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ABSTRACT
In this paper we investigate algorithms and lower bounds for
summarization problems over a single pass data stream. In
particular we focus on histogram construction and K-center
clustering. We provide a simple framework that improves
upon all previous algorithms on these problems in either the
space bound, the approximation factor or the running time.
The framework uses a notion of “streamstrapping” where
summaries created for the initial prefixes of the data are
used to develop better approximation algorithms. We also
prove the first non-trivial lower bounds for these problems.
We show that the stricter requirement that if an algorithm
accurately approximates the error of every bucket or every
cluster produced by it, then these upper bounds are almost
the best possible. This property of accurate estimation is
true of all known upper bounds on these problems.

1. INTRODUCTION
In the single pass data stream model any input data which is
not explicitly stored cannot be accessed again. For a variety
of these problems there exist small space, offline algorithms
with optimal or good approximation. These algorithms typ-
ically find an appropriate granularity at which it inspects
the data. In a streaming setting the problem is that by the
time we have found the correct granularity, we have already
seen a significant portion of the stream and unlike the of-
fline algorithms we cannot revisit the stream. This manifests
in the case of several clustering and summarization prob-
lems. A typical way of addressing this challenge has been to
run the algorithm for a number of eventualities and to pick
the best solution at the end of input. This results in space
bound of these algorithms to depend on (logarithm of) the
magnitude of the optimum solution E∗ or the inverse of the
smallest nonzero number that can be represented (machine
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precision) M . This raises the main question we address in
this paper:

Question 1. Is it possible to design clustering and sum-
marization algorithms for data streams whose space require-
ments do not depend on n, E∗,M? What is the best achiev-
able approximation ratio under this restriction on space?

The above question is motivated both by theory and prac-
tice. From a theoretical point of view, the question of min-
imum space is a natural one and the question of a space
bound which is independent of n (and other input param-
eters) harks back to the celebrated results on ε-nets [22],
which are independent of the size of the input. Such input
parameter independent bounds are extremely useful build-
ing blocks for other algorithms. Also as n, E∗,M increase,
it seems there is less information in any B term approxima-
tion of the signal – using more space when the information
decreases is absolutely counter-intuitive! However note that
we are seeking algorithms that considers all input points,
and not just a large subsample. From an implementation
perspective, if the space used depends on n, E∗,M then sev-
eral messy complications, including growing an initial mem-
ory allocation, are introduced. Further, reducing the space
below the cache size speeds up streaming algorithms signif-
icantly.

In the main result in this paper we show that for cluster-
ing and summarization problems which satisfy some simple
criteria we can achieve streaming approximation algorithms
whose space bounds are independent of n,Mε∗ and are al-
most the best possible. We show that there exists an oppor-
tunity to bootstrap or “streamstrap” streaming algorithms
where we use We can use the summaries of the prefixes of
the data to inform us of the correct level of detail we need to
be investigating the data. As a consequence we get summa-
rization algorithms whose space bounds are independent of
n,M, E∗. We focus on two summarization problems in this
paper – the k-center problem and the maximum error his-
togram construction problem. We also show that the ideas
extend to more complicated minsum objective functions.

Clustering is one of the most extensively used summariza-
tion technique. In this paper we focus on K-center cluster-
ing in arbitrary metric spaces, in a model which is known as
the Oracle Distance Model. In this model, given two points,
p1, p2 we have an oracle that uses small additional space
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and determines their distance. The goal, given n points
P = p1, . . . , pn is to identify K centers pi1 , . . . , pik such that
maxx∈P minj≤K d(x, pij ) is minimized. In other words, we
are asked to find the smallest radius E∗ such that if disks of
radius E∗ are placed on the chosen centers then every input
point is covered. The minsum variant of this problem is the
well known k-median clustering problem where we seek to
minimize

P
x∈P minj≤K d(x, pij ).

The oracle distance model allows us to consider complicated
metric spaces which are difficult to embed in known and sim-
pler metric spaces (for example, euclidean, hamming). With
the growth of richer web applications, analysis of blog posts,
this model of clustering will only grow in relevance. How-
ever a downside of the oracle distance model is that unless
p1, p2 are stored, their distance can only be imputed based
on other information stored. In an early result, Charikar
et. al [6] gave a single pass streaming 8 approximation al-
gorithm which uses O(K) space. Note that based on the
NP-Hardness of deciding if a dominating set of size K exists,
achieving an approximation ratio better than 2 for the K-
center problem is NP-Hard. It is possible to achieve a 2(1+ε)
approximation with a space bound of O(K

ε
log(ME∗), in a

streaming setting using geomteric discretization of the dis-
tances.

The histogram construction problem is defined as: given
a sequence of n numbers, x1, . . . , xn representing a vector
X ∈ Rn, construct a piecewise constant representation H
with at most B pieces such that a suitable objective function
f(X,H) is minimized. For example, the VOPT histogram
problem seeks to minimize ‖X − H‖22, the maximum error
histogram seeks to optimize ‖X−H‖∞. These have recently
been used in approximate query answering [1], time series
mining [5], curve simplification [3]. In query optimization,
after the frequencies have been aggregated, the serial his-
tograms considered by Ioannidis [18] correspond to piecewise
constant representation. This initiated a lot of research lead-
ing up to the dynamic programming algorithms provided by
Jagadish et. al [19]. Since the end use of histograms is ap-
proximation, it was natural to consider approximation algo-
rithms for histograms which was addressed in [12, 13]. These
works also provided streaming algorithms for histogram con-
struction, namely when . . . , xi, . . . were provided one at a
time in increasing order of i and the algorithms are restricted
to use sublinear space. Since then a large number of algo-
rithms have been proposed, for many different measures and
in particular the maximum error, many of which extend to
streaming algorithms [16, 4, 20]. However for every algo-
rithm proposed till date, for any error measure, the space
bound depends either on log n, log E∗ or logM . As in the
K-center problem, these streaming algorithms depend on
geometric discretization.

Our Contribution: We focus on single pass insertion only
(no deletion or updates) streaming algorithms. We begin
with the results for specific problems:

1. For the model where . . . , xi, . . . are presented in in-
creasing order of i, we provide a (1 + ε) approximation
algorithm for the maximum error and VOPT error his-
togram construction with space requirements B

ε
log 1

ε

and B2

ε
log 1

ε
respectively, which are independent of

n, E∗,M . The running time of both algorithms are
O(n) plus smaller order terms. For the VOPT error
this improves the previous best space bound of an al-
gorithm with O(n) running time by a factor B. For
the maximum error, when ε ≤ 1/(40B), we show that
an algorithm must use use Ω( B

ε log B
ε

) space if it si-

multaneously achieves a (i) a (1 + ε) approximation
and (ii) for each of the buckets produced in the so-
lution approximates the error of that bucket to addi-
tively within ε times optimum of the actual error of
that bucket in the solution. Observe that the second
requirement is natural for any good summarization al-
gorithm – and all previous algorithms as well as the
two new ones we propose obey this property. This is
the first lower bound for any histogram construction
algorithm which is stronger than Ω(B). We note that
the difficulty of proving a lower bound lies in the fact
that the . . . , xi, . . . are presented in increasing order
of i, which does not conform to known lower bound
techniques for data streams where the arbitrary order
of input is critical for lower bounds.

2. For theK-center problem, in the oracle distance model,
we provide the first 2(1+ε) approximation using space
O(K

ε
log 1

ε
) which is independent of n,M, E∗. Our

setup easily extends to near optimal results for weighted
K-centers. We show that this method improves the
approximation ratios for the streaming k-median clus-
tering; however it does not improve previous space
bounds which depend on log2 n. For ε ≤ 1/10K, we
also show that if a deterministic algorithm simultane-
ously provides 2 + ε approximation as well as approx-
imates the radius of the clusters it produces to addi-
tively within ε times the optimum, then the algorithm
must store Ω(K

ε
) = Ω(K2) points. As in histograms,

this requirement means that the clustering produced
is sufficiently tight for every cluster.

From a point of view of techniques, all the upper bounds
follow the same framework. We use three main ideas: (i) we
use the notion of a “thresholded approximation” where the
goal is to minimize the error assuming we know the optimum
error 1, (ii) we run multiple copies (but controlled in num-
ber) of the algorithm corresponding to different estimates of
the final error and, (iii) we use a “streamstrapping” proce-
dure to use partially completed summarization for a certain
estimate to create summarization for a different estimate of
error. The first two ideas have been explicitly used in the
context of summarization before, see [4, 9, 10, 20, 11] among
many others. We are unaware of the use of the third idea
in any previous work and we believe that this notion will be
useful in a variety of different problems. Interestingly, the
formalization of the general framework also provides results
superior to all known algorithms for several summarization
problems.

In terms of lower bounds, we provide the first non-trivial
lower bounds for these problems. Further, we use the fact

1The thresholded approximation is similar to, but not the
same as, approximating the “dual” problem of minimizing
size subject to a fixed error.
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that summarization typically entails a tight guarantee (per
point, per bucket or per cluster) to develop novel and strength-
ened lower bounds in this paper. While several of our results
are almost tight (upto factors of log B

ε
) many interesting

open questions remain.

Roadmap: We present the upper bounds in Section 2. We
then prove the lower bound for histograms in Section 3 and
the lower bounds for the K-center problem in Section 4.

2. UPPER BOUNDS
In this section we provide a framework that simultaneously
handles a variety of summarization problems. Let P be a
summarization problem with space constraint B with input
X. As easy running examples, consider P to be the maxi-
mum error histogram construction problem or the K-center
problem.

2.1 The setup: Requirements
Consider summarization scenarios where the following con-
ditions apply:

• Thresholded small space approximations exist. For a
problem P a “thresholded approximation” is defined
to be an algorithm which simultaneously guarantees
that (i) if there is a solution with summarization size
B′ and error E (and we know E), then in small space
we can construct a summary of size at most B′ such
that the error of our summary is at most αE for some
α ≥ 1 and (ii) otherwise declare that no solution with
error E exists.

• The error measure is a Metric error. Let E(Y,H) be
the summarization error of Y if the summary is H. Let
X ◦Y denote concatenation of the input X followed by
Y and let X(H) be the input where every input X ∈ X
is replaced by the corresponding element x̂ generated
from H which best represents x. The E is defined to
be a Metric error if for any X,Y,H,H ′ we have:

E(X(H) ◦ Y,H ′)− E(X,H) ≤ E(X ◦ Y,H ′)
≤ E(X(H) ◦ Y,H ′) + E(X,H)

For the K-center problem: Hochbaum and Shmoys [17] gave
a thresholded approximation algorithm using O(K) space
with α = 2. Given a threshold E the algorithm maintains
a set S such that all points are within distance 2E from at
least one member of S, and every point that violates the
condition is added to S. The space required is the size of
S which is at most K (or the estimate E is wrong). To see
that the clustering radius defines a metric error – consider
a clustering given by H and and replace a point x by its
closest center in H. The fact that the underlying distances
form a metric space and satisfy triangle inequality completes
the argument that the metric error property holds.

Thresholded approximation has been used in the context of
histograms before, in the context of “dual” problems where
the summary size is minimized to achieve a predetermined
error [4, 20, 11]. Concretely, recall that the maximum error

histogram construction problem is: given a set of numbers
X = x1, x2, . . . , xn construct a piecewise constant represen-
tation H with at most B pieces such that ‖X−H‖∞ (both of
these are vectors in Rn) is minimized. Now, E(X ◦Y,H ′) =
‖X ◦ Y,H ′‖∞ and

‖X(H) ◦ Y,H ′‖∞ − ‖X ◦ Y,X(H) ◦ Y ‖∞ ≤ ‖X ◦ Y,H ′‖∞
‖X ◦ Y,H ′‖∞ ≤ ‖X(H) ◦ Y,H ′‖∞ + ‖X ◦ Y,X(H) ◦ Y ‖∞

Now E(X(H) ◦ Y,H ′) = ‖X(H) ◦ Y,H ′‖∞ and E(X,H) =
‖X ◦ Y,X(H) ◦ Y ‖∞, and thus the error measure for the
maximum error histogram problem is a metric error. This
property also holds for the square root of the VOPT error,
which is the `2 norm.

A thresholded optimum algorithm for the maximum error
problem is as follows (see also [15]): observe that if we are
to approximate a set of numbers then the best representa-
tion is (max+min)/2 and the error is (max−min)/2. So a
simple implementation reads the numbers in the input and
keep a running max and min. If max−min > 2E at some
point (the knowledge of E is used here) then the numbers
read so far are declared to be in one bucket and a new bucket
is started. This is a greedy algorithm and it is easy to prove
by induction over B′ that the greedy algorithm will never
use more than B′ buckets. To complete the algorithm, we
observe that themin,max are defined by the set of

`
n
2

´
inter-

vals and can be found by binary search. Thus for maximum
error histograms we have an approximation with α = 1. The
space requirement is O(B′).

2.2 The solution: The StreamStrap Algorithm
Consider the algorithm given if Figure 1.

Theorem 1. If a thresholded approximation exists for a
summarization problem whose error objective is a metric er-
ror then for any ε ≤ 1/10 the StreamStrap algorithm pro-
vides a α/(1− 3ε)2 approximation. The running time is the
time to run O( 1

ε
log α

ε
) copies of the thresholded algorithm

plus O( 1
ε

log(αE∗M)) initializations.

Proof: Consider the lowest value of the estimate E for which
we have an algorithm running currently. Suppose that we
had raised the estimate j times before settling on this es-
timate for this copy of the algorithm A(E) . Let Xi de-
note the the prefix of the input just before the estimate was
raised for the ith time over the history of A(E). Let Hi be
the corresponding summary maintained for Xi. Denote the
entire input as Xj ◦ Y and define Yj as Xj \Xj−1, that is,
Xj = Xj−1 ◦ Yj . Suppose the final summary is H. By the
metric error property,

E(Xj(Hj) ◦ Y,H)− E(Xj , Hj) ≤ E(Xj ◦ Y,H)

≤ E(Xj(Hj) ◦ Y,H) + E(Xj , Hj) (1)

Now E(Xj , Hj) ≤ E(X(Hj−1)◦Yj , Hj)+E(Xj−1, Hj−1). We
observe that E(X(Hj−1) ◦ Yj , Hj) was run for an estimate
εE/α, and thus E(X(Hj−1) ◦ Yj , Hj) ≤ α εE

α
and further for

all i < j, we have E(Xi−1(Hi−1) ◦ Yi, Hi) ≤ εE(Xi(Hi) ◦
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Algorithm StreamStrap:

1. Read the first B items in the input. This should have summarization error 0 for any reasonable measure since the entire input is stored.
Keep reading the input as long as the error is 0.

2. Suppose we see the first input which causes non-zero error. The error has to be at least 1/M where M is the largest number possible to
represent in the machine. Let this error be E0.

3. Initialize and run the thresholded algorithm for E = E0, (1 + ε)E0, . . . , (1 + ε)JE0. We set J such that (1 + ε)J > α/ε. The number of
different algorithms run is O( 1

ε log α
ε ).

4. At some point the thresholded algorithm will declare “fail” for some E. Then we know that E∗ > E for the (recursively) modified instance.

We terminate the algorithm for all E′ ≤ E and start running a thresholded algorithm for (1 + ε)JE′ using the summarization of E′ as the
initial input. Note that we always maintain the same number of copies of the thresholded algorithm but the error estimates change.

5. We repeat the above step until we see the end of input. We now declare the answer for the lowest estimate for which a thresholded
algorithm is still running.

Figure 1: The StreamStrap Algorithm

Yi+1, Hi+1). Using telescoping and observing E(X1, H1) =
0, we get that

E(Xj , Hj) ≤
X

1<i≤j

E(Xi−1(Hi−1) ◦ Yi, Hi) ≤
ε

1− εE (2)

Therefore the error of the algorithm is αE+Eε/(1−ε) which
is less than Eα/(1−3ε) since α ≥ 1. At the same time, if H∗

is the optimum summary for Xj ◦ Y , then by Equations 1
and 2,

E(Xj(Hj) ◦ Y,H∗)−
ε

1− εE ≤ E(Xj ◦ Y,H∗)

But since the algorithm failed for E/(1 + ε) we know that
E(Xj(Hj) ◦ Y,H∗) is at least E/(1 + ε). Therefore, E(Xj ◦
Y,H∗) is at least E

“
1

1+ε
− ε

1−ε

”
≥ E(1 − 3ε) for the range

of ε considered. Thus the approximation ratio follows. The
number of initializations correspond to log1+ε(αEM) which

is O( 1
ε

log(αE∗M)).

2.3 Applications I: MinMax objectives
The important aspect of a minmax guarantee is that it ap-
plies to all the data points, and thus thresholded algorithms
are very natural for this problem.

Theorem 2 (K-Center). We have a single pass 2 +
ε approximation for K center using O(K

ε
log 1

ε
) space and

O(Kn
ε

log 1
ε

+ K
ε

logME∗) time when the points are input
in an arbitrary order. Note that the radius of any cluster
computed by the algorithm is additively within εE∗ of the
true radius of that cluster using that center.

Proof: The main claim follows from applying Theorem 1
with ε′ = ε/20 and α = 2. The per cluster guarantee comes
from the following facts: first, the error is a min-max ob-
jective and applies to every point in the input, secondly theP
i<j E(X(Hi−1) ◦ Yi, Hi) term evaluates to ε′E which is at

most εE∗.

Using the 3 approximation algorithm in [17] for K center
with costs (where each node has a cost and we are restricted
to sum of the cost of the centers to be less than C in addition
to bound on K) we immediately get a 3+ε approximation in
O(K

ε
log 1

ε
) space. Achieving an approximation better than

3 is NP hard for this problem [8].

Theorem 3 (Maximum Error Histograms). We have
a single pass 1 + ε streaming approximation for B bucket
histogram construction using O(B

ε
log 1

ε
) space and O(n +

B
ε

(log2 B
ε

) logME∗) time when the input . . . , xi, . . . is pre-
sented in increasing order of i. Again the error of any bucket
found by the algorithm is additively within εE∗ of the true
error of that bucket.

Proof: The space bound follows from the theorem. To see
the time bound, consider, instead of running the thresholded
algorithm on one input, to batch t = O(B

ε
log 1

ε
) inputs.

On these t values we define a complete binary tree and re-
cursively compute the max and min values of each interval
defined by the tree in O(t) time. Over the entire input,
the time taken would be n

t
O(t) which is O(n) for this part.

Using the array we can compute the max and min of any
interval in O(log t) time. Now every thresholded algorithm
only needs to (repeatedly) find the maximal right extension
of its current bucket (interval) such that max−min ≤ 2E . If
this condition is violated in the t then call the search “termi-
nating”. Note that a non-terminating search can be decided
in O(1) time using the max, min of the entire t numbers.
Observe that in that case the particular thresholded algo-
rithm will continue to run. Thus over the entire life of the
entire algorithm we would spend O(n/t) times the number
of thresholded algorithms being run (which is O( 1

ε
log 1

ε
))

for this step. But the product is O(n/B) and is dominated
by the O(n) term.

For a terminating search, we can find the exact extension
using another binary search in O(log t) time. Thus every
bucket terminates using O(log2 t) time. Thus over all the
B buckets, for each algorithm the time is O(B log2 t). The
initiation time for each algorithm is O(B) (the summary
contains only B numbers which defines piecewise constant
intervals). The number of thresholded algorithms tried is
at most the number of algorithms being initiated. Since
log t = O(log B

ε
), the result follows.
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2.4 Applications II: MinSum Objectives
The minsum variants of the summarization problems seek
to minimize a sum over all the points. The well known
VOPT histogram is the `2 variant of the maximum error
objective and is a minsum (of squares) variant. The K-
median problem is the minsum objective corresponding to
the K-center problem.

We now focus on the VOPT histogram which seeks an H
which minimizes ‖X −H‖22. The square root of the VOPT
error is the `2 metric and satisfies the metric error property.
Further a (1 + ε) approximation of the square root gives a
(1 + ε)2 < 1 + 3ε approximation for small ε. A summary
which gives a (1 + ε) approximation of the VOPT error also
provides a (1 + ε) approximation of the square root.

We note that the algorithm AHIST-B as detailed in Sec-
tion 3.5 in [13] is a streaming (1 + ε) approximation for
the VOPT error. We will run two such algorithm as our
thresholded algorithm assuming that the error is between
[E , BE/ε) and [BE/ε,B2E/ε2). Once the first fails, we use
the summary of that to initiate a thresholded algorithm for
[B2E/ε2, B3E/ε3). This geometric factor of B/ε suffices for
the telescoping sum in proof of Theorem 1. In the algorithms
studied in [13], there was no upper bound to the error, but
here we have an upper bound in the thresholding algorithm
which limits the parameter τ as descried in the AHIST-B
algorithm2 to be B/ε + log1+ε/B

B
ε

= O(B
ε

log B
ε

). This
algorithm simultaneously tries to maintain approximate j-
bucket histograms for j < B. For each j it finds τ “break-
points” which determines the error of a bucket for the j+ 1-
bucket histogram.

We would set t = O(B
2

ε
log B

ε
) which is the target space

bound, and corresponds to the number of items read in a
batch. Again using O(t) space we compute the running sum
and sum of squares for the intervals corresponding to the
complete binary tree.

An easy analysis of the cost of terminating searches isO(log t)
evaluations of the error in a bucket is required to add a
bucket. Each evaluation requires O(τ) time. So over the
B − 1 values of j the time taken is O(Bτ(τ + log t) log t) =

O(B
3

ε2
log3 B

ε
) for each thresholded algorithm. We have to

run at most logB
ε
ME∗ such algorithms. This gives a run-

ning time of O(B
3

ε2
(log2 B

ε
) logME∗).

The cost of non-terminating searches is O(1) time (after the
sum and sum of squares arrays are set up) for each last
bucket for each j– which translates to O(B n

t
) = O(εn/B)

and is again dominated by the O(n) time to create the n/t
arrays of sum and sum of squares. Thus,

Theorem 4 (VOPT error). We can compute a 1 + ε

2These details are available in [13]. The analysis is however
sharper than that of [13] since we will separate the termi-
nating and non-terminating searches as in the analysis of
maximum error which is novel in this paper.

approximation to the best B-bucket histogram for VOPT er-

ror using O(B
2

ε
log B

ε
) space and O(n+ B3

ε2
(log2 B

ε
) logME∗)

time when the input . . . , xi, . . . is presented in increasing or-
der of i.

We now consider the K-median problem. Recall that the
goal in this problem, given n points P = p1, . . . , pn, is to
identifyK medians pi1 , . . . , pik such that

P
x∈P minj≤K d(x, pij )

is minimized.

The first O(1) approximation for the K-median problem for
data streams using sublinear space was given by Guha et.
al [14]. Based on Meyerson’s [23] online facility location
algorithm, Charikar et. al [7] gave a randomized O(1) ap-
proximation using O(K log2 n) space which succeeded with

probability 1 − 1/nΩ(1). However the algorithm in [7] bor-
rows the “doubling” argument from [6], and the approxima-
tion ratio is β+2c(1+β) where β is large. In fact β satisfies
βγ ≥ 4+16β+17γ and β ≥ 2c(1+γ)+γ where c is the best
approximation algorithm for the K-median problem and γ
can be chosen to satisfy the two conditions. Based on the
result of Arya et. al [2] c = 3 + ε. Inspection shows that
γ > 16 and minimizing β over the choices of γ gives β ≥ 130.
130.

Using the framework here we were able to improve the 8
approximation in [6] to a 2+ ε approximation. Applying the
same ideas to the K-median problem reduces the parameter
β to 4 + ε, as we show below. We note that this result is
immediate if we lose a further factor of 1

ε
log(ME∗) in space.

The goal is to avoid dependence on M, E∗ (unfortunately the
algorithm will depend on log2 n).

First, we observe that the K-median objective function sat-
isfies the metric error property. We note that based on
Lemma 1 in [7], Markov inequality and the union bound
it follows that: claim:

Lemma 1. There exists a simple randomized algorithm
such that with probability at least ε, we produce a r-median
solution whose objective is (1 + 2ε)((4E∗ + L) where r ≤
k
ε
(1 + logn)(1 + 4E∗/L) and E∗ is the value of the best k-

median solution. This algorithm uses O(r) space.

Suppose we run O( 1
ε

logn) copies of the above procedure
for L = εE for an estimate E . An individual copy fails if
the number of medians exceed r or if the solution exceeds
4(1 + ε)E . Then if E ≤ E∗/(1 + ε) then the probability of

declaring failure is at most 1/nΩ(1). We can now run the
StreamStrap algorithm (which will run O( 1

ε
log 1

ε
) copies of

this) and we achieve:

Lemma 2. There exists a randomized algorithm such that
the expected value of a r-median solution produced by the
algorithm is 4(1 + ε)E∗ where r ≤ 4 k

ε2
logn and E∗ is the

value of the best k-median solution. This algorithm uses
O( k

ε3
(log2 n) log 1

ε
) space and succeeds with probability 1 −

1/nΩ(1).

In essence, we show that we can achieve a β arbitrarily close
to 4, similar to the statement we showed for the K-center
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problem. Note that the space bound matches [7] for any
constant ε, but the approximation factor is greatly improved,
which was our goal.

Theorem 5 (K-median). There exists a randomized 34+
ε approximation for the K-median problem in the oracle dis-
tance model in a data stream setting using O( k

ε3
(log2 n) log 1

ε
)

space which succeeds with probability 1− 1/nΩ(1).

3. LOWER BOUND FOR MAXIMUM ER-
ROR HISTOGRAMS

We begin with the definition of the Indexing problem in com-
munication complexity. Alice has a string σ ∈ {0, 1}n and
Bob has an index 1 ≤ j ≤ n. The goal is for Alice to send
a single message to Bob such that Bob can compute the jth

bit σj . It is known that this requires Alice to send Ω(n) bits
[21]. We would reduce the Indexing problem to constructing
a histogram – Alice would interpret her string as some num-
bers and start a histogram construction algorithm. At the
end of her input she will send her memory state to Bob and
Bob will continue the computation. A good approximation
to the histogram problem will solve the indexing problem.
Thus the memory state sent by Alice must be Ω(n) bits,
which gives us a lower bound of the space complexity of
any streaming algorithm. Since the lower bound of index-
ing holds for randomized algorithms, the same proofs will
translate to a lower bound for randomized algorithms. We
start with a simple reduction.

Theorem 6. Any (1+ε) approximation for B = 2 bucket
histogram for maximum error, even when the input . . . , x′i, . . .
is presented in increasing order of i′, must use Ω(1/ε) bits
of space.

Proof: Suppose we have a histogram algorithm which re-
quires s space. Alice starts the histogram algorithm with
the input 0. Then starting from i = 1 if σi = 1 she adds
the number n+ i to the stream. If σi = 0 she does not add
anything. In both cases she proceeds to the next i′. Note
that the i and i′ are different – then xi′ input corresponds
to the i′-th bit which has value 1. At the end of i = n she
sends the contents of her memory to Bob. Bob adds the
number 2(n+ j).

If σj = 1 then the three numbers 0, n+ j, 2n+ 2j have to be
covered by two buckets and the error is at least 1

2
(n+ j). If

however σj = 0 then the error is no more than 1
2
(n+ j − 1)

which corresponds to covering all numbers less or equal n+
j − 1 and all numbers greater or equal n+ j + 1 by the two
buckets. Suppose ε = 1/(4n). Then a (1 + ε) approximation
separates the two cases since j ≤ n,

(1+
1

4n
)
1

2
(n+j−1) ≤ 1

2
(n+j)−1

2
(1+

1

4n
)+

1

4n

1

2
2n <

1

2
(n+j)

Thus a (1 + ε) approximation will reveal σj and therefore s
must be at least Ω(n) = Ω( 1

ε
).

The above leaves open the possibility that there is an algo-
rithm possible with space O(B + 1

ε
). This is ruled out by

the next lower bound. However we use the natural require-
ment of summarization that each bucket be approximated
to additive ε times the optimum error. All upper bound
algorithms satisfy this criterion.

Theorem 7. For all ε ≤ 1/(40B), any (1 + ε) approxi-
mation for B bucket histogram for maximum error, which
also approximates the error of each bucket within additive ε
times the optimum error must use Ω( B

ε log B
ε

) bits of space,

even when the input . . . , x′i, . . . is presented in increasing or-
der of i′.

Proof: Let t, r be integers such that t > 2r. Let Si =
{a(t+ i)|a(t+ i) < 2rt and a is a positive integer}. Observe
that for i, i′ < t, such that t + i, t + i′ are coprime (do not
share a common factor), the sets Si, Si′ are disjoint and
2r > |Si| ≥ r. Now, using the prime number theorem, there
are Θ(t/ log t) primes between t and 2t for large t. Thus
S = ∪0≤i<tSi is of size n = Ω(rt/ log t). Let the numbers in
S be denoted by T1, T2, . . . , Tn.

Again we reduce indexing to the histogram construction.
Assume we have a good histogram algorithm. Alice with
her string σ, now starts with 1/4 and adds Ti − 1

2
, Ti + 1

2
if

σi = 0 and adds Ti− 1
4
, Ti + 1

4
. She sends the memory state

to Bob. Bob computes an i0 such that Tj belongs to Si0 .
Bob can also compute Tn. For each element u of the form
a(t+ i0) such that Tn < u < 2r(t+ i0) he adds u− 1

4
, u+ 1

4
.

He finally adds 2r(t+ i0)− 1/4. The input is interpreted as
a sequence . . . , xi′ , . . . in increasing order of i′.

Set B = 2r. Then there exists a 2r bucket histogram which
uses the buckets [1/4, t + i0 − 1/4], [t + i0 + 1

4
, 2(t + i0) −

1
4
], . . . , [(2r− 1)(t+ i0) + 1

4
, 2r(t+ i0)− 1

4
]. We are willfully

ignoring the 0/1 settings for this case. The error therefore is
at most 1

2
(t+ i0 − 1

2
). Any other histogram either contains

a bucket spanning two multiple of t + i0 or contains t + i0
in the interval corresponding to the first bucket or contains
(2r − 1)(t + i0) in the interval corresponding to the last
bucket. Thus the the error will be at least 1

2
(t+ i0 − 1

4
).

Now if we are guaranteed a 1 + ε approximation with ε =
1/(20t) (which ensures the range of ε in the theorem state-
ment) then

(1 + ε)
1

2
(t+ i0 −

1

2
) <

1

2
(t+ i0 −

1

4
) +

1

2
ε(t+ i0)− 1

8

<
1

2
(t+ i0 −

1

4
) +

1

2

1

20t
2t− 1

8
<

1

2
(t+ i0 −

1

4
)

Therefore any (1 + ε) forces the bucket boundaries to begin
or end around multiples of t+ i0.

We each bucket has to be approximated well. Therefore if
we use Tj− 1

4
instead of Tj− 1

2
or Tj+

1
4

instead of Tj+
1
2

then

the error would be at least 1
2

1
4

= 1
8

But the allowed error is

ε 1
2
(t + i0 − 1

2
) < 1

20t
1
2
2t < 1

8
. Therefore the approximation

of the particular bucket which contains the endpoint corre-
sponding to j will reveal σj , and solve the indexing problem.
Therefore the space requirement is Ω(n) = Ω( B

ε log B
ε

).
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4. LOWER BOUNDS FOR K-CENTER IN THE
ORACLE DISTANCE MODEL

Let us recall the oracle distance model we are considering
in this paper. There is a distance evaluation function or
an “oracle”, which when provided with two point p, q return
only the distance d(p, q). The oracle model has to store the
individual points in their entirety, to be able to invoke the
oracle. Thus the measure of space used by any algorithm
will be the number of points stored. The fundamental as-
sumption in this model is that the algorithm cannot “create”
any point which is not in the input. This separates arbi-
trary metric spaces from geometric spaces, and we will see
a direct effect of this soon. In the remainder of the section
we will provide lower bounds for single pass deterministic
algorithms.

The roadmap: We will first provide the algorithm with a
lot of input points and the algorithm will be forced to forget
a majority of these points. Based on these forgotten points
we will adversarially (this is where we use the fact that the
algorithm is deterministic) choose a further set of points and
force the algorithm to remember all these new points.

Theorem 8. A single pass deterministic streaming algo-
rithm in the oracle distance model for ε = Θ(K) that simul-
taneously provides a 2 + ε approximation for the K-center
problem as well as a bound on the radius of each cluster
within an additive ε times the optimum radius must store
Ω(K2) points for some input.

Proof: Let K = t + r, ε = 1/(8t) and t = 8r. Consider a
set of points P = {puv|1 ≤ u ≤ t and 1 ≤ v ≤ r}.

We first provide the points P0 corresponding to 1 ≤ u ≤ t/2.
The distance between puv, pgh is defined as (assume wlog
u ≥ g) : If u = g (and h 6= v) the distance is 3

2
. Otherwise

if h = v then the distance is 3
2

+ u
2t

. Otherwise the distance

is 9
4
. We can verify that this is a metric.

Suppose the algorithm remembers a set T1 of points, T1 ≤
tr/100. Define a column to be “sparse” if at least 2r points
from this column has been forgotten. A column is “dense”
otherwise. Now t− 2r ≥ 3t

4
. The number of dense columns

is therefore at most r/75. Therefore 74r/75 columns are
sparse. Let this set of columns be S.

We now provide the points P1 = {puv|t/2 < u ≤ t and v ∈
S}. Note that we do not have to specify the distances between
the points in P1 and P0\T1. Otherwise for pgh, puv ∈ T1∪P1

the distances are given by the same set of conditions that
determine the distance between P0 above. At the end of this
phase the algorithm remembers a point set T2.

We now choose a j : t/2 < j ≤ t. We add r special points
{ai} such that distance from ai to any puv is 9

4
if i 6= v. If

v 6∈ S the distance of av to all puv (note u ≤ t/2) is 3
4

+ j
4t

.
If v ∈ S then the distance of av, puv is: if u ≤ j then it is
3
4

+ j
4t

else it is 3
2

+ u
2t

.

We next introduce t− j special points {bg|g > j} such that
distance from bg to any puv where u 6= g is 9

4
. If g = u (then

v ∈ S) then it is 3
4
. Finally we introduce j “faraway” points

which are at distance 10 from every other point.

Supposing a pgh ∈ P0 \ T1 behaved exactly the same as a
puv ∈ T1, in its distance to ai, and in particular ah. Then
there is a clustering with centers {ai}∪{bg} and the faraway
points, with radius R = 3

4
+ j

4t
. The algorithm does not

know this, but cannot rule this possibility out – hence it must
provide a solution with radius (2+ε)R < 9

4
. But the distance

between a pgh ∈ P0 \ T1 and ah can also be 9
4

(without

conflicting the metric property since 9
4
≤ 3

4
+(· · · )+ 3

2
+(· · · )

for the shortest path from ah). Therefore none of the ah can
be used as centers in the solution of the algorithm.

Further the points in row g ≥ j + 1 are at a distance 3
2

+
j+1
4t

from points in any other row – and this is larger than

(2 + ε)( 3
4

+ j
4t

). Thus every such row must have a different
center (which can be at bg). Also the faraway points must
have a center by themselves. This leaves exactly r centers.
Consider av, ah; there is no point which is within distance
(2 + ε)R from both. Therefore each av must be covered by
a separate center which is either av or some puv. But we
have already shown that none of the av can be used as a
center by the algorithm. Therefore the algorithm must use
r centers corresponding to some puv.

Let us now focus on v ∈ S. The algorithm cannot use a
center puv which is in P0 \T1. If it did, it would not account
for the possibility that the distance to a point forgotten in
this column is 9

4
( shortest path from puv through any other

pgv will be more than 3
2

+ (· · · ) + 3
2

+ (· · · )). A point in
P0 \ T1 may be covered by a center in the same row but –
since a sparse column has at least 2r forgotten points and we
only have r centers which are free, at most r of these points
can be covered by a center in the same row. Therefore for
all v ∈ S the center must be a point puv with u ≤ t/2.
But then the algorithm must remember pjv because pjv is
the farthest point from puv in this cluster and pjv cannot be
covered in any other way and the next farthest point is at
least εR distance away. That means pjv ∈ T2.

We now make the final observation that in the above, j was
fixed after T2 was fixed. Therefore unless T2 contained all
pjv for t ≥ j > t/2, v ∈ S we can always find a j which
breaks the clustering guarantee of the algorithm. Thus we
arrive at a contradiction that we stored less than tr/100
points in T1. This shows that Ω(K2) points are needed.

The above shows that the O(K
ε

log 1
ε
) is almost the best pos-

sible space general bound which holds for allK, ε. We believe
that Theorem 8 generalizes to all ε,K and leave that ques-
tion open. Another important open question is the status
of randomized algorithms, namely, is it possible to have a 2
approximation for the K-center problem using o(n) space?
Although we know that it is NP-Hard to approximate the K-
center problem better than factor 2, we can show a stronger
result in the space bounded scenario.

Theorem 9 (Randomized K-Center). Any random-
ized algorithm that provides an approximation ratio better
than 2 for the 1-center problem in the oracle distance model
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must use Ω(n) space.

Proof: The Indexing problem (see previous section) can be
reduced to this problem. Given a σ ∈ {0, 1}n, if σi = 1 Alice
adds a point pi to the stream otherwise she does nothing.
The oracle answers the distance between any two pair of
points to be 1. She runs the K center algorithm and sends
the content of the memory to Bob. Bob adds a point p′j
which is at distance 2 from all pi where i 6= j and is at a
distance from 1 from pj . If σj = 1 then there exists a clus-
tering of radius 1 choosing pj as a center. If σj = 0 then
the minimum radius is 2. Therefore an algorithm than dis-
tinguishes these cases must use Ω(n) bits of space.
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