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ABSTRACT B
_\INe_ presenPROUD- A PRODbabilistic approach hto prc;]ce(sjsmg sim- L, Arandom variable with mean 4, and deviation o, o
ilarity queries over Uncertain Data streams, where the data streams A1 an uncertain series §, at time stamp j.

here are mainly time series streams. In contrast to data with cer- L
tainty, an uncertain series is an ordered sequence of random vari-
ables. The distance between two uncertain series is also a random
variable. We use a general uncertain data model, where only the
mean and the deviation of each random variable at each timestamp
are available. We derive mathematical conditions for progressively
pruning candidates to reduce the computation cost. We then ap-
ply PROUD to a streaming environment where only sketches of E
streams, like wavelet synopses, are available. Extensive expeti- ime

ments are conducted to evaluate the effectiveness of PROUD and

compare it with Det, a deterministic approach that directly pro- Figure 1: Uncertain time series model.

cesses data without considering uncertainty. The results show that,

compared with Det, PROUD offers a flexible trade-off between

false positives and false negatives by controlling a threshold, while ative (e.g., not discovering speeding or equipment over-heating) is
maintaining a similar computation cost. In contrast, Det does not much less desired than a false positive. On the other hand, in some
provide such flexibility. This trade-off is important as in some ap- situation, the false negatives tend to be more tolerable. For exam-
plications false negatives are more costly, while in others, itis more ple, in mobile network applications, location privacy is an impor-

data
value| ~ -9

critical to keep the false positives low. tant issue. To protect locations of users in wireless network, the
telecommunication companies might blur the true position data of
1. INTRODUCTION users to other applications. In this case, a false negative (i.e., over-

Recently, there is a growing amount of research interest in uncer- protecting) tendg to be more acceptable than a false positive which
tain data. Explicitly, there are research results reported on the querycoU!d lead to privacy leak. Therefore, a proper control threshold
processing in uncertain database [3, 5, 8, 12, 15, 23, 25, 26, 27, 309N the false posnlves_and the false negatives is |no_Ieed appll_catlon-
34], indexing uncertain data [2, 4, 6, 9, 7, 20, 28, 29, 31] , privacy dependen_t ar_ld very important to achieve the desired functions of
preserving with uncertain data [1], sketch and aggregate process-Such applications.

ing in probabilistic data streams [10, 17], and so on. Uncertainty in . ) S .
data comes from various sources. To protect privacy, people delib- N this paper, we study the problem of processing similarity queries
erately introduce disturbance to the confidential data before further ©V€r uncertain time series. In time series databases, uncertainty
processing. In a sensor network, sensor readings are interfered witt!SC €xists. In the process of data collection, the data value at
noise generated by the equipment itself or other exterior influences. €ach timestamp can be blurred with uncertainty. The uncertainty
The readings here could be the temperature measurements, or that €ach time point can be modeled as a continuous random vari-

location or speed of moving objects. In this application, a false neg- able, in which the exact probability distribution is unknown. In
contrast to data with certainty, each time series now is considered

as an ordered sequence of random variables. Furthermore, the pos-
sible value of each random variable is continuous, which is differ-
Permission to copy without fee all or part of this material is granted pro- €Nt from those tuples with limited possible values in probabilistic
vided that the copies are not made or distributed for direct commercial ad- databases. Hence, it becomes a big challenge to find the distance
vantage, the ACM copyright notice and the title of the publication and its between two uncertain data series.
date appear, and notice is given that copying is by permission of the ACM.

To copy otherwise, or to republish, to post on servers or to redistribute to This problem was first studied in [19], by Lian et al., in the con-
lists, requires a fee and/or special permissions from the publisher, ACM. ’ o

EDBT 2009, March 2426, 2009, Saint Petersburg, Russia. text of time series. They treated the time series with uncertainty
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00 ascloaked time series. A general model of the cloaked time se-
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ries was proposed with a high dimension (e.g. 128), similar to the may reduce the false negatives and increase the false alarms. This

oneshown in Fig. 1. At each time point, no detailed distribution i

s the flexibility that Det does not have. The trade-off is important

of each random variable is known except the mean and the devia-as in some cases false negatives are more costly, while in others,

tion. Based on this assumption, they defined a new pattern match-i

t is more critical to keep the false positives low. Users can then

ing query over the cloaked time series databases. They further spedlecide how high the probability threshold should be depending on

up the matching process by taking advantage of R-tree indexing.

their specific applications.

However, many applications have endless data streams, instead oOur contributions can be summarized as follows:

time series with a fixed length. For example, daily stock trading
prices, daily temperature observations, and video surveillance data
are potentially limitless streams. In this case, on-line summariza-
tion, like wavelet synopses, is usually maintained, instead of off-
line indexing, like R-trees. Hence, we need to find a new way to
deal with uncertainty in processing similarity queries in a streaming
environment.

For the above reasons, we present PROUD - A PRObabilistic ap-
proach to processing similarity queries over Uncertain Data streams.
First we discuss the case when raw uncertain time series are pro-
cessed. Then we discuss how to apply PROUD in a streaming en-
vironment when only synopses are available. Given a reference un-
certain series, and a specified time range, we report the series with
a high enough probability that their distances to the referenced one
are within a given distance bound. The user can decide how high
the probability is acceptable by controlling a probability threshold.

We presented PROUD - a new probabilistic approach to pro-
cessing similarity queries within an arbitrary time range among
multiple uncertain streams.

We demonstrated how various probabilistic theories can help
us deal with similarity query processing over multiple uncer-
tain data streams.

We showed how to process probabilistic similarity queries
using only the stream synopses, for example, the wavelet-
based synopses, instead of raw data.

We conducted extensive studies to show that PROUD pro-
vides a flexible trade-off between false negatives and false
positives by controlling a probability threshold, while Det
does not.

Based on the same general uncertain data model as shown in Fig. 1

and similar assumptions as those in [19], i.e., only the mean and the
deviation of each random variable at each timestamp are available,
the statistics of the distance between two uncertain series are com

ted. Th tain distance between tw f randonf’ : . >tanc
pute © Lnceriain distance Heween two sequences of rando tion 4 describes how PROUD is applied directly on the stream syn-

variables is also a random variable. First we describe how to obtain
the expected value and the variance of this distance random vari-
able. Then, by using the central limit theorem, we show how this
distance random variable can be modeled as a normal distribution.
Finally, based on the normal distribution, we derive mathematical
conditions for progressively pruning candidates to reduce the com-
putation cost of PROUD.

o]
the work is concluded in Section 6.

The remainder of this paper is organized as follows. The problem
definition is given in Section 2. In Section 3, we describe how to

ompute various statistics of the distance random variable. Sec-

pses. The experimental studies are presented in Section 5. Finally,

2. PROBLEM STATEMENT

In this section, we first describe the problem of range-specified sim-
ilarity queries over multiple series. The basic notations and defini-

tions are introduced as follows.

In a streaming environment, usually only the summarization of
data, instead of raw data, are retained. Therefore, how to com-
pute the statistics of distance between two uncertain streams di-

rectly using these synopses is an important problem. Based on the

way of processing raw uncertain data, we then apply PROUD to
stream synopses, in particular, the Haar wavelet-based synopses. |

is noted that the uncertain streams we discussed here are time se-

ries data streams with continuous uncertainties, which are different
from the streams constituted of probabilistic tuples drawn from a
finite domain indicated in [10, 17].

To evaluate the effectiveness of PROUD, we conduct extensive ex-
periments using both real and synthetic data. For comparisons,
we implement a deterministic method for computing distances, re-
ferred to asDet. In Det, the distance is directly computed from
uncertain data, treating them as if they were data without uncer-
tainty. We measure both the quality of solution and the computa-
tion time cost. The results show that both have similar computa-
tion costs. However, PROUD offers a flexible trade-off between
false negatives and false alarms by controlling a probability thresh-
old parameter. If the user sets a high probability threshold, only
candidates with a very high probability that their distances to the
reference stream are closer than the given distance bound are re
tained. As a result, it may reduce the false alarms and increase th
false dismissals. On the contrary, for a low probability threshold, it
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e Atime seriesS, is an ordered sequence of data valugs=
[du1, du2,... ,dun], Where at timej, Sy, [j] = du;.

e An uncertaintime seriesS,, is a time series containing un-
certainty at each time point. Given a tinigthe value of the
uncertain time serieS,, [j] is modeled as:

t

Suli] = duj + euj,

whered,,; is the true data value ang,; is the error.

In general, the errat,,; could be drawn from any arbitrary proba-
bility distribution. Hence, we can treat,[j] as a random variable
at timej. However, we do not know the detailed distribution of
the random variablé’, [7]. We usually only have its mean,; and
deviationo,;. In addition, all the random variables at different
timestamps are assumed to be independent.

For the similarity measure between two series, we adopt the com-

monly used Euclidean distance in this paper. The Euclidean dis-

Qance between two seri¢k, and S, given a specified time range

T = [ts,te] IS:



time

Figure 2: The probabilistic distance model.

te

> (Suli] -

Jj=ts

dst(Su, Su)|ic = (1)

In deterministic case, given a reference sefigsy and a distance
boundr, the similarity query is to find those serifg’s that satisfy
the following:

dst(Srer, Su)lic <. @)
However, we cannot compute an exact value of the Euclidean dis-
tance between two uncertain time series.

Therefore, we define a new probabilistic similarity queries over un-
certain series as follows.

Instead, the uncertain
distance between two uncertain series is also a random variable.

DEFINITION 2. Square of Euclidean distance: We define the
square of the Euclidean distance between two uncertain sélies
andS, asDst(Su, Sv).

Dst(Su,S ) = [dst( Su, So ) ] . (5)

3.1 Statistics Computation of Uncertain Dis-

tance
In this section, we will show how to compute the related statistics,
i.e, the expected value and the variance of the uncertain distance
between two uncertain streams. To give a clearer illustration, we
temporarily omit the notatioff* from now on in our description,
and will add it back later.

As shown in Fig. 2, we can treat the distance between two uncertain
streams as a sum of a sequence of random variables:

Dst 5 5’ Z D (6)

whereD; is a random variable representitg,[j] — S.[4]).

From this formula,Dst(S,, S.), which is a function of a series
of independent random variablés;, is also a random variable it-
self. D;’s of different’s are also independent random variables.
Suppose the mean and the variance of the random varlbﬁ)lie
E(D3) andVar(D37), respectively, according to ti@entral Limit
Theoren(32], the normal form variate,

DEFINITION 1. Time-range-specified Probabilistic similarity query:

Given an uncertain reference time seri,é'sef, a specified time
rangeT = [ts, te], a distance bound, and a probabilistic thresh-
old 7, we report those serieS,,’s that satisfy the following equa-
tion:

Pr(dst(Sres, Su)ic <) > 7, wherer € (0,1].  (3)

Instead of looking for similar series using the exact Euclidean dis-
tance, we now process the probabilistic similarity query according
to the the cumulative distribution information of the distance. Ac-
cording to the given distance bound if an uncertain serie$,,

has a probablllty higher than the thresheldhat its distance to
the reference oné‘ref is not bigger tham, thensS, is a qualified
candidate.

3. SIMILARITY QUERY PROCESSING

To deal with the probabilistic similarity query defined in Defini-
tion 1, we can first transform it to the following one:

Pr([dst(Sres, Su)[i]* < r?) > 7, wherer € (0,1].

(4)

As a result, for ease of exposition, when we use the word "dis-

tance" from now on, we mean the square of the Euclidean distance,

denoted adst(S., S, ).
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Dst(Su,S0) = 32, E(
>, Var(D3)

. D)
DSt(SLM Sv)norm = s

@)

hasa limiting cumulative distribution function that approaches a
normal distribution. In other words, the distanbast(S,, S) is

a random variable which approaches a normal distribution with a
corresponding mean and variance

Dst(S., Sy) ZE D), Var(DJ)) (8)
J

This makes it possible that, regardless of the probability distribu-
tions of the original random variables, we can directly use the nor-
mal distribution to model the distance random variable (S.,, S.,).
Furthermore, using this central limit theorem, we can efficiently
decide if a candidate series has a high enough probability of being
close to the referenced series within the given distance botind

The expected value of the distance random variahie(gu, §v)
can be computed as follows:

E(Dst(S., Sy))
ZE(DJQ-)
> (EB(Sa) = 2E(Sulj] - Sulil) + E(S2[5)- (9)

J



Given the computational formula for the variance, the mean value 1

= P
of E(32[j]) is: os 4
P SR OO O //
=27 . 5 . 5 r. 0.6 :
ESiG) = (BES.])* + Var(Sulj]) = o0s E
= Mij +UZ]' (10) © g:g /
0.2 /
Also, by our assumption, the random variables of different times- 01 / :
tamps are all independent. Therefore, Eq.(9) becomes: 4 s 2 1 L 1 o2 3 4 ;
r-limit rnorm(srefr S.J)|t:
o Figure 3: Cumulative distribution function of a normal distri-
E(Dst(Su, Sv)) bution.
= > (o + 05) = 2 - 1oj) + (o + 035))-(11) o
J Finally, the variance oD st (S, Sy) is:

Var(Dst(S., Sy,))

Next, we need to knol/v hgw to compute the variance of the distance _ Z Var(DZ)
random variableDst(S., S, ). SinceD?’s of different;’s are inde- ; !
pendent of each other, the variance®ft(S., Sv) is>_; Var(D3). 2 2 2
: = 4 uj vi) " uj — Mwvg) - 13
Hence once we get the valueldfir(D?), we can compute the vari- ; (005 +005) - (s = ) (13)

ance of the total distance. However, at certain timestame only

know the variance of each random variallg[j] or S,[j]. What , , ,
would be the variance of the function which is composed of these !N Order to provide a better overview of the symbols and its related
variables? statistics used in our paper, we summarize them in the Table 1.

To solve this problem, we use tielta method22], whichisan 3.2 Candidate Selection

important technique used in the Statistics field. Essentially, the To find qualified candidates of Eq. (4), we need to know the cumu-
delta method uses the second-or@iaylor series expansioto ex- lative distribution function (cdf) of the random variakiest(S,.. 7,
pand a function of a random variable about the mean of thatrandom g, ) From the previous section, we discussed how to model the
variable. Then it takes the variance of the expansion result. For €X- gistribution of Dst
ample, to compute the variance of functigfX), first we expand

f(X) about the meap of X:

(S.,S,) as a normal distribution with corre-
sponding mean and variance. Note that the cdf of a normal distri-
bution can be expressed in terms of the well-kn@mor function.

, Given the meam and the deviatiow of a random variabl&X with
FX) = f(w) + (X =) f (1), normal distribution, its cdf is defined as follows:

wheref’() isdf()/dX.

Therefore, the variance ¢f{ X) is Pr(X <)
= ®,,2(x)
Var(f(X)) = Var(X) - (f'(1))*. 1 T—

If we want to compute the variance of a function of more than one ) ) )
variables, it can be computed as follows: whereer f() is the error function. Note that the value of this error
' function and its inverse function can be obtained by looking up
P P from an existing statistics table.
A\ of(it) af(it),r
Var(f(X)) » [T - [

I

To solve the similarity query problem defined in Eq. (4), we illus-
trate our idea in Fig. 3. Given a probability thresheldand the cdf

of the normal distribution, we first compute a corresponding value
r-limit which satisfied

where X is a vector of random variableX;, i is the vector of
means of those variables, afiis the covariance matrix of those
random variables.

B B Pr(Dst(Sref, Su)norm < r-limit) = 7. (15)
Back to our case, the variance Bf = (S, [j] — S [j])* is derived
as follows: o ] o
DEeFINITION 3. r-limit: Using the standard normal distribution
o2 0 function N(0,1) and its cdf, given a probability threshotd we
[ 2(puj = pog)  —2(Bus — Hoj) } : { 0 Ogj ] ) can obtain a corresponding valuelimit:
Q(Muj - Mvj) :| r-limit = \/567,](-71(27_ - 1)a (16)
= 2(pug = bvj) whereer f~' (27 — 1) can be obtained by looking up a statistics
= Aon; +05;) - (g — 1rog)?. (12) table.
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Table 1: Main symbols used in this paper.

Symbol Description

Su uncertain time series with identity

Sulj] the value ofS, attimestampj

L the expected value of the uncertainty at timestampy.of
Ouj the deviation of the uncertainty at timestamp j5%f

D; = Sulj] = Sulj]

D; = (Sulj] = Sulj])?

Dist(Su, Sv) =3, (Sulg] = Suls)?

E(Dst(Su, Sy)) expected value of the uncertain distance betwsgmdsS,
Var(Dst(S,,Sy)) | variance of the uncertain distance betwégmands,,

The r-limit value defined in Definition 3 gives us a limit that, the tain distance between two streams now are:
probability of a normalized distance bound which is smaller than

= =
this value would definitely not be higher than E(Dst(Su, S0)l:%)

te
~ 2 2 2
Given a reference serigh.. ;, assume that the expected value and = (ou+toy) (te—ts+1)+ Z (Buj — poj)” (20)
the variance of the uncertain distance of a candidate sgjds 7=ts

Srey are obtained. Then, we can normalize the value of the given gnd
distance bound? using the current obtained expectation and the _
variance of the uncertain distance. Var(Dst(Su, Sv)l::)

= 4(0'5 + 0'12;) ) (B — Mvj)Q- (21)

DEFINITION 4. Given the user defined distance boundvith j=ts

the expectation and variance of the uncertain distance between the
reference serieS§,..; and a candidate serieS,, we define the nor-
malized distance bound &s,,,., and it is

¢

o

o v2 — B(Dst(Shes, Su)) Under this assumption, we do not need to compute the final ex-
Trnorm (Sref, Su) = refsDu)) 17) pected value and the variance to decide if a candidate stream is
Var(Sres, Su)) qualified for the given threshold. In other words, if we can de-
cide whether to prune a candidate or not with only part of random

variablesD;’s, it may save a lot of processing time.

Without loss of generality, assume we update the expected value

and the variance in Eq. (20) and (21) starting from the very begin-
Trorm (Sres, Su) = r-limit, (18) ning of the given time range. At certain timet, € [ts,t.], the
partial values of Eq. (20) and (21) are:

If a candidate series, meet the following inequality

then

PT’(DSt(Sref, Su)norm S Tnm"m(s'refy Su)) 2 T. (19) ~ ~
E(Dst(S., S,)

tr
, which means Eq. (4) is satisfied. As a resslt,will be included ~ o~ zk)q 9
in the answer set. On the contrary, if any candidate series cannot = E(Dst(Su, So)lik ) + (tuty, — fhoty,) (22)
meet the above inequality, it will be pruned away.

and
I3.3 Progresswely P(unlng . . Var(Dst(3u, 50)[%)
n real applications, the deviation at each time point usually re- Tl
mains the same for the same time series. For example, in the sensor = Var(Dst(Su,Sy) ’i’j*l)
network, data series obtained from the same sensor will have the +4(0? + o2)( B )2 23)
same uncertain deviation. It is different sensors in different places Tu T Ov) Huty = Hoty
that may have different deviations of uncertainties. Hence, we fo-
cus on the model that the uncertainty deviation is only time-series Accordingly, at timet,, having the current expected value and the
(iependent hereafter. Explicitly, for a specific uncertain time series variation from Eq. (22) and Eq. (23), we can compute the current
S., the deviations of uncertainty at different time points are: normalized distance bound which is defined in Definition 4 as:

Ouj = Ou, VJ.

72 — E(Dst(Sres, Su)

ty
In accordance with the model that the uncertain deviation is time- Trorm (Sref, Su)|tF = ~ )~ (24)

series dependent, the expected value and the variance of the uncer- Var(gref, gu) \Z’j)
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Itis clear that both of Eq. (22) and Eq. (23) are non-decreasing as  Algorithm: PROUD

t, approaches.. Furthermore,~the vglue in Eq. (24) will approach Input: §Tef, T = [ts,te], 7, T
the value in Eq. (17). fnorm (Sre, Su)|;* can be monotonically Output: The series which have distancea. ; not big-
non-increasing as, approaches., once ger thanr with probability not lower tham
1. Extract relevant random variables$f. ¢ in [¢s,t.].
2. for(j=ts;j < te; j++){
Trorm (Sreg, Su)[F < r-limit, (25) 3. =y o
4. Update E(Dst(Sref, Su)lt¥) and

Var(Dst(Sres, Su)|i*) for each candidats.,
if(Eq. (27) is met){
if(Eq. (25) is met){
prunes, away

}

else if(jequals ta..){
if(Eq. (25) is met){
prunesS,, away

as illustrated in Fig. 3, we can stop computing the expected value
and the variance for a candidate streSgnand prune it away.

Therefore, we want to examine in what condition will Eq. (24) be
non-increasing. To do this, we check the difference of Eq. (24)
between two consecutive timestamps:

rnwm(g,«ef, gu) 2]:_1 — Tnorm (grefv §u)‘?§
% — E(Dst(Sres, Su)|tF )

el N = S
ORrWONMNRPROOONOO

= }
VVar(Sees, S } }
12 — E(Dst(Srez, Su)|i*) 26)
Var(Srer, Su)[iF) . Figure 4: Algorithm of PROUD.

We will prove in the Appendix that when we update to certain datastream, usually only the sketches of the stream are retained.
timestampty, if In this section, we will discuss how our PROUD method can be
applied when only summarization of streams is available.

When the uncertain series we formerly considered become endless

2 2 2
77 = (Orey +0u) - (te —ts +1) streams, we need a way to properly summarize the mean and vari-
tp—1 th ance of each coming random variable. Follow the assumption in
+ Z (Urefi — tus)? Z (trefi — tuz)? >0, 27) Sec. 3.3, to deal with similarity queries with uncertainty, we need to
J—ts J—te compute the expected value and the variance of uncertain distances

between streams according to Eq. (20) and Eq. (21). Therefore, we

the difference in Eq. (26) will always be positive when updating peeq to know how to compute the above two values with stream
to the following timestamps, which means that we can guarantee synopses.

Tnorm IS NON-iNCreasing. Hence, we can safely prune the candidate

accordingly. There are many summarization methods for data streams such as
discrete Fourier transform, discrete wavelet transform, singular value
3.4 The PROUD Algorithm decomposition, piecewise linear approximation and so on. Here we
We summarize the PROUD algorithm in Fig. 4. Given a reference mainly focus on how to use PROUD under the Haar wavelet de-
seriesgref, a time rangel’ = [t.,t.], a distance bound, and a composition. One reason is that wavelet transform plays an impor-

probability threshold, the algorithm will output the desired series ~ tant role in time series analysis [24]. In addition, it has the multi-
that have a probability no smaller tharwhere their distances to ~ resolution property in decomposing the original data. Last, but not
the reference one are not bigger thanFirst, all the sub-series  1€ast, the Haar wavelet decomposition is simple and can be main-
within the time rangél” are extracted. Without loss of generality, tained online. We leave the application of PROUD to other kinds
starting from the random variables at timg we incrementally of summarization methods as future work.

update the expected value and the variance of the uncertain distance

between a candidate and t_he referen_cg se_ries according to Eq (2221_1 Wavelet Summarization for Uncertain Data
and Eqg. (23). We chegk if the condition in Eqg. (27) is satisfied Streams

to guarantee that, orm (Sref, §u)|§’: is non-increasing. Once this . ) . .
condition is met, we can prune the candidate according to Eq. (25). 'n this section, we discuss how we use the Haar wavelet decomposi-
Note if the condition in Eq. (27) has never been met (only if the tion to summarize an uncertain data stream. Byihe assumption that

given r is really large, which rarely happens), the prune is only the variance is the same at differgnfor a streants.,,, we need to

performed after the entire data are computed. summarize its meap,,; at different;'s and keep one. In other
words, to summarize an uncertain stream means to summarize a
stream of mean values.
4. APPLYING PROUD TO WAVELET SYN-
OPSES The Haar wavelet decomposition is achieved by averaging two ad-

More and more emerging applications are required to handle a largejacent data values of a sequence of data at different time resolu-
amount of data in the form of rapidly arriving streams under limited tions. An example is given in Table 2. The final wavelet coeffi-
resources. Due to memory constraints, instead of storing the wholecients are{5.875, —0.625, —0.25,0.5, —1,1.5,1, —1}.
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Table 2: The Haar wavelet decomposition.

averages wavelet coefficients
raw data {4,6,7,4,8,6,5,7} | -
high resolution| {5,5.5,7,6} {-1,1.5,1, -1}
mid resolution | {5.25,6.5} {-0.25,0.5}
low resolution | {5.875} {-0.625}

Hu,0 HulHMu2 Hu3 Hua Hus5 Hub Hu7 Hu8 Hu9 Hu104u11H u,12Hu,134 u,14H u,15

(u) ﬁ

u,
AQE 0 %)

Sl ) ()
(u?«(?'o)_ * a1 a0 'a\§3),3): + nﬁﬁ?-l)- nEZ?O)‘* n%?l)

level 3
0)

Hu,0 Mul Mu2 Hu3 Hud Hus5 Hub Hu7
@ (b) Figure 6: Coefficients extraction.

Figure 5: (a)The error tree for Table 2. (b)The notation of an

error tree proposed in [16].
prop [16] other|[ts, t11]. For each complete error subtree, the new average

node will be computed by traversing from the original root node

To better illustrate the Haar wavelet decomposition, a widely used nEZLl) to the root of the subtree. For example, in Fig. 6, the new

data structure cal_lgelrrt_)r treeis proposed in [2_1]. The error tree. average nodag)o) equals tmg)_n + ”E?o)' Finally, the infor-

for the decomposition in Table 2 is shown in Fig. 5(a). This tree is mation of th r nce? of thi ’tr mi ti1 me kebt at the root

composed of wavelet coefficients as nodes and signs as edges. ation orthe variance, ot this stréam is the same kept at the roo
of the complete tree with highest level.

We will similarly use an error tree to illustrate our idea. We slightly

modified the node labeling method proposed in [16], whichisshown 4,2 Statistic Computation Using Wavelet Co-
in Fig. 5(b). The~leaf nodes represent the sequence of means of an efficients

uncertain strean§’,. Each non-leaf node is labeled with an identi- . . . .

. . - . In this section, we described how to compute the expectation and

fier with two attributes as subscriptevelandplacement. A node ; Lo )
the variance value of the uncertain distance between two uncertain

. (u) o
with a label ofn, ,, means thatitis in the-th placement of level  yeams when only partial coefficients are retained. According to
[ in the error tree corresponding to stred. This notation can Eqg. (20) and Eq. (21), we need to compute

be efficiently maintained when data keep steaming in. Moreover,

when not all wavelet coefficients are retained, we can easily find te ) ) )
the relative positions of the retained coefficients in the error tree Z (Huj — poj)” @and(oy, + 03)
via the node labels. J=ts

. ~ to answer the probabilistic similarity queries. Since we do not
For an uncertain data streasf, the mean valueg,; are used to . 5 5 .

. ) X - transform the variance of each streg;, + o;) can be obtained
build this tree. Under the assumption that the variance of uncer- . . o

. . - o directly. Now, the mean values are summarized as coefficients, and
tainty at each timestamp is the same for a specific stream, we keep . -

. . some of them are missing. Under this case, we show how to com-
the variance for each stream at the root node of the highest level as . . . o
ute the distance directly from the retained coefficients.

shown in Fig. 5(b). P

Recently, the authors of [33] provided a way of computing the dis-

Generally, not all the wavelet coefficients in an error tree are re- ) . X :
) SR . tance between two streams directly using their retained wavelet
tained because memory space is limited. To meet different error - . : : . A
. ) . coefficients in a level-wise fashion. Given a specified time range
requirements between the raw data and the retained coefficients : - .
T = [ts, te] and the retained wavelet coefficients, the distance be-

many online approaches to selecting wavelet synopses have been .
proposed [11, 13, 14, 18]. Fortunately, our proposed method is tween two streams,, andsS, is:
dependent only on the retained coefficients, and is independent of Dst(Su, Su)[te = Dst(Su, Su)[¥
how the coefficients are retained. Therefore, we do not further dis- (w) () 12 L () @) 12 L
Z[n(lwp) o n(lyp)} X274+ Z[n(lm) o n(l,p)] x2
p

cuss the relationship between our method and any specific on-line
approaches to retaining wavelet synopses. P

L
L ) l
> D lngy —niop)? x 2, (28)
=1

P

Given the retained coefficients of a stream, we can efficiently ex-
tract the relevant coefficients within any time rangg {.]. As sug-
gested in [16], the extraction method is outlined in Fig. 6, where the
black nodes represent retained coefficients, while the white ones ) )

are those being discarded. Assume the given rang# i 1], whereL = [lg,(te —t. +1)] is the highest level number of the
which contains the shaded triangular area, we can decompose iteXtraCtSUbtfeesLEZL) andng% are retained coefficients inside the
into two complete error subtrees where one coy&rg-| and the [ts, te] range ofS, andsS,.
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Back to our case, according to Eq. (28), the expected value and thenormalized distance bound similar in Eq. (24) as follows:

varianceof uncertain distance shown in Eq. (20) and Eg. (21) can =~ =~ ..
— E(Dst(Sres, Su)lp)

:)e” computed directly using the wavelet coefficients respectively as T,MTm(gref’ §u)|p _ ! (33)
orows: Var(Sres, Su)l%)
E(Dst(Su, 5.))
L () . If rmm(gref,gu)ﬁ can be monotonically non-increasing as
E (l p) — ", p>] x 2 approaches to, once
=1 p
=~ =~ L .
+(02 +02) - (te — ts + 1), (29) Tnorm(Sref, Su)|, < r-limit, (34)
as illustrated in Fig. 3, we can stop gomputing the expected value
and and the variance for a candidate streSgnand prune it away.
Var(pst(gm 51;)) We will give the proof in the Appendix that at certain leyelonce
L
_ (u) (v) l
- 4(UU + GU Z Z (l,p) - n(l p)] X 2 s (30)
=1 p 1% — (0t +0o0) - (te —ts +1)
whereL = |lg,(t. —ts + 1)] is the highest level number of the + Z Z E;;ﬁ () aml? x 2!
extract subtrees;(”” andn(") . are retained coefficients inside the l=p+1 p

(,p) (1,p)
[ts, te] range transformed from.,;'s and . ;'s

| S it 2

With the above two equations, we can compute the statistics of the [
uncertain distance between two uncertain streams directly using the >0 (35)
retained wavelet coefficients. -

. we can guarantee that,,m (Srer, u)\p will be monotonically
4.3 Prunlng StrateQV non-increasing gsapproaches to the following lower levels. There-
By means of level-wise computation, and computing the distance fore we can do the pruning safely as described in Eq. (34)
from highest level to the lowest, we can gradually get a clearer

view of the expected value and the variance of the uncertain dis-

tance. Because usually we can first get the rough view at higher5 PERFORMANCE S_TUDY_ .

levels with few coefficients and then details at lower levels. This is e conducted a series of experiments with both real and synthetic
how we can leverage the multi-resolution property of the wavelet data to evaluate PROUD. We compared PROUD with a determin-

decomposition. As a result, starting from highest levgivhen we istic approach, referred to &et, where the similarity queries are

update Eq. (29) between the refereste; and some streardi, to processed on uncertain data as if they were data with certainty.
certain Ievélo €1, L] itis: f “ In addition, the pruning strategy for Det is similar to that used in

PROUD. When updating the distance between a candidate stream
and the reference one, once it exceeds the given distance bpund
we prune that candidate away. Both approaches were implemented
in Visual C++ and the experiments were run on a PC with 2.8GHz

E(DSt(gTefv Su)lg)

_ Z Z (ref) _ (U) } % 21
- " (1,p) " (1,p) CPU and 2GB RAM.
l=p+1 p
+ Z E’"ef; E“? )}2 X 2P We processed the range-specified probabilistic similarity queries
PP i on both real and synthetic data. To generate an uncertain stream
+(0 ito ) (te —ts +1) (31) S, we did the following. First, we had the true data stre8m
re u e S )

We computed the standard deviation of the entire str6amvhich

is og, . Then, we picked a set of value: [0.01, 0.02, 0.05, 0.1, 0.2,

Simila”y, the current Variance is: 05, 1, 2] OfO'Su as the deviation of the Uncertainm. GiVen ao,,
for each timestamp, we randomly drew a number from a normal
distribution or uniform distribution with mean equals$[j] and

L the deviation equals t@,, to be the uncertain valus, .
Var(Dst(Srey, Su)|,f)
To measure the performance of PROUD and Det, we compared

= U +52). [n (ref) _ ,(w) ] N these two methods in terms of quality of query results and compu-
uw o) (t.p) (1.p) L . ;
l=p+1 p tation time cost. In quality, we compared tfadse alarm ratioand
(reﬁ o) 2 o 30 themiss ratid of both two methods. The ground truth is based on
+ Z o) ~ ™o, p)] x 27). (32) the query result with the same distance bound without uncertainty

The false alarm ratio and miss ratio were computed as the frac-
tions of the number of false alarms and the number of misses over
After we update the coefficients at level we can compute the  the size of the ground truth, respectively.
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T =30 5 Real Data T =300
. . PROUD = 1 ‘
Deviation Ratio =00l | 7=05 1 7=09 Det
0.02 0.0609 | 0.0000 | 0.0000 | 0.0066
0.10 0.2241 | 0.0000 | 0.0000 | 0.0457
0.50 0.0306 | 0.0000 | 0.0000 | 0.0023
2.00 0.0000 | 0.0000 | 0.0000 | 0.0000
T = 100 2
0.02 0.0262 | 0.0000 | 0.0000 | 0.0045 2
0.10 0.0821 | 0.0000 | 0.0000 | 0.0026 E
0.50 0.0037 | 0.0000 | 0.0000 | 0.0000
2.00 0.0000 | 0.0000 | 0.0000 | 0.0000
T =300
0.02 0.0255 | 0.0000 | 0.0000 | 0.0100
0.10 0.0175 | 0.0000 | 0.0000 | 0.0000 :
0.50 0.0000 0.0000 0.0000 | 0.0000 ratio 0 the unclertain dezviation
2.00 0.0000 | 0.0000 | 0.0000 | 0.0000
Table 3: False alarm ratio of PROUD and Det (real data.) Figure 7: The miss ratio of PROUD and Det (real data.)
o T = 30 (Real Data)
on the true dataS,. In computation time cost, we measured the os] uncenal_r;(ievtl)azt())n o
CPU time of processing a query on average. o= 0.20
T

The following experiments were all conducted on wavelet synopses
of the uncertain data. It is noted that PROUD is independent of the
way wavelet coefficients are chosen. Without loss of generality,
here the wavelet coefficients were retained using the method pro-
posed in [13], which retains thB largest coefficients in terms of
absolute normalized coefficient values. We randomly picked a few 0al
different streams from our dataset as the reference stream and per-
formed queries. Then the averaged results are reported. 00sg

N e

0
) b1 o2 03 04 05 06 Y 077 ¥os 09

5.1 Experiments with Real Data miss ratio

The real data we used here were the daily average temperature dathkigure 8: The trade-offs between false alarms and misses of-
of 300 cities around the world, which were obtained from the tem- fered by PROUD (real data.)

perature data archive of the University of DaytoiThe data from

each city was regarded as a stream, each of whicl3 hi$ data
points. 7 = 0.01, PROUD has lower miss ratios than Det. On the other

hand, whern- = 0.9, PROUD has higher miss ratios than Det. Con-
Table 3 and Fig. 7 show the quality of query results for the real trasting this observation with the false alarm ratios from Table 3, it
data. We varied the time rangeX@f queries and the magnitude of ~ clearly shows that PROUD offers a flexible trade-off between miss
the uncertain deviation to have a series of subplots. The uncertainratios and false alarms by controlling With a smallerr, PROUD
deviation were varied from 0.02 to 2 of the deviation of each orig- Offers a solution with lower miss ratios and higher false alarms. In
inal stream. Furthermore, for PROUD, we show the results under contrast, with a larger, it provides a solution with higher miss
three different’s: [0.01, 0.5, 0.9]. ratios and lower false alarms.

false alarm ratio
°
S

First, let us look at the false alarm ratios listed in Table 3. Both To clearly illustrate the trade-offs between false alarms and misses
Det and PROUD, withr = 0.5 and7 = 0.9, barely incur any offered by PROUD, we further plot the false alarm ratio versus miss

false alarms. This can be exp|ained from Eq (ll) or Eq (20) ratio under differentr’s and uncertain deviation ratios in Flg 8.
The summation of the variances of two uncertain variables at each Ther's are [0.001, 0.01, 0.1, 0.5, 0.9] and the deviation ratio ranges
timestamp are also included. Since this value is always positive, it from 0.1 to 1. Each line in this figure represents differestun-
makes the expected value likely to be larger than the true distance.der the same specific uncertain deviation ratio. Although the false

However, for PROUD, there are more false alarms whea 0.01 alarm ratios are relatively small compared with the miss ratios, we
than whenr = 0.5 or7 = 0.9. clearly observe the trade-off between them. For a smalléhe

false alarm ratio is higher and the miss ratio is lower. In contrast,
Fig. 7 shows the impact of uncertainty level on the miss ratio, under for a largerr, the reverse is true. As the uncertain deviation ratio
three different time rangeE's and threshold’s. Thez-axis is the gets larger, the curves move toward the higher miss ratio region.
deviation ratio, and thg-axis is the miss ratio. Generally, the miss
ratio increases as the uncertain deviation ratio increases. The misd\S the time range becomes bigger, i€.,= 100 or 7" = 300,

ratio of Det is always around that of PROUD wheg= 0.5. When the miss ratios of PROUD with differents become closer to one
another. For example, when deviation ratio is 0.2, the miss ratio of
2http:/iwww.engr.udayton.edu/weather/ PROUD with7 = 0.01 is about 1/2 of that withr = 0.9 when
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Real Data Synthetic Data
gx10° T=30 $*19° T =100 T =100 . T =300
—— 0.01 —— 0.01
45t —-— 0.5 | asp -e— 0.5 H 0.9t oo}
- 0.9 - 0.9
ar —&— Det | ar —&— Det 0.8 0.8t
3.5 b 3.5 0.7 0.7
o
g 3 b 3 k=) 0.6 0.6
@ S
£ 25 B 2, n 0.5F 0.5
= .2
a B S 0.4+ 4 0.4+ 0.4+
O
1. 15F 0.3 1 0.3 0.3
1t ] 1t 0.2} —-— 0.1 { o2} —— 02} ——
—-e— 0.5 —— ——
05F 1 os5f 0.1 - 0.9 § o1f — 0.1F ——
—&— Det —=— -
o L 0 L o L o) . o . 0 .
¢} 1 2 o 1 2 0 1 2 0 0.1 0.2 ¢} 0.1 0.2 0 0.1 0.2
ratio of the uncertain deviation ratio of the uncertain deviation

Figure 9: The computation time cost of PROUD and Det (real Figure 10: The miss ratio of PROUD and Det (synthetic data.)
data.)

o in realdata. Therefore, we omit it here. Fig. 10 shows the miss
I = 100, and about 3/4 whefi” = 300. This is because when  yatios for both Det and PROUD und@r = 30 to T = 300. Ba-

the time range is large, more random variables are involved, and gjc4|ly, under all” values, the miss ratio increases as the ratio of
thelaw of large numbedominates. Almost all uncertain distance  the ncertain deviation increases. At—= 30, the miss ratio is
values fall very close to the expected value. Therefore, we cannotVery high even when the deviation ratio is only 0.01. This is be-
tell much difference under differents. The size of uncertainty  c4;se 75 | the deviation of the entire 20,000-point-long random
decides the quality. walk data stream, is quite high compared to the data of small range
_ . . . _ of 30. AsT gets larger, the miss ratio at a small deviation ratio
Fig. 9 shows the corresponding computation time cost of Fig. 7. yaquces. This phenomenon is not observed in the experiments with

The computation cost decreases when the deviation of the uncer gy gataset. It is because that the deviation of a 3,416-long temper-
tainty increases for both Det and PROUD. This is because when theg; e stream of a city is relatively low.

uncertainty is really high, the expected value of the uncertain dis-

tance becomes very high as well. As a result, unqualified or even gqr the computation time cost, the results are also similar as those
qualified candidates are easily pruned away. After pruning, only o rea| data. The corresponding charts are shown in Fig. 11. The
few candidate streams are left. In addition, with a sméllethe computation time costs for both PROUD and Det are similarTAs
computation time for Det is smaller than that for PROUD. How-  getsjarger, the computation time cost increases as well. Also, when
ever, with a largefl’, and the uncertain deviation ratio is higher, the deviation ratio is higher, a larger expected value of the uncertain
PROUD spent less time than Det. This shows that, under similar gisiance results in earlier pruning, hence the computation cost is
query result quality, the prune efficiency of PROUD is even higher. ¢maller. Wheri gets larger, the pruning efficiency of PROUD is

- . better than Det.
In summary, PROUD and Det have similar computation costs. How-

ever, PROUD offers a flexible trade-off between miss ratios and

false alarms by controlling’s. Det does not have such flexibility. 6. CONCLUSION

This trade-off is important as in some applications false negatives |n this paper, we presented PROUD - a probabilistic approach to
are more costly, while in others, it is more critical to keep the false processing similarity queries over multiple uncertain data streams.

positives low. We demonstrated how various probabilistic theories can help us
deal with similarity queries over uncertain data streams. We showed
52 Experiments with Synthetic Data how we can progressively prune candidates. Furthermore, we showed
The synthetic data were generated by a random walk data modelhow to apply PROUD using only wavelet synopses instead of raw
proposed in [35]. For a streaf), it was generated as follows: data. We conducted extensive experiments with both real and syn-

thetic data. The results show that, compared with Det, PROUD
provides a flexible trade-off between false alarms and miss ratios
i by controlling a threshold, while maintaining a similar computa-
S, = 100 + Z(“j ~0.5), tion cost. In contrast, Det does not have such flexibility.
Jj=1

As future work, we will extend our work to other kinds of queries
] on uncertain streams, like probabilistic nearest neighbor queries for
whereu; was randomly picked from [0,1]. We generated 1,000 example. We will also explore probabilistic similarity queries over
streams in total, where each stream has 20,000 data points. Hergncertain streams using other similarity measurements than the Eu-
we consider the following ratios of the uncertain deviation [0.01, ¢jidean distance.

0.02,0.05, 0.1, 0.2].

The behavior of false alarm ratio in synthetic data is similar tothat 7. REFERENCES
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Synthetic Data

0.012 T ‘30 0.012 T =100 0.012 T ‘300
—— 0.1 —— 0.1 —— 0.1
-e— 0.5 —-o—- 0.5 —-o—- 0.5

0.01f - 0.9 || 401 = 0.9 || ool - 0.9 ||
—&— Det —&— Det —&— Det

. o.oo8- - 0.008 - 0.008

0.006 0.006 < 0.006

CPU time (sec

0.004 - 0.004 < 0.004

0.002 - 0.002 <4 0.002

o - 0 - o
0.2 0 0. 0.2 0

1
ratio of the uncertain deviation

0.1 0.2

Figure 11: The computation time cost of PROUD and Det (syn-
thetic data.)
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Appendix
Here,we provide the proof that,e,m (Srf, S.) is monotonically
non-increasing during the updating process. First, we prove that it

is non-increasing in raw uncertain series cases, and then we prove
that it is also non-increasing in the case when we use the wavelet

coefficients directly.

Al Proof of non-increasingr,.... in raw uncer-

tain series case
For ease of exposition, we restate Eq. (26) using some substitutes.

,which means that

2
T

—(OFey +o0) - (te —ts +1)

tp—1 th
+J Z Hrefj — .UUJ ) Z (Mrefj - Muj)2 2 07
J=ts Jj=ts

the Eq. (36) will always be positive. This gives us the proof that
rnormﬁf is then non-increasing ag approaches to..

A2 Proof of non-increasingr,..... in wavelet syn-

According to Eq. (22) and Eg. (23), we can substitute the terms as opses case

follows. Let
tp—1
2
a = > (frress — Huy)’,
j=ts
2
B = (Mreftk - ,U/utk) )
and
A = (O’Eef + 03) (te —ts +1).

With the above substitution, we have

E(Dst(Sref, Su)[tF)

tp—1

= ) (press — tug)® + (tresty, — pury,)”
J=ts
= a+p,
and
Var(Dst(Sres, Su)|iF)
t—1
= A(o7es +00) > (Hress — pug)”
J=ts
+4(0£6f + Ui)(#reftk - :u‘uik)Q
= Aores +ou)(a+B).
Therefore, Eq. (26) is restated as follows:
Tnorm(gref7 gu) §§71 - Tnorm(gref, §u)|i§
_ r?—a—A P —a—-0B-A
\/4 ref+o-u \/4 ref+au) (a—l—[)’)
(r? — A4 Vala+B) - (Va+ B —+a)

(36)

JAZ, +02) - (atp)

It is clear that? — A is a constant whet, andt. are given. Also,
it is obvious that(v/a + 3 — /) is always non-negative. As the
timestamp ;. approachew the end of query time rangg, the term
Va(a + ) is definitely growing or non-decreasing. Therefore,

once
(r* = A++ala+3) >0
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To prove that Eqg. (33) is non-increasing, we prove the following.
When updating the statistics from leveh- 1 to p, the difference
of rnorm values at two levels is:

- rnorm(§r5f7 gu)lrl; (37)

Tnorm (grefy gu) |5+1

For ease of exposition, we do the following substitutions which are
similar to the previous section. Let

L
> > i) —n

a = niml® x 2,
l=p+1 p
(ref) _ P
B Z [n<p P) (p p)] x 2%
and
A = (0hep+on) (te—ts +1).

According to Eq. (31) and Eg. (32), Eq. (37) then becomes:

Sl
E(DSt(grefygu)hl;)

Tnorm (§'ref7 gu) ‘£+1 - T'!LOT"VVL(gTEf?

— B(Dst(Spes, Su)|) 1 —

\/Var Sref,Su) NE) Var(gref,gu)\g)
(r = A+ Va(a+8) - (Va+B—Va)
\/4(a§ef+03)'a‘(a+5) |

It is clear that?> — A is a constant whet, andt. are given. Also,
it is obvious thatv/a + 8 — /) is always non-negative. As the

we progress from levep + 1 to level p, the termy/a(a + 3) is
definitelygrowing or non-decreasing. Therefore, once

(r* = A+ Vala+ B)) >0,

,which means that

2

re — (Ufef+03)~(te—t5+1)

(ref) _ ()
Z > [y —ngipl? x 2
l=p+1 p
L
(ref) _ . (w)
DD gy =g x 2
l=p p
>0

jti )

the valuer,orm (Sref, Su
the lowest level.

)|§ is non-increasing as approaches to





