

a1 a1 ·→1 ·→1
b2 ·←1 b2 +r

a3 ·←1 +r a3
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MarkBPlus(Type T , Set B)
boolean result ;
case T when T1 [m..n]: result = MarkBPlus(B, T1);

when T1 � T2: result = MarkBPlus(B, T1) ∨ MarkBPlus(B, T2);
if result then MarkAll(T1); MarkAll(T2);

when T1 + T2: result = MarkBPlus(B, T1) ∧ MarkBPlus(B, T2);
when ε: result = false;
when a: result = a ∈ B;

marked [T ] = result ;
return result ;

MarkAll(Type T ):
if marked [T ] then return; else marked [T ] = true;
case T when T1! or T = T1 [m..n]: MarkAll(T1);

when T1 + T2 or T1 � T2: MarkAll(T1); MarkAll(T2);
when ε or a: return;

CoCheck(Type T , Set A, Set B)
Global Array <Type → boolean> marked = [false];
Global Array<Symbol → Set of Type> NodesOfSymbol = Prepare(T );
MarkBPlus(B, T );
every a in A, Ta in NodesOfSymbol [a] satisfy marked [Ta]

CoImplies(Type T , Type U):
every A+ Z⇒ B+ in CC(U) satisfy CoCheck(T,A,B)

Figure 2: Algorithm for implication of co-occurrence constraints.

Hence, (b, a) ∈ P(T ) because LCAL(T )[b2, a3] = +r, and
(a, b) ∈ P(T ) because LCAL(T )[a1, b2] = ·→1 , but also be-
cause LCAL(T )[a3, b2] = +r. Hence, T 6|= a ≺ b and T 6|=
b ≺ a.

Property 3.10 allows the definition of the following constraint-
extraction function.

Definition 3.12 (OCA
g (T ))

OCA
g (T )

def
= {a ≺ b | a, b ∈ A,
∀ai, bj ∈ L(T ). LCAL(T )[ai, bj ] ∈ {+1, ·→1 }}

Property 3.13 (Completeness of OCA
g (T )) OCA

g (T ) is com-
plete for the set of constraints with shape a ≺ b and {a, b} ⊆
A.

The order constraints component OC(U) of the exact con-

straint extraction function C(U) is indeed OCS(U)
g (U). More

precisely, since in a conflict-free type no symbol appears
twice, and no operator is in the scope of a counting operator
apart from a, OC(U) can be defined as follows, without any
marking.

OC(U)
def
= {a ≺ b | a, b ∈ S(U), LCAU [a, b] ∈ {+, ·→}}

Property 3.10 also suggests an efficient algorithm to verify
whether, for all F ∈ OC(U), we have T |= F . The algorithm
is in Figure 3. It first builds, for each type, its decoration
and a data structure to compute the LCA of any two leaves
in constant time. This preprocessing phase can be done in
linear time using the algorithm in [2].3 The list LeavesT

contains the leaves of T , while NodeOfSymbolU maps each
symbol in S(U) to the only corresponding leaf in U ; the

3In this case, LCAi is not really a bidimensional array, it is
a linear-space object with a constant-time access.

array SymbolOfNodeT , in turn, maps each leaf node ai in
T to the corresponding symbol a. After preprocessing, we
access LCAU once for each pair of leaves of U , and we save
in OCU every pair (a, b) such that U |= a ≺ b. Then, we
scan each pair of nodes in LeavesT and, for each pair of
distinct symbols (a, b), we record true if all occurrences of
(a, b) in T meet the LCA-based OCg()-test, false otherwise.
Finally, we scan each pair of symbols (a, b) inOCU and verify
that a ≺ b ∈ OCg(T ). It is easy to see that the algorithm
complexity is O(|T |2 + |U |2). Hence, also in this case, the
extension from conflict-free inclusion to mixed inclusion adds
no time complexity to the algorithm.

3.3 Cardinality Constraints
The cardinality constraints for a conflict-free type sim-

ply correspond to the instances of the counting operator.
In particular, the cardinality constraint component of C(U)
is ZeroMinMax (U), defined as follows; ZeroMinMax (U) is
trivially complete for conflict-free types and for constraints
with shape a?[m..n] and a ∈ S(U) [9]:

ZeroMinMax (U) = {a?[m..n] | a [m..n] subterm of U}

General types are trickier, because of symbol repetition and
generalized counting. In particular, the lowest allowed car-
dinality for a in T may depend on the validity of a+ on some
subterm of T . Consider, for example, the type a [2..∗]·a [3..∗]:
it clearly satisfies a?[5..∗]. However, the type (a [2..∗] + ε)·
(a [3..∗] + ε) only satisfies a?[2..∗]: since a is optional, we
consider here min(2, 3) rather than 2 + 3. Finally, (a [2..∗] +
ε)· (a [3..∗]) satisfies a?[3..∗]: since a is optional in the first
subterm, we have to consider the bound of the second. In
the same way, while a [3..∗] [4..∗] satisfies a?[12..∗], the type
(a [3..∗]+ε) [4..∗] only satisfies a?[3..∗]. Exploiting this obser-
vation, we are able to define the following function Min∗(T, a),
which, for a type T , computes the minimum number of
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OrderImplies(Type T , Type U):
LCAT , LeavesT , SymbolOfNodeT = PreprocessGeneralType(T );
LCAU , S(U), NodeOfSymbolU = PreprocessCFType(U);
Set OCU = ∅
for each (a, b) in S(U)× S(U)

if(LCAU [NodeOfSymbolU (a),NodeOfSymbolU (b)] in {+1, ·→1 })
then OCU .add((a, b))

Array OCT = {true1,1, . . . , true|S(U)×S(U)|}
for each n1 in LeavesT , n2 in LeavesT

a = SymbolOfNode[n1]
b = SymbolOfNode[n2]
OCT [(a, b)] = OCT [(a, b)] ∧ (LCAT [n1, n2] ∈ {+1, ·→1 })

for each (a, b) in OCU

if (not OCT [(a, b)])
return false

return true

Figure 3: Algorithm for implication of order constraints.

times that the symbol a appears in a word w of T such
that w |= a+. The ∗ in Min∗(T, a) indicates that, when a
appears in no word of T , then Min∗(T, a) returns ∗; in the
definitions below, we assume that all of n+ ∗, ∗+ n, n× ∗,
∗ × n return ∗. The condition T |= a+ may be computed
as described in Section 3.1, but it may also be computed
together with Min∗(T, a), as we will do later on.

Definition 3.14 (Min∗(T, a))

Min∗(T1 + T2, a)
def
= min(Min∗(T1, a),Min∗(T2, a))

Min∗(T1 � T2, a)
def
=

if T1 |= a+ ∧ T2 |= a+

then Min∗(T1, a) + Min∗(T2, a)
elsif T1 |= a+ ∧ T2 6|= a+

then Min∗(T1, a)
elsif T1 6|= a+ ∧ T2 |= a+

then Min∗(T2, a)
elsif T1 6|= a+ ∧ T2 6|= a+

then min(Min∗(T1, a),Min∗(T2, a))

Min∗(b, a)
def
= if b = a then 1 else ∗

Min∗(T [m..n] , a)
def
=

if T |= a+ then Min∗(T, a)×m else Min∗(T, a)

Min∗(T !, a)
def
= Min∗(T, a)

Min∗(ε, a)
def
= ∗

To reason about this approach, we need a clear specifi-
cation of what Min∗(T, a) is expected to compute. Let us
define |w|a as the number of occurrences of a in w, and
SMin∗(T, a) as the formal specification of Min∗(T, a), as fol-
lows, where Ja+K are the words where a appears (notice that,
by Lemma 2.4, a ∈ S(T ) iff JT K ∩ Ja+K is not empty).

SMin∗(T, a)
def
= minw∈(JT K∩Ja+K) |w|a if a ∈ S(T )

SMin∗(T, a)
def
= ∗ if a 6∈ S(T )

The following lemma is a bit tedious but very easy to
prove.

Lemma 3.15 For any type T and symbol a: Min∗(T, a) =
SMin∗(T, a)

The upper bound is easier, and is computed as follows.

Definition 3.16 (Max0(T, a))

Max0(T1 + T2, a)
def
= max(Max0(T1, a),Max0(T2, a))

Max0(T1 � T2, a)
def
= Max0(T1, a) + Max0(T2, a)

Max0(b, a)
def
= if b = a then 1 else 0

Max0(T [m..n] , a)
def
= Max0(T, a)× n

Max0(T !, a)
def
= Max0(T, a)

Max0(ε, a)
def
= 0

The specification of Max0(T, a) is defined as follows.

Definition 3.17 (SMax0(T, a))

SMax0(T, a)
def
= maxw∈JT K |w|a if (maxw∈JT K |w|a) ∈ N

SMax0(T, a)
def
= ∗ if (maxw∈JT K |w|a) =∞

The following lemma is immediate.

Lemma 3.18 For any type T and symbol a: Max0(T, a) =
SMax0(T, a)

As a consequence, cardinality constraint implication can
be decided as follows.

Lemma 3.19

T |= a?[m..n] ⇔ m ≤ Min∗(T, a) ∧ Max0(T, a) ≤ n

We can also extend the ZeroMinMax (U) function to gen-
eral types. The result is complete, but we have no hope of
exactness once we abandon the symbol-counting limitation.
For example, if you consider a type (aa) [1..2], our constraint
language has no way to specify that aa and aaaa both be-
long to the type while the intermediate word aaa does not
(remember that F ∨ F is not part of the language).

Definition 3.20 (Cardinality Constraints)

ZeroMinMaxg(T )
def
= {a?[Min∗(T, a)..Max0(T, a)] | a ∈ S(T )}
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Corollary 3.21 ZeroMinMaxg(T ) is complete for constraints
with shape a?[m..n] and a ∈ S(T ).

We can now introduce the algorithm that we use to verify
that a general type T satisfies every F in ZeroMinMax (U).
It is listed in Figure 4; the function PlusMinMax computes,
in one pass, a boolean specifying whether T |= a+, the value
of Min∗(T, a), and the value of Max0(T, a). We omit case
T ! for simplicity; its inclusion requires the computation of a
second boolean specifying whether T |= a++.

PlusMinMax(T, a) can be computed in time O(|T |). Card
Implies invokes it on T once for each symbol of U , hence it
can be computed in time O(|U | × |T |).

3.4 Upper Bounds and Lower Bounds
The upper bound and lower bound components of C(U)

are defined below.
Notice that the problem of constraint implication is greatly

simplified by verifying the implication of lower and upper
bounds at the same time, as we do here: we do not need to
explicitly test whether T |= S(U)+; by restricting ourselves
to the case when T |= upperS(U), we only have to check
that N(T )⇒ N(U), as proved below.

Definition 3.22 (Upper and Lower components of C(U))

Lower-bound:

SIf (U)
def
= if ¬N(U) then {S(U)+} else ∅

Upper-bound:

upperS(U)
def
= {upper(S(U))}

Theorem 3.23 (Implication of SIf (T2) and upperS(T2))
For any two types T1 and T2:

T1 |= SIf (T2) ∪ upperS(T2)

⇔ (N(T1)⇒ N(T2)) ∧ S(T1) ⊆ S(T2)

Proof. (⇒) T1 |= upperS(T2) implies S(T1) ⊆ S(T2),
by Lemma 2.4. We prove now that ¬N(T2) ⇒ ¬N(T1).
Assume ¬N(T2); then T1 |= SIf (T2) means T1 |= S(T2)+,
hence ε 6∈ JT1K, hence ¬N(T1).

(⇐) The implication S(T1) ⊆ S(T2) ⇒ T1 |= upperS(T2)
is trivial. If N(T2) is true, then T1 |= SIf (T2) holds trivially.
If ¬N(T2), then, by N(T1) ⇒ N(T2), N(T1) is false as well,
hence every word of T1 contains a symbol from S(T1), hence
a symbol from S(T2).

The corresponding function UpperLowerImplies simply ex-
ecutes the test of Theorem 3.23.

3.5 Summing up
We have recalled each of the five components of the func-

tion C(U), and, for each component Ci, we defined a function
that verifies, for any general T , whether T |= Ci(U). Since
the union of these five components is exact for conflict-free
types, the following theorem holds.

Theorem 3.24 For any type T , for any conflict-free type
U , JT K ⊆ JUK iff all of CoImplies(T , U), OrderImplies(T ,
U), CardImplies(T , U), UpperLowerImplies(T , U) return
true.

CoImplies, OrderImplies, and CardImplies have quadratic
time-complexity, while UpperLowerImplies is linear. The

only case whose complexity is affected by the presence of
general types in the subtype position is that of cardinality
constraints, where the presence of multiple occurrences of a
symbol and the nesting of T [m..n] operators both concur in
making the problem less trivial.

4. RELATED WORK
The problem of inclusion of regular expressions with inter-

leaving has been studied in many papers. In [12], the com-
plexity of membership, inclusion, and inequality was stud-
ied for several classes of regular expressions with interleav-
ing and intersection. In particular, interleaving is proved to
make inclusion EXPSPACE-complete.

Starting from the results of [12], Gelade et al. [8] studied
the complexity of decision problems for DTDs, single-type
EDTDs, and EDTDs with interleaving and counting. By
considering several classes of regular expressions with inter-
leaving and counting, they showed that their inclusion is
almost invariably EXPSPACE-complete, even when count-
ing is restricted to terminal symbols only; they also showed
how these results extend to various kinds of schemas for
XML documents. We did not discuss here how to extend
our results from REs to XML schema languages because the
problem is indeed solved in [8], where it is shown how an in-
clusion algorithm for REs can be lifted to schema languages
that use that class of REs without changing the complexity
class.

As we specified many times, in [9] we defined a polynomial
time algorithm for inclusion of conflict-free types, but we
were not able to extend the result to reach any more general
class.

The properties of a commutative type language for XML
data have been discussed in [7]. Here, the authors essen-
tially described the techniques they used while implement-
ing a type-checker for commutative XML types. Their type
language resembles our language of conflict-free types, as
repetition types can be applied to element types only, and
interleaving is supported. The paper is focused on heuris-
tics that improve scalability, but do not affect computational
complexity.

To the best of our knowledge, the only paper dealing with
asymmetric inclusion of XML types is [6]. Here, Colazzo
and Sartiani showed that complexity of inclusion can be low-
ered from EXPSPACE to EXPTIME when a weaker form
of conflict-freedom is satisfied by the supertype.

5. CONCLUSIONS
In [9] we introduced the idea of representing REs with in-

terleaving and counting as sets of constraints, and of using
this representation as a way to check inclusion. Inclusion of
such extended REs has an appalling EXPSPACE complexity
in general, while our approach produced a cubic algorithm,
later reduced to O(n2), for an important subclass. Unfortu-
nately, while the subclass fits well the common practice of
XML schema definitions, it is far too restrictive to capture
the types that are typically inferred by a compiler. Subtype
checking during type checking is arguably the most impor-
tant application of type inclusion, and is the one where effi-
ciency is most important.

We had hopes of extending our class of PTime comparable
REs, since it does not contain all the types that can be
exactly defined with our constraints. However, any attempt
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CardImplies(Type T , Type U):
every a [m..n] in U satisfy let ( , Min, Max ) = PlusMinMax(T , a);

return Min ≥ m ∧Max ≤ n

PlusMinMax(Type T , Symbol a):
case T
when T1 � T2: case (PlusMinMax(T1, a), PlusMinMax(T2, a))

when ((true, Min1, Max1), (true, Min2, Max2)):
return(true, Min1 + Min2, Max1 + Max2);

when ((true, Min1, Max1), (false,Min2, Max2)):
return(true, Min1, Max1 + Max2);

when ((false, Min1, Max1), (true, Min2, Max2)):
return(true, Min2, Max1 + Max2);

when ((false, Min1, Max1), (false, Min2, Max2)):
return(false, min(Min1,Min2), Max1 + Max2);

when T1 + T2: let (Plus1, Min1, Max1) = PlusMinMax(T1, a);
let (Plus2, Min2, Max2) = PlusMinMax(T2, a);
return(Plus1 ∧Plus2, min(Min1,Min2), max(Max1,Max2));

when T1 [m..n]: let (Plus, Min, Max ) = PlusMinMax(T1, a);
if Plus then return(true, Min ×m, Max ×n)

else return(false, Min, Max ×n)
when ε: return(false, *, 0)
when a: return(true, 1, 1)
when b 6= a: return(false, *, 0)

Figure 4: Algorithm for implication of cardinality constraints.

to weaken the restrictions on single occurrence or counting
immediately allows the definition of types which admit no
exact description in the constraint language. The extension
of the type language with intersection does not suffer this
problem, as constraints are closed by intersection. However,
we proved in [9] that even one instance of binary intersection
is enough to make inclusion NP-hard, because it makes the
T |= F problem much harder.

In this paper we have described a way out of this impasse.
Through the lateral step of asymmetric inclusion, we have
been able to widen our approach up to the point where all
limitations are removed from the subtype. Moreover, the
resulting algorithm retains the quadratic complexity of the
pure case, which is, frankly, quite amazing.
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