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ABSTRACT
We present a new method of detecting privacy violations in
the context of database publishing. Our method defines a
published view V to preserve the privacy of a secret query
Q if V and Q return no tuples in common, over all pos-
sible database instances. We then establish necessary and
sufficient conditions that characterize when V preserves the
privacy of Q in terms of the projected inequalities in the
queries, both for conjunctive queries and queries with nega-
tion. We also show that integrity constraints have an effect
on privacy, and derive a test for ensuring privacy preserva-
tion in the presence of FD constraints. The issue of privacy
preservation in the presence of multiple views is investigated,
and we show that it can reduced to the single view case for
a suitably chosen view.

1. INTRODUCTION
With the widespread use of digital technology and the vast

amount of information now stored on the Web and in other
repositories, the possibility of disclosure of sensitive infor-
mation has increased greatly in recent years [14]. However
developing techniques to prevent the inappropriate disclo-
sure of sensitive information is a complex one, since often
the need to protect sensitive information in a database has
to be balanced against the need to also have non-sensitive
data available for users, often referred to as the utility of
the data [18, 26]. Such situations occur frequently in P2P
and other peer-based settings, where different autonomous
sources interact and share data [25, 17]. One specific such
situation is database publishing [22, 13], whereby the owner
of a database makes publicly available views of the database
for use by peers, while at the same time trying to ensure
that sensitive information is not leaked.

The focus of this article is on the problem of data privacy
in database publishing, which we now outline. The owner of
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a database I wishes to publish a view V (I), or more gener-
ally a set of views {V1(I), . . . , Vn(I)}. However, the owner
also wishes to ensure that publication of the views does not
compromise the privacy of some secret data in the database,
which we assume is specified by a query Q(I). We note that
this setting differs from, and is orthogonal to, the traditional
database security problem of preventing unauthorized access
to the database, for which access control is the most com-
mon solution [4]. However, in data publishing the views are
made public (and so can be combined), and thus the prob-
lem is how to ensure that users cannnot use the published
views to gain information about Q(I). Because of these dif-
ferences, access control mechanisms are not a solution to the
issue of privacy protection in database publishing, and thus
new methods must be developed. However, in the context
of database publishing where the secret data is specified at
the logical level by a query Q, rather than at the physical
level by an attribute as in access control, it is not immedi-
ately apparent how to determine whether leakage about Q
has occurred and, if so, to quantify how much.

The main approach to determining if leakage of private
data has occurred in database publishing is the method of
perfect-security [23, 24], which is based on a probabilistic
model of data [6]. In this approach one compares the prior
knowledge of an adversary about Q(I), with the knowledge
of the adversary about Q(I) after V (I) has been published.
The knowledge of the adversary is modelled by assuming
that they know a probability distribution P for the ran-
dom instance I, and the definition of Q, and hence can
compute the prior probability P(Q). Upon publication of
V (I), the adversary can revise their guess of Q(I) using this
new knowledge by computing P(Q | V ). In the case that
P(Q) = P(Q | V ), then the publication of V (I) has not
improved the adversary’s chance of guessing Q(I) and so
no leakage of information is considered to have occurred.
Clearly this test depends on the specific probability distri-
bution P that the adversary is assumed to know, and so
perfect-security is defined to occur if P(Q) = P(Q | V ), for
all possible P. Although this condition still involves prob-
ability distributions, one of the main results in [23, 24] was
to show that it can be converted from a test involving prob-
ability distributions to a logical test involving the existence
of certain common tuples in the database.

While the notion of perfect-security represents a funda-
mental advance in the understanding of data privacy, it has
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some practical limitations in the context of database pub-
lishing, as acknowledged by the originators of the approach
[6]. The first limitation is that the notion of perfect-security
can be too strict - it classifies some cases as security viola-
tions that are acceptable in practice. We also note that in
database publishing the database owner has to balance the
need to protect private data against the need to publish use-
ful data, and so a privacy protection technique that is too
strict will limit the utility of the published data. The sec-
ond limitation is that checking whether a secret query Q is
perfectly-secure w.r.t. V is computationlly intractable, even
for conjunctive queries where the problem has been shown to
be Πp

2-complete [23, 24]. Thirdly, collusion cannot occur in
the perfect-security approach since one of the fundamental
results in [23, 24] was to show that if Q is perfectly-secure
w.r.t. a set of views taken individually, then Q is perfectly se-
cure w.r.t. the set as a whole. The orginators of the perfect-
security approach consider this to be a weakness [6], since
in practice collusion can and does occur.

In this article we present a new method of detecting pri-
vacy violations in database publishing, with the aim of over-
coming the limitations just mentioned of the perfect-security
approach and thus provide an alternative in applications
where a less stringent, but computationally tractable, method
of detecting privacy violations is required. Other proposals
for relaxing the notion of perfect-security [8, 7] are based on
a probabilistic model, and hence may require knowledge of
distributions for data. Our method is based on the intuitive
notion that if a published view V is not to leak information
about a secret query Q, then Q and V should not return
any tuples in common, that is Q(I) and V (I) should be dis-
joint, a notion first introduced in [11] in another context. In
general our notion of privacy preservation is a weaker no-
tion than perfect-security, yet seems to capture the intuitive
notion of privacy in many applications. Moreover, we show
that the problem of testing whether V preserves the pri-
vacy of Q can be done in polynomial time (for conjunctive
queries), and that collusion can occur in our model. Another
feature of our approach is that it is sensitive to changes in
the secret query Q that leave the query body unchanged but
alter the schema. This allows the database owner to adjust
the level of privacy until the correct balance between privacy
and utility has been achieved.

We note also that the topic of disjoint queries investigated
in this article has application in another area, apart from
that of privacy preservation, namely that of irrelevant up-
dates [15, 16]. Given a view V over a database instance I, an
irrelevant update to I is one that does not change the result
of V . This topic was investigated by several works in the
1990’s because of its importance in view maintenance [12,
19], and has also found application more recently in query
processing in probabilistic databases [3]. The application of
disjoint queries to irrelevant updates is as follows. Suppose
that we update a set of tuples in the database defined by
Q(I). If we denote the tuples in I that are involved in a
derivation of a tuple in V (I) by V −1(I), then the update
will be irrelevant if Q(I) and V −1(I) are disjoint.

We now summarize the main contributions of this article.

- We define data privacy based on requiring that the
tuples in a published view V be disjoint from the secret
query Q.

- For the case of conjunctive queries, we prove a nec-

essary and sufficient result for Q and V to be dis-
joint based on the projections of the inequalities in
the queries. We then show that testing whether V
preserves the privacy of Q can be done in polynomial
time in the size of Q and V .

- We extend the previous result to the case of queries
involving negation.

- We investigate the effect of integrity constraints in the
database and show that they affect whether or not the
privacy of Q is preserved. We then establish a result
which gives a necessary condition for V to preserve the
privacy of Q, when the queries are conjunctive and the
database satisfies a set of FD constraints.

- We investigate the issue of privacy preservation in the
presence of multiple published views, and we show that
collusion can occur in our model. We then show that
the problem of determining if a set of views preserves
the privacy of Q can be solved by reducing it to the
problem of testing whether a single view, defined as a
join query over all the published views, preserves the
privacy of Q.

- We do a detailed comparison of our notion of privacy
preservation with perfect-security and prove several re-
sults which characterizes when the two notions coin-
cide, and when they differ.

The rest of this article is organized as follows. In Section
2 we present the main features of our approach for detecting
privacy violations, and in Section 3 we present some basic
definitions and notations. In Section 4 we establish neces-
sary and sufficient conditions for V to be privacy preserving,
both for conjunctive queries and also for queries involving
negation. We also show in Section 4 that for conjunctive
queries, testing whether V preserves the privacy of Q can
be done in polynomial time in the size of Q and V . In Sec-
tion 5 we examine the effect of FD constraints on privacy
and derive a sufficient condition for V to preserve the privacy
of Q when the database satisfies a set of FD constraints. In
Section 6, we investigate privacy in the presence of multiple
published views, and show that the problem of determining
if a set of queries preserves the privacy of Q can be reduced
to determining if a single suitably chosen view preserves the
privacy of Q. Section 7 contains a detailed comparison of
privacy preservation versus perfect-security, and we survey
related work in Section 8. Finally, Section 9 contains some
concluding comments.

2. PRIVACY AND DISJOINT QUERIES
Our approach to determining whether a view V preserves

the privacy of a secret query Q is based on the following no-
tion of disjoint queries, a topic first studied in [12], and as-
suming for the moment that Q and V have the same schema.

Definition 1. If I is an instance of a database schema D
and Q and V are queries that have the same schema, then Q
and V are defined to be disjoint if for every I,Q(I)∩V (I) =
∅.

Our motivation for defining privacy based on disjoint queries
comes from the view-based access control used in database-
security [4]. In this method, users can only access the database
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through a view(s) and a user query is considered legal only if
it returns a subset of the view for all possible database states.
Our approach is the inverse of the view-based approach since
rather than specifying the information that can be accessed,
we specify the information that is private by a query Q, and
then the notion of a user query being legal translates to the
requirement in our approach that the user query must be
disjoint from Q for all possible database states.

We now illustrate our definition by an example.

Example 1. Let D = {R1(C#, N), R2(C#, A,B)} be a
database schema where: C# represents the id of a customer,
N represents the name of a customer, A represents an ac-
count number and B represents an account balance. Suppose
also that we have a secret query Q and published queries V1

and V2 defined by the following conjunctive queries:

Q(N,B)← R1(C#, N), R2(C#, A,B), B > 10000
V1(N,B)← R1(C#, N), R2(C#, A,B), A = ‘A101’
V2(N,B)← R1(C#, N), R2(C#, A,B), B < 10000

The query V1 is not disjoint from Q since Q(I) and V1(I)
overlap for some database instances, such as I = {R1{〈′C100′,
′Bill′〉 }, R2{〈′C100′,′A101′, 1500〉}}. However, V2 and Q
are disjoint because the conflict between the selection condi-
tions in the two queries ensures that the returned tuples will
always be disjoint.

We observe that in our approach, the intersection is at the
tuple level, not at the attribute level. For instance, in the
previous example it is possible for Q and V2 to return a
common value for N , although the queries are still defined
to be disjoint. This is because we regard the basic semantic
unit of information to be a tuple, not an attribute value,
and so we define a privacy violation as occurring only when
the same tuple is returned by the secret query and the user
query, for some database instance.

We now consider the situation where the schema of secret
query and the user query differ. There are two possible
cases.

The first case is where the schema of Q contains an at-
tribute that is not in V . Based on our assumption that the
semantic unit of information is a tuple, we do not regard this
situation as a privacy violation. So, for instance, if in Ex-
ample 1 we let Q remain unchanged but change the schema
of V1 to V1(N,A), then the new V1 preserves the privacy of
Q.

The other case is where the schema of Q is strictly con-
tained in the schema of V . In this case, since a tuple re-
turned by Q can be the projection of a tuple returned by
V , we consider that a privacy violation can occur in this
situation. For instance, if in Example 1 the schema of V1

was extended to V1(C#, N,B), then we would still consider
this as a privacy violation because the projection of a tuple
returned by the new V1 could be equal to a tuple returned
by Q.

We note that with our definition of privacy, whether a
privacy violation occurs is sensitive to the schema of the se-
cret query and so care is needed in defining the secret query
schema to ensure that the correct semantics are obtained.
For instance, the secret query Q in Example 1 specifies that
the name and balance of a customer are to be kept secret.
This means that any user query with a schema containing
only name or balance alone would not violate the privacy
of Q. However, if the schema of Q was changed to Q(N),

then this implies that every user query that had a schema
with N would violate the privacy of Q since there are no
restrictions placed on N in the body of Q. So, in Example
1 for instance, under the new definition of Q the user query
V2 now violates the privacy of Q. In general, reducing the
schema of Q, while keeping the body of Q unchanged, re-
sults in a stricter notion of privacy preservation. This point
will be explored in more detail in a later section.

3. BASIC DEFINITIONS
In this section we formalize our notion of privacy preser-

vation discussed in the previous section.
We assume a relational setting. A database schema D con-

sists of a finite set of relational schemas {R1, . . . , Rn}, where
each relational schema consists of a unique name and a finite
set of attributes. The set of attributes in a relational schema
Ri is denoted by sch(Ri), and without loss of generality we
assume that each attribute appears in at most one relational
schema. We also assume that every attribute is defined over
Z, the set of positive and negative integers. A tuple for a
relational schema Ri, where sch(Ri) = {X1, . . . , Xk}, is an
element of the set Z × . . . × Z (k times). A relation r de-
fined over relational schema Ri, denoted by r(Ri) or simply
by r if Ri is understood, consists of a finite set of tuples
defined over Ri. A database instance defined over a schema
D = {R1, . . . , Rn}, denoted by I(D), or simply by I if D is
understood, is a finite set of relations {r1(R1), . . . , rn(Rn)}.

The queries we consider are nonrecursive DATALOG queries
with inequalities, and possibly with negation, defined as fol-
lows. We first note that while we define queries using the
well known rule-based approach [1], our presentation differs
slightly from the usual formulation since the variables in
a query have a type, which is the corresponding attribute
of the relational schema in which it appears. This is done
because we use both the schema of the secret query, and
its contents, in determining privacy preservation, and so we
need to know the attribute in the schema that corresponds
to each variable in the schema of the query.

To simplify the presentation, we assume that the head of
the query contains only variables, though this is not essential
and our results can be easily extended to the case where
constants appear in the head of the query.

Definition 2. We assume a set of variable names Ω,
and the function typ which is a mapping from Ω to the set
sch(R1) ∪ . . . ∪ sch(Rn), where D = {R1, . . . , Rn}. A query
Q is defined by:

Q(X̄)← t1, . . . , tn, Cn+1, . . . , Cn+m

where t1, . . . , tn are terms, Cn+1, . . . , Cn+m are inequalities,
and X̄ ⊆ Ω. A term is either of the form:

1. R(X1, . . . , Xn), where R is a relational schema in D
and {X1, . . . , Xn} ⊆ Ω. This is called a positive term;
or

2. ¬R(X1, . . . , Xn), where R is a relational schema in D
and {X1, . . . , Xn} ⊆ Ω. This is called a negative term.

An inequality is either of the form:

1. X op a, where X ∈ Ω, a ∈ Z, op ∈ {<,≤,=, >, ≥, };
or

2. X op Y , where {X,Y } ⊆ Ω, op ∈ {<,≤,=, >,≥, }.

254



Q(X̄) is called the head of the query Q, and t1, . . . , tn, Cn+1,
. . . , Cn+m is called the body of Q.
X̄ is called the schema of Q and is also denoted by sch(Q).
We also place the following restrictions on queries:
(i) We assume that a variable can appear at most once in
the body of the query, and at most once in the head of a
query;
(ii) If a variable Xi appears as the ith variable in a term
R( , . . . , Xi, . . .) or ¬R( , . . . , Xi, . . .), then typ(Xi) = Ai,
where Ai is the ith attribute of R;
(iii) X̄ 6= ∅, i.e. Boolean queries are not allowed.

We note that condition (i) above does not prevent join
queries from being defined in our framework, since a join
query can be modelled by including inequalities in the query
which force the join variables to be equal. Similarly, allowing
constants as well as variables in the terms of a query can
also be modelled using inequalities. Finally, we note that
self-joins are allowed in queries but Boolean queries are not.
This last restriction is to simplify the presentation, and our
approach can easily be extended to Boolean queries.

Since the inequality X < a is equivalent to X ≤ a − 1,
and X > a is equivalent to X ≥ a + 1, we assume for the
rest of the article that op ∈ {≤, ≥, } for any inequality of
the form (X op a). Also, because of symmetry, we assume
that op ∈ {<, ≤, } for any inequality of the form X op Y .
We also note that the equality operator is redundant since
it can be modelled as two inequalities, but we include it so
as to simplify the presentation of some of the examples.

If all terms in Q are positive terms, then Q is called a
conjunctive query with inequalities and will be denoted by
DATALOG. Queries with at least one negative term will be
denoted by DATALOG¬. We also assume that the queries
are range restricted, i.e. every variable X in X̄ also appears
in some positive term in the body of Q, or there exists a
variable Y such that Cn+1, . . . , Cn+m imply that X = Y
and Y appears in some positive term in the body of Q. We
now define query evaluation in the standard fashion.

Definition 3. Let Q(X1, . . . , Xp) be a query, let vars(Q)
denote the set of variables which appear in the body of Q, and
let I be a database instance defined over D.
A valuation ρ for Q is a function from vars(Q) to Z, and
the evaluation ρ(Q, I), where I = {r1, . . . , rn} is defined as
follows:

1. A term Ri(X1, . . . , Xn) evaluates to true if the tuple
〈ρ(X1), . . . , ρ(Xn)〉 ∈ ri;

2. A term ¬Ri(X1, . . . , Xn) evaluates to true if the tuple
〈ρ(X1), . . . , ρ(Xn)〉 /∈ ri;

3. An inequality C = X op a evaluates to true if ρ(X) op a
is true;

4. An inequality C = X op Y evaluates to true if ρ(X)
op ρ(Y ) is true;

5. ρ(Q, I) evaluates to true if every term and every in-
equality in the body of Q evaluates to true.

The result of the query Q on on the database instance I
is defined by:

Q(I) = {〈x1, . . . , xp〉 | exists a valuation ρ such that
ρ(X1) = x1, . . . , ρ(Xp) = xp and ρ(Q, I) evaluates to true}

We also need to compare the schemas of queries based on the
types of the variables in their schemas in defining privacy,
and this is done as follows.

Definition 4. Given queries Q(X1, . . . , Xn) and V (X ′1,
. . . , X ′m), sch(Q) is contained in sch(V ), denoted by sch(Q) �
sch(V ), if n ≤ m and typ(Xi) = typ(X ′i) for all i ∈ {1, . . . , n}.

The schemas sch(Q) and sch(V ) are equivalent, denoted
by sch(Q) ≡ sch(V ), if sch(Q) � sch(V ) and sch(V ) �
sch(Q).

The difference between sch(V ) and sch(Q), denoted by
sch(V )	 sch(Q) = {X ′i |6 ∃Xj(typ(X ′i) = typ(Xj))}.

Based on the discussion in the previous section, we now
define privacy preservation as follows.

Definition 5. A query V is privacy preserving with re-
spect to a secret query Q if either:

(i) sch(Q)	 sch(V ) 6= ∅; or
(ii) sch(Q) � sch(V ) and Q and V ′ are disjoint, where

V ′ is the query defined by:

V ′(sch(Q))← V

(assuming, without loss of generality, that the variables in
V are renamed if necessary so that sch(Q) ⊆ sch(V )).

Case (i) is the situation where there is a variable in the
schema of Q for which there is no matching variable in the
schema of V which, as discussed in the previous section, we
do not consider to be a privacy violation. Case (ii) is where
every variable in sch(Q) has a matching variable in sch(V ),
in which case we require that the projection of V on sch(Q)
be disjoint from Q.

We now define satisfiability and implication of a set of
inequalities.

Definition 6. Let C̄ = {C1, . . . , Cn} be a set of inequal-
ities. C̄ is defined to be satisfiable if there is a valuation ρ
on vars(C) for which every Ci ∈ C̄ evaluates to true, oth-
erwise it is unsatisfiable.
A set of inequalities C̄ implies another inequality C, denoted
by C̄ |= C, if every valuation ρ on vars(C) in which every
inequality in C̄ evaluates to true, C also evaluates to true.
The set of all inequalities implied by C̄ is denoted by C̄+.
Two sets of inequalities, C̄1 and C̄2, are equivalent, denoted
by C̄1 ≡ C̄2, if C̄+

1 = C̄+
2 .

If X̄ ⊆ Ω and C̄ is a set of inequalities, then we define:

πX̄(C̄) = {C|C ∈ C̄+ ∧ vars(C) ⊆ X̄}

We note that it may be the case that πX̄(C̄) is satisfiable,
but C̄ is not satisfiable. For example, if C̄ = {X ≤ 10, Y >
Z, Y < Z}, then C̄ is not satisfiable, but πX(C̄) ≡ {X ≤ 10}
is satisfiable. However, the converse is not true, since it
follows immediately from the definition of πX̄(C̄) that if C̄
is satisfiable, then πX̄(C̄) is also satisfiable.

We now define the sets of upper and lower bounds for a
variable in an inequality.

Definition 7. Let C̄ be a satisfiable set of inequalities,
and let X ∈ vars(C̄). Then:

- LOW (X, C̄) = {a | X ≥ a ∈ C̄+}.

- HIGH(X, C̄) = {a | X ≤ a ∈ C̄+}.
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We now establish the important result that either LOW is
empty or it has an upper bound, and either HIGH is empty
or it has a lower bound.

Lemma 1. If C̄ is a satisfiable set of inequalities and X ∈
vars(C̄), then:
(i) either LOW (X, C̄) = ∅, or there exists a constant k such
that for every a in LOW (X, C̄), a ≤ k;
(ii) either HIGH(X, C̄) = ∅, or there exists a constant k
such that for every a in HIGH(X, C̄), a ≥ k.

As a consequence of this result, we can define the lower
and upper bounds for a variable in a set of inequalities, de-
noted by low and high, as follows.

Definition 8. Let C̄ be a satisfiable set of inequalities
and let X ∈ vars(C̄).

- If LOW (X, C̄) = ∅ then low(X, C̄) = −∞, otherwise
low(X, C̄) = max{ai | X ≥ ai ∈ C̄+}.

- If HIGH(X, C̄) = ∅ then high(X, C̄) = +∞, other-
wise high(X, C̄) = min{ai | X ≤ ai ∈ C̄+}.

For example, if C̄ = {X > Y, Y ≤ 4, Y ≥ 2} then low(Y, C̄) =
2, high(Y, C̄) = 4, low(X, C̄) = 3, high(X, C̄) = +∞

For every constant k, we also define that the inequalities
k < +∞ and −∞ < k hold.

4. CHECKING PRIVACY
In this section we establish some of the main results of our

article which characterize when a published query V pre-
serves the privacy of a secret query Q, first for the case of
DATALOG queries and then for DATALOG¬ queries. The
important point to note concerning these results is that pri-
vacy preservation can be determined using only the structure
of Q and V , and so can be checked at compile time.

We first establish a result which characterizing when two
queries are disjoint, and to do this we introduce the notion
of conflicting sets of inequalities.

Definition 9. Two sets of inequalities C̄Q = {Cn+1, . . . ,
Cn+m} and C̄V = {Cn′+1, . . . , Cn′+m′} are said to conflict
w.r.t. a set of variables X̄ if the set of inequalities πX̄(C̄Q)∪
πX̄(C̄V ) is unsatisfiable.

We now illustrate the definition by an example.

Example 2. Let C̄Q = {X < Y, Y ≤ 5} and let C̄V =
{X > Y, Y ≥ 10} and let X̄ = {X}. Then πX̄(C̄Q) ≡ {X ≤
4} and πX̄(C̄V ) ≡ {X ≥ 11} and so C̄Q and C̄V conflict.
However, if we let C̄′V = {X > Y, Y > Z,Z ≥ 0}, then
C̄′V ≡ {X ≥ 2} and so C̄Q and C̄′V do not conflict.

We now characterize when two queries are disjoint de-
pending on whether or not their sets of inequalities projected
onto the schema of the secret query conflict.

Theorem 1. Let Q be the DATALOG query

Q(X̄)← t1, . . . , tn, Cn+1, . . . , Cn+m

and let V be the DATALOG query

V (X̄)← t1′ , . . . , tn′ , Cn′+1, . . . , Cn′+m′

and let C̄Q = {Cn+1, . . . , Cn+m} and C̄V = {Cn′+1, . . . ,
Cn′+m′}.
If C̄Q and C̄V are separately satisfiable, then Q and V are
disjoint iff C̄Q and C̄V conflict w.r.t. X̄.

Corollary 1. If Q and V are DATALOG queries over
a database scheme D such that C̄Q and C̄V are separately
satisfiable, then V preserves the privacy of Q if either:

(i) sch(Q)	 sch(V ) 6= ∅; or
(ii) the query V ′ conflicts with Q w.r.t. sch(Q), where V ′

is the query defined by V ′(sch(Q))← V .

We now address the issue of developing an algorithm for
testing when two queries are disjoint. We have the following
result (where |Q| is the number of inequalities in Q).

Theorem 2. If Q and V are two DATALOG queries,
then testing whether Q and V are disjoint can be done in
O(|Q|4 + |V |4) time.

Corollary 2. Testing whether a query V preserves the
privacy of a secret query Q can be done in O(|Q|4 + |V |4)
time when both Q and V are DATALOG queries.

In contrast, we note that the problem of testing whether Q
is perfectly secure w.r.t. V has been shown to be intractable,
even for DATALOG queries [23, 24].

Before extending Theorem 1 to the case of DATALOG¬

queries, we first extend the definition of when two queries
conflict to DATALOG¬ queries (by renaming variables if
necessary and without any loss of generality, we assume that
(vars(Q)− X̄) ∩ (vars(V )− X̄) = ∅).

Definition 10. Let Q be the DATALOG¬ query

Q(X̄)← t1, . . . , tn, Cn+1, . . . , Cn+m

and let V be the DATALOG¬ query

V (X̄)← t1′ , . . . , tn′ , Cn′+1, . . . , Cn′+m′

Then Q and V are defined to conflict if either:
(i) C̄Q and C̄V conflict w.r.t. X̄; or
(ii) for every valuation ρ which returns true on C̄Q ∪ C̄V ,

there exists a term ti = Ri(X1, . . . , Xk, X
′
1, . . . , X

′
n) from

Q and a term t′j = ¬Ri(X1, . . . , Xk, X
′′
1 , . . . , X

′′
n) from V ,

or a term ti = ¬Ri(X1, . . . , Xk, X
′
1, . . . , X

′
n) from V and a

term t′j = Ri(X1, . . . , Xk, X
′′
1 , . . . , X

′′
n) from Q, such that

ρ(X ′1) = ρ(X ′′1 ), . . . , ρ(X ′n) = ρ(X ′′n).

Essentially, what condition (ii) does is ensure that there can-
not exist a tuple that is in both Q(I) and V (I), since oth-
erwise this would mean that there was a tuple both in, and
not in, relation Ri. We also note that condition (ii) is a
weaker condition than requiring that CQ ∪ CV |= {X ′1 =
X ′′1 , . . . , X

′
n = X ′′n}. This is illustrated in the following ex-

ample.

Example 3. Let

Q(X1)← R1(X1, Y1), R2(X ′1, Y
′
1 ), X1 = X ′1, 1 ≤ X1, X1 ≤

2, 1 ≤ Y1, Y1 ≤ X1, X1 ≤ Y ′1 , Y ′1 ≤ 2
V (X1)← ¬R1(X1, Y2),¬R2(X ′1, Y

′
2 ), R3(X ′′1 , Y2, Y

′′
2 ), X1 =

X ′1 = X ′′1 , 1 ≤ Y2, Y2 ≤ X1, X1 ≤ Y ′2 , Y ′2 ≤ 2

Then Q and V satisfy (ii) of the definition of conflict. To see
this, from the inequalities in Q, ρ(X1) = 1 or ρ(X1) = 2 for
any valuation ρ which returns true on CQ ∪CV . In the case
that ρ(X1) = 1, it follows from the inequalities 1 ≤ Y1 and
Y1 ≤ X1 that ρ(Y1) = 1, and from 1 ≤ Y2 and Y2 ≤ X1 that
ρ(Y2) = 1. Thus ρ(Y1) = ρ(Y2) and so the terms R1(X1, Y1)
and ¬R1(X1, Y2) satisfy (ii).
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If instead ρ(X1) = 2, it follows from the inequalities X1 ≤
Y ′1 and Y ′1 ≤ 2 that ρ(Y ′1 ) = 2, and from X1 ≤ Y ′2 and
Y ′2 ≤ 2 that ρ(Y2) = 2. Thus ρ(Y ′1 ) = ρ(Y ′2 ) and so the
terms R2(X1, Y1) and ¬R2(X1, Y2) satisfy (ii).
However, CQ ∪ CV 6|= Y1 = Y2 since under the valuation
ρ(X1) = 2, ρ(Y1) = 1, ρ(Y ′1 ) = 2, ρ(Y2) = 2, ρ(Y ′2 ) = 2,
CQ ∪ CV evaluates to true, but Y1 = Y2 evaluates to false.
Also, CQ∪CV 6|= Y ′1 = Y ′2 since under the valuation ρ(X1) =
1, ρ(X ′1) = 1, ρ(Y ′1 ) = 1, ρ(Y2) = 1, ρ(Y ′2 ) = 2, CQ ∪ CV

evaluates to true, but Y ′1 = Y ′2 evaluates to false.

This leads to the other main result of the section, which
characterizes when two DATALOG¬ queries are disjoint.

Theorem 3. Let Q be the DATALOG¬ query:

Q(X̄)← t1, . . . , tn, Cn+1, . . . , Cn+m

and let V be the DATALOG¬ query:

V (X̄)← t1′ , . . . , tn′ , Cn′+1, . . . , Cn′+m′

and C̄V and C̄Q are separately satisfiable. Then Q and V
are disjoint iff Q and V conflict.

Corollary 3. If Q and V are DATALOG¬ queries over
a database scheme D such that C̄Q and C̄V are separately
satisfiable, then V preserves the privacy of Q if either:
(i) sch(Q)	 sch(V ) 6= ∅; or
(ii) the query V ′ conflicts with Q, where V ′ is the query
defined by V ′(sch(Q))← V .

5. PRIVACY UNDER CONSTRAINTS
In this section we investigate privacy in the presence of FD

constraints. We show that a secret query and a user query
may be disjoint in the presence of FD constraints, but not
when FD constraints are absent. This is similar to what
happens with perfect-security [23, 24, 8]. We now illustrate
this observation by an example.

Example 4. Suppose we have a relational schema R(P, I, S),
where: P is a patient, I is an illness, S is a specialist. Sup-
pose also that we have a secret query Q and a published query
V defined by:

Q(P, I)← R(P, I, S), S = ‘Jones’

and

V (P, I)← R(P, I, S), S = ‘Allen’.

If there are no FDs present, then V does not preserve the
of Q since if the database contains a patient who is treated
by both ‘Jones’ and ‘Allen’ for the same illness, then the
results of Q and V will overlap. However, if R satisfies the
FD P → S then we claim that Q and V must be disjoint
and so V preserves the privacy of Q. This is because if Q
and V returned a common tuple 〈p, i〉, then we could deduce
that patient p is treated by both ‘Jones’ and ‘Allen’, which
contradicts the FD P → S.

We now extend the definition of disjoint queries in the ob-
vious manner to the case where FDs are present, and then
extend the results of Section 4 to cover this new case. We
first make the assumption that any FD involves only at-
tributes that belong to a single relational schema.

Definition 11. Let Q and V be queries defined over a
database schema D, and let Σ be a set of FD constraints
that apply to D. If I is an instance of D, and Q and V
are queries such that sch(Q) = sch(V ), then Q and V are
defined to be disjoint if for all database instances I which
satisfy Σ, Q(I) ∩ V (I) = ∅.

We then have the following result which gives a sufficient
condition for two DATALOG queries to be disjoint in the
presence of FD constraints.

Theorem 4. Let Q be the DATALOG query

Q(X̄)← t1, . . . , tn, Cn+1, . . . , Cn+m

and let V be the DATALOG query

V (X̄)← t1′ , . . . , tn′ , Cn′+1, . . . , Cn′+m′

defined over a database scheme D, and let C̄Q = {Cn+1, . . . ,
Cn+m} and C̄V = {Cn′+1, . . . , Cn′+m′}.
If C̄Q and C̄V are separately satisfiable and C̄Q and C̄V con-
flict w.r.t. X̄+, then Q and V are disjoint.

Corollary 4. If Q and V are DATALOG queries over
a database scheme D such that C̄Q and C̄V are separately
satisfiable, and Σ is a set of FD constraints defined over D,
then V preserves the privacy of Q if either:

(i) sch(Q)	 sch(V ) 6= ∅; or
(ii) the query V ′ conflicts with Q w.r.t. sch(Q)+, where

V ′ is the query defined by V ′(sch(Q))← V .

As we now demonstrate, the converse of Theorem 4 does
not hold because of interaction between FDs and the in-
equalities.

Example 5. Let D be the database schema {R1(X,Y ),
R2(Y,Z)} and suppose we have a secret query Q and a pub-
lished query V and set of FDs Σ defined by:

Q(X)← R1(X,Y ), R2(Y,Z), Y = 2, Z < Y
V (X)← R1(X,Y ′), R2(Y ′, Z), Y ′ = 2, Z > Y ′

Σ = {Y → Z}.

In this case X+ = X and C̄Q and C̄V do not conflict
w.r.t. X, yet we claim that Q(I) ∩ V (I) = ∅ for every in-
stance I which satisfies Σ. To see this, suppose that there
exists an instance I and a tuple 〈x〉 that is in both Q(I) and
V (I). Then since 〈x〉 ∈ Q(I), this means that there exists
tuples 〈x, y〉 ∈ r1 and 〈y, z〉 ∈ r2, for some y and z. How-
ever, because of the inequalities in Q, we can deduce that
these two tuples are 〈x, 2〉 and 〈2, z〉. Using similar reason-
ing, we also deduce that since 〈x〉 ∈ V (I), then there exists
a tuple 〈x, 2〉 ∈ r1 and 〈2, z′〉 ∈ r2. However, we also have
from the definitions of Q and V that z < 2 and z′ > 2, so
the tuples 〈2, z〉 and 〈2, z′〉 are distinct and hence the FD
Y → Z is violated in r2, which is a contradiction and so
Q(I) and V (I) must be disjoint.

6. MULTIPLE VIEWS
In this section we extend the notions of privacy and dis-

jointedness first to unions of conjunctive queries defined over
the same schema, and then to an arbitrary set of conjunctive
queries.

The first observation we make is that using our approach
for defining privacy, collusion can occur when there are mul-
tiple published views. That is, a combination of published
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views can violate the privacy of Q even though individually
the published views do not violate the privacy of Q. We now
illustrate this by an example.

Example 6. Suppose we have a relational schema R(P,
A, I), where P represents a patient, A represents an address
and I represents an illness. Suppose we also have the fol-
lowing secret query Q, which keeps the details of patients
suffering from Aids secret

Q(P,A, I)← R(P,A, I), I = ‘Aids’

and the published views

V1(P,A)← R(P,A, I)

and

V2(P ′, I)← R(P ′, A, I).

Individually, views V1 and V2 preserve the privacy of Q
since the schemas of both V1 and V2 are proper subsets of
the schema of Q. However if we combine V1 and V2 by the
query

V (P,A, I)← V1(P,A), V2(P ′, I), P = P ′,

then V violates the privacy of Q since in the case that P
is a key in R, V (I) = Q(I) for every instance I.

As noted previously, this situation does not occur in the
perfect-security approach [23, 24].

We now define unions of DATALOG queries as follows,
for the case where the schemas of every pair of DATALOG
queries are equivalent. Without loss of generality, we assume
that by renaming variables where necessary, the schemas of
the queries are identical.

Definition 12. If Q1, . . . , Qn are DATALOG queries de-
fined over the same schema, then the union of the queries,
Q = (Q1, . . . , Qn) on a database instance I is the query
defined by Q(I) = Q1(I) ∪ . . . ∪Qn(I).

The following result follows immediately from this definition,
and characterizes when the union of a set of DATALOG
queries preserves the privacy of a secret query Q.

Lemma 2. If Q is a DATALOG query and V̄ = (V1, . . . , Vn)
is a union of DATALOG queries, then Q and V̄ are disjoint
iff for every i ∈ {1, . . . , n}, Q and Vi are disjoint.

Corollary 5. If Q is a DATALOG query and V̄ = (V1,
. . . , Vn) is a set of DATALOG queries defined over the same
schema such that the set of inequalities of Q, C̄Q, and the set
of inequalities of every query Vi in V̄ , C̄Vi , are satisfiable,
then V̄ preserves the privacy of Q if either:

(i) sch(Q)	 sch(V ) 6= ∅; or
(ii) for all i ∈ {1, . . . , n}, C̄Q and C̄Vi conflict.

We now consider the case where the published views may
be defined over non-equivalent schemas. So our starting
point is a set of published queries S = {V1, . . . , Vk}, and a se-
cret queryQ. We then group the queries of S into sets, where
the queries in each set are defined over equivalent schemas.
If we denote these sets of queries by {V11 , . . . , V1m}, . . . ,
{Vi1 , . . . , Vim}, where in each set we assume without loss of
generality that the queries are defined over the same schema,
then from each of these sets we generate the union of the
queries as just outlined, denoted by {V̄1, . . . , V̄i} (assuming
that variables are renamed if necessary so that each variable
appears at most once in {V̄1, . . . , V̄i}), and then combine to
generate the query V̄ defined by:

V̄ (X̄)← V̄1, . . . , V̄i, C1, . . . , Ck,

where X̄ = sch(V̄1)∪ . . .∪sch(V̄i), and {C1, . . . , Ck} is a set
of inequalities such that for every pair of variables X,Y in
{V̄1, . . . , V̄i} where typ(X) = typ(Y ), the inequality X = Y
is in {C1, . . . , Ck}. In effect, the inequalities {C1, . . . , Ck}
specify, in addition to joins within the queries V̄1, . . . , V̄i,
additional joins for every pair of variables that correspond
to the same attribute in the database schema. Finally, we
define the set S to preserve the privacy of Q if either:

(i) sch(Q)	 sch(V̄ ) 6= ∅; or
(ii) the query V̄ ′, defined by

V̄ ′(sch(Q))← V̄ ,

is disjoint from Q.
From this definition, testing whether a set of views pre-

serves the privacy of a secret query Q can be reduced to
testing whether a single query V̄ ′ preserves the privacy of
Q, which can be tested using Theorem 1 or Theorem 3.

A question that arises from our definition of privacy of a
set of views is whether it is possible for the set S to preserve
the privacy of Q, but some proper subset of S does not,
i.e. the definition is not monotonic. As we now show, this
cannot happen.

Theorem 5. Let Q be a secret DATALOG query, S a set
of DATALOG queries and S′ any subset of S. If S preserves
the privacy of Q, then so does S′.

7. RELATIONSHIP BETWEEN PRIVACY AND
PERFECT-SECURITY

In the section we examine the relationship between the
notion of data privacy defined in this paper and perfect-
security as defined in [23, 24]. Firstly, we present some def-
initions and results from [23, 24].

While the perfect-security approach allows tuples to con-
tain values from any finite domain, we assume here that
the domain is Z, the set of positive and negative integers,
in order to be consistent with our privacy approach. As-
suming a relational database schema D = {R1, . . . , Rn}, let
tup(D,Z) denote the set of all possible tuples in any rela-
tion defined over a schema in D using constants from Z. The
set Inst(D) is the set of all databases defined over D with
tuples from tup(D,Z). For each tuple t ∈ tup(D,Z), we as-
sume that there exists a probability distribution P such that
P(t)→ [0, 1], which represents the probability that the tuple
t will appear in a database instance. Assuming that tuples
are independent, P induces a probability distribution on the
set of all instances defined over D as follows: if I ∈ Inst(D)
then

P[I] =
Q

ti∈I

P(ti) ·
Q

tj /∈I

(1−P(tj)).

Given the probability distribution defined over instances,
one then defines the probability that a query Q returns an
answer q by:

P(Q(I) = q) =
P

{I∈Inst(D)|Q(I)=q}
P[I].

Perfect-security is then defined as follows.

Definition 13. A query Q is perfectly-secure w.r.t. a
user query V if for every possible probability distribution P
and every possible answer q to Q and v to V , the following
holds:
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P(Q(I) = q) = P(Q(I) = q | V (I) = v).

Intuitively speaking, the definition says that perfect-security
occurs when knowing the answer to V never improves the
chances of an adversary guessing the answer to Q.

Clearly the notion of perfect-security is with respect to
the set of all possible probability distributions. However, the
fundamental result from [23, 24] was to show that perfect-
security can be reduced to logical statements, without prob-
abilities, which require the existence of certain tuples. Be-
fore giving this result, the notion of a critical tuple is needed.

Definition 14. A tuple t ∈ tup(D,Z) is critical to a
query Q if there exists an instance I ∈ Inst(D) and a tuple
t ∈ I such that Q(I − {t}) 6= Q(I).
The set of all critical tuples for Q is denoted by crit(Q).

The following main result from [23, 24] (Theorem 3.5) then
relates perfect-security to critical tuples.

Theorem 6. A secret query Q is perfectly-secure w.r.t. a
published query V iff crit(Q) ∩ crit(V ) = ∅.

7.1 Conjunctive Queries Defined over a Single
Relation

The first case we consider is where Q and V contain a
single term, i.e. they are selection-projection queries over
a single relation. In general, perfect-security and privacy
are not comparable for this case, as we now show by the
following examples. The first example shows a case where
Q is perfectly-secure w.r.t. V , but V does not preserve the
privacy of Q.

Example 7. Suppose we have a relational schema R(P, I, S),
as defined in Example 4, and define Q and V by:

Q(P, I)← R(P, I, S), S = ‘s1’

V (P, I)← R(P, I, S), S = ‘s2’.

We first note that Q is perfectly-secure w.r.t. V . The
reason is that any critical tuple in r for Q must have the
form 〈 , ,‘s1’〉, and any critical tuple in r for V must have
the form 〈 , ,‘s2’〉. Such tuples cannot be identical, and
so crit(Q) ∩crit(V ) = ∅ and hence Q is perfectly secure
w.r.t. V from Theorem 6.

On the other hand, V is not privacy preserving w.r.t. Q.
To see this, if r = {〈p1, i1, ‘s1’ 〉, 〈p1, i1,‘s2’〉}, then Q(r) ∩
V (r) = 〈p1, i1〉 6= ∅ and so V is not privacy preserving
w.r.t. Q.

The next example shows the reverse situation - a case where
Q is not perfectly-secure w.r.t. V but V preserves the privacy
of Q.

Example 8. Let the schema R be as in the previous ex-
ample, and define Q and V by:

Q(P, I, S)← R(P, I, S)
V (P ′, I ′)← R(P ′, I ′, S′)

Then Q is not perfectly secure w.r.t. V since any tuple in
a non empty instance of R is critical for both Q and V ,
and so crit(Q) ∩ crit(V ) 6= ∅ and thus applying Theorem 6
shows that Q is not perfectly-secure w.r.t. V . However, V is
privacy preserving w.r.t. Q since sch(Q)	 sch(V ) 6= ∅.

These examples also illustrate an important difference be-
tween privacy and perfect-security, mentioned briefly previ-
ously, namely privacy is sensitive to changes in the schema
of either the private query or user query, whereas perfect-
security is not. To illustrate this, consider Example 7 and
suppose that the bodies of both Q and V were unchanged
but the schemas in the heads of both Q and V were changed
to (P, I, S). Then under this change, Q would remain per-
fectly secure w.r.t. V but now V would preserve the privacy
of Q since the S-values of tuples in Q and V are different.
Also, if in Example 8 the body of V was unchanged but the
schema in the head was changed to (P ′, I ′, S′), then Q would
remain not perfectly secure w.r.t. V , but now V would vio-
late the privacy of Q since it is clear that Q(r) ∩ V (r) 6= ∅
for any non-empty r.

These observations can be made more precise by the fol-
lowing result, which shows that for DATALOG queries, perfect-
security is invariant under changes to the schema of the se-
cret query, provided that the body of the query is left un-
changed.

Lemma 3. Let Q,Q′ and V be DATALOG queries such
that the bodies of Q and Q′ are the same but the heads of the
queries may be different. Then Q is perfectly secure w.r.t. V
iff Q′ is perfectly secure w.r.t. V .

In contrast, privacy preservation is dependent on the schema
of the private query Q and that of the published query
V , as noted earlier. It follows directly from the defini-
tion of privacy preservation that if V preserves the privacy
of Q, then V ′ also preserves the privacy of Q′, where V ′

and Q′ are queries with the same bodies as V and Q but
sch(V ) � sch(V ′) and sch(Q) � sch(Q′). However the con-
verse of this is false, and so in general reducing the schema
of Q or V results in the condition of privacy preservation
being more difficult to satisfy.

While the previous examples show that in general perfect-
security and privacy preservation cannot be compared in the
case of queries defined over a single relation, the next result
shows that they can be compared in the case where the
private query and published query have the same schema.
In this case, we now show that privacy preservation is a
stronger notion than perfect-security for conjunctive queries.

Theorem 7. Let Q and V be satisfiable DATALOG de-
fined over a single relation such that sch(Q) ≡ sch(V ). Then
Q is perfectly-secure w.r.t. V if V preserves the privacy of
Q.

Our next result shows that privacy and perfect-security
coincide if the schema of the published query is the same as
the schema of the single relation in the database.

Theorem 8. Let Q and V be satisfiable DATALOG queries
defined over a single relation schema R1 such that sch(Q) ≡
sch(V ) ≡ R1. Then Q is perfectly-secure w.r.t. V iff V
preserves the privacy of Q.

7.2 Conjunctive Queries Defined over Multi-
ple Relations

The first thing we note is that Theorem 7 does not hold
for queries with multiple terms, i.e. privacy preservation is
not a stronger condition than perfect-security, even when Q
and V have equivalent schemas. We show this in the next
example.
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Example 9. Let D = {R1(P, I, S), R2(P, T )}, where P,
I, S have the same meaning as in Example 4 and T repre-
sents the date that the patient was admitted. Also, let Q and
V be defined by:

Q(P, I, S, T )← R1(P, I, S), R2(P, T ), (T > 01/01/05)
V (P ′, I ′, S′, T ′)← R1(P ′, I ′, S′), R2(P ′, T ′), (T ′ <

01/01/05)

Now V is privacy preserving w.r.t. Q since the value of T
in every tuple returned by V will be different from the value
of T ′ in every tuple returned by Q.

However, if patients can have more than one admission
date, then Q is not perfectly-secure w.r.t. V . To show this,
let I be the instance where r1 = {〈p, a, d〉} and r2 = {〈p,
01/02/07〉, 〈p, 01/02/03〉}. Then the tuple 〈p, a, d〉 is in both
crit(Q) and crit(V ) since the results of both Q(I) and V (I)
become empty when 〈p, a, d〉 is removed from I, and so Q is
not perfectly secure w.r.t. V from Theorem 6. Intuitively
speaking, Q is not perfectly secure w.r.t. V because even
though Q(I) and V (I) are disjoint, they are still correlated
through being generated from a common tuple in R1.

So in the case of queries with multiple terms, perfect-
security and privacy are not comparable, even if the se-
cret query and the published query are defined over the
same schema. However, the following results show that
perfect-security and privacy are comparable for some re-
stricted cases. The first result shows the situation where
perfect-security is a stronger condition than privacy.

Lemma 4. Let Q and V be DATALOG queries defined
over a database D = {R1, . . . , Rn} such that sch(Q) ≡
sch(V ). If there exists a relation schema Ri ∈ D such that
such that Ri � sch(Q) and Ri is a term in Q, then V pre-
serves the privacy of Q if Q is perfectly-secure w.r.t. V .

The next result shows a case where the reverse holds true,
i.e. privacy is a stronger condition than perfect-security.

Lemma 5. Let Q and V be DATALOG queries defined
over a database D = {R1, . . . , Rn} such that sch(Q) ≡
sch(V ). If every tuple in crit(Q) belongs to only one schema
Ri, and sch(Q) � Ri and Ri appears only once in the body
of Q, then Q is perfectly-secure w.r.t. V if V preserves the
privacy of Q.

Combining Lemma 4 and Lemma 5, we characterize when
perfect-security and privacy coincide.

Corollary 6. Let Q and V be DATALOG queries de-
fined over a database D = {R1, . . . , Rn} such that sch(Q) ≡
sch(V ). If every tuple in crit(Q) belongs to only one schema
Ri, and sch(Q) ≡ Ri and Ri appears only once in the body
of Q, then Q is perfectly-secure w.r.t. V iff V preserves the
privacy of Q.

We now summarize the results of this section. In the case
of queries with a single term, perfect-security and privacy
preservation are not comparable unless the schema of the
secret query Q and the user query V are equivalent. In this
case, privacy preservation implies perfect security. However
in the case of the queries with multiple terms, privacy preser-
vation and perfect-security are not comparable, even when
Q and V have equivalent schemas. However, we also note in

this case it follows Lemma 4 that by increasing the size of
the schema of the secret query Q, privacy preservation can
always be made a weaker condition than perfect-security.

We note that although the results of this section show that
in general perfect-security and privacy are not comparable,
we consider that (by adjusting the schema of the secret Q if
necessary) privacy should be used as a weaker method than
perfect-security. This is because although privacy can be
made to be a stricter condition than perfect-security, there
seems to be little point in doing so in practice since, as a re-
sult of its information-theoretic foundation, perfect-security
is already the most stringent definition that is required in
practice. Moreover, as discussed in [6], the disadvantage of
perfect-security is not that it is not restrictive enough, but
that it is too restrictive and so can severely restrict the util-
ity of published data. Thus we see that our notion of privacy
would be applicable in situations where perfect-security was
too strict, or computationally infeasible. In such situations,
our privacy technique is an alternative method which has the
feature that the degree of leakage that occurs can be con-
trolled by adjusting the schema of the secret query (while
keeping the body of the secret query unchanged).

8. RELATED WORK
The topic of privacy in statistical databases is a classical

one that has been extensively investigated [2], and contin-
ues to be investigated [10]. The issue of privacy in statistical
databases differs from the one considered in this article and
in other recent articles in database publishing [23, 24, 7, 8].
In statistical databases, the database is a table of records
about individuals which contains both sensitive attributes
and non-sensitive attributes. The aim of privacy preserva-
tion in statistical databases is then to allow the publication
of aggregated views over the table without compromising
sensitive information about individuals. In contrast, in our
scenario both the sensitive data and the published data are
specified by non-aggregated queries, possibly over multiple
tables. We also note that when publishing aggregated views
in statistical databases, some leakage on sensitive informa-
tion is unavoidable. Hence the focus is then on minimizing
the leakage of sensitive information or ensuring that it is
within predefined bounds by using techniques such as gen-
eralization or adding noise to the views, rather than on pre-
venting any leakage at all [10].

As noted previously, several articles have addressed the is-
sue of perfect-security in database publishing. The notion of
perfect-security was formally defined in [23, 24], and the fun-
damental result that reduces the test for perfect-security to
checking for common critical tuples was established. Several
other issues were also investigated in [23, 24]. The first was
to investigate the effect of an adversary having extra infor-
mation in addition to knowing the probability distribution P
of the tuples in the database. This additional information
could take the form of knowledge of integrity constraints,
or cardinality constraints, that hold in the database. The
fundamental result characterizing perfect-security was then
extended to the case of prior knowledge for Boolean queries.
The other topic investigated in [23, 24] was to formally de-
fine the amount of leakage that occurs, given that perfect-
security is not satisfied, and to then prove a result for ensur-
ing that the amount of leakage is less than some predefined
bound.

Given that perfect-security is sometimes too strict, the is-
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sue of relaxing it was later investigated [7, 6]. The model
proposed in [7] was for individual tuples to have a uniform
probability distribution, but such that the expected size of
each relation instance remains a constant while the size of
the underlying domain tends to infinity. One can then de-
fine µn[Q] as the probability that a Boolean query Q is
true on a domain size n, and it was then shown that lim

n→∞µn[Q] can be computed for conjunctive queries. Given
a user query V , practical-security was defined to occur if
limn→∞µn[Q | V ] = 0. It was then shown that for con-
junctive Boolean queries Q and V , limn→∞µn[Q | V ] = 0
exists and an algorithm was provided for computing it, and
thus also providing a method for determining whether or
not practical-security occurs. In [7], the complexity of sev-
eral problems relating to computing limn→∞µn[Q | V ] were
investigated.

Given that testing for perfect-security is computation-
ally intractable [23, 24], the focus in [20] was on identify-
ing sub-cases where testing is tractable. Using a method
based on reducing perfect-security to the well known prob-
lem of conjunctive query containment [1], several important
tractable sub-classes, such as queries with no self-joins or
acylic queries, were identified.

A different aspect of privacy in database publishing was
investigated in [8], which is as follows. It is assumed that
a database owner has already published views {V1, . . . , Vn},
which may have leaked some information about the secret
query Q. The owner of the database is comfortable with this
level of leakage, but wants to ensure that the publication of
an additional view Vn+1 does not leak additional sensitive in-
formation. The approach adopted is similar to the one used
in perfect-security, and models the adversary’s knowledge as
a probability distribution P over the set of possible database
instances. Hence extra leakage is defined to occur if the
publication of Vn+1 results in the adversary changing their
guess about Q from what it was after knowing {V1, . . . , Vn},
i.e. P(Q | V1, . . . , Vn) 6= P(Q | V1, . . . , Vn, Vn+1). Similar
to what occurs in perfect-privacy, it was shown that testing
for additional leakage can be reduced from a probabilistic
test to a logical one involving the intersection of possible
database instances. The effect of assuming that the database
instance satisfies a set of integrity constraints, and the com-
putational complexity of testing for additional information
leakage, were also investigated.

A chase style algorithm for determining when two con-
junctive queries are disjoint was also investigated in [11], in
a different setting to the one used in this article. The un-
derlying domain was assumed to be dense (e.g. the rational
numbers), and 6= was allowed as a comparison operator.

In addition to the issue of detecting privacy violations,
the related topic of transforming published data for data
analysis or mining so that privacy violations do not occur
has also been widely investigated, mainly for the case where
the sensitive information is specified by specific attributes
in tabular data. Two of the most common methods are k-
anonymity [27] and l-diversity [21]. Both techniques rely on
the generalization of data, in which specific attributes are
replaced by a less specific attribute so that the value of a
sensitive attribute for an individual cannot be uniquely de-
termined from the publication of the sanitized data. For
example, a ”city” attribute may be replaced by a ”region”
attribute, or an ”age” attribute may be replaced by an ”age
range” attribute. Other techniques for transforming pub-

lished data to prevent privacy violations include perturba-
tion [9] and adding noise [5].

9. CONCLUSIONS
We have investigated the issue of detecting privacy vio-

lations in database publishing. We have proposed a new
method of detecting possible privacy violations, based on
determining if a secret query and a published view can re-
turn tuples in common. We then showed that for conjunctive
queries, privacy preservation can be computed in polynomial
time and also gave a necessary and sufficient condition for
privacy preservation for queries with negation. The effect of
FD constraints on privacy was investigated, and we gave a
sufficient condition for privacy preservation in the presence
of FD constraints. We then investigated privacy preserva-
tion when multiple views are published, and showed that
collusion can occur in our model. We then showed that
privacy violations for multiple views can be detected by re-
ducing the problem to that of detecting privacy violation
by a single query that is a join over the published views.
Finally, we investigated the relationship between our defini-
tion of privacy and that of an alternate approach, namely
that of perfect-security [23, 24].

Several conclusions can be drawn from our work. The first
is that it is unlikely that a single definition of privacy will
apply in all situations. The method adopted in a specific
application will depend on both the type and sensitivity of
the private data, and also on the amount of computational
resources available to check for privacy violations. It also
depends on where the database owner would like to have the
balancing point between privacy and utility - if privacy takes
precedence, then a strict definition of privacy violation may
be preferred, if utility takes precedence then a more relaxed
method may be preferable. Also, in general there appears
to be tradeoff between strictness and efficiency and so the
more stringent the definition of a privacy violation is, the
more expensive it is to detect.

There are several extensions of the work in this article
that we intend to pursue. Firstly, we have investigated the
effect of integrity constraints on privacy for a limited class of
constraints. It would be useful to extend this work to more
general classes of integrity constraints, such as those consid-
ered in [8]. Secondly, our approach is intended to be a weaker
approach to privacy violations than that of perfect-security,
and so this means that some leakage of sensitive information
may occur, even when a published query preserves the pri-
vacy of a secret query in our definition. The perfect-security
approach allows one to quantify the amount of leakage that
occurs in publishing a view that is not perfectly-secure, and
it would be useful to use this approach to derive an estimate
of the amount of leakage that occurs when a secret query
is not perfect-secure w.r.t. a published view, but the view
preserves the privacy of the secret query according to our
definition.
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APPENDIX
Proofs of all results in the this article can be found in the
full version:
http://www.cis.unisa.edu.au:80/∼cismwv/papers/edbt-09-full.pdf.
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