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ABSTRACT
We presentPROUD- A PRObabilistic approach to processing sim-
ilarity queries over Uncertain Data streams, where the data streams
here are mainly time series streams. In contrast to data with cer-
tainty, an uncertain series is an ordered sequence of random vari-
ables. The distance between two uncertain series is also a random
variable. We use a general uncertain data model, where only the
mean and the deviation of each random variable at each timestamp
are available. We derive mathematical conditions for progressively
pruning candidates to reduce the computation cost. We then ap-
ply PROUD to a streaming environment where only sketches of
streams, like wavelet synopses, are available. Extensive experi-
ments are conducted to evaluate the effectiveness of PROUD and
compare it with Det, a deterministic approach that directly pro-
cesses data without considering uncertainty. The results show that,
compared with Det, PROUD offers a flexible trade-off between
false positives and false negatives by controlling a threshold, while
maintaining a similar computation cost. In contrast, Det does not
provide such flexibility. This trade-off is important as in some ap-
plications false negatives are more costly, while in others, it is more
critical to keep the false positives low.

1. INTRODUCTION
Recently, there is a growing amount of research interest in uncer-
tain data. Explicitly, there are research results reported on the query
processing in uncertain database [3, 5, 8, 12, 15, 23, 25, 26, 27, 30,
34], indexing uncertain data [2, 4, 6, 9, 7, 20, 28, 29, 31] , privacy
preserving with uncertain data [1], sketch and aggregate process-
ing in probabilistic data streams [10, 17], and so on. Uncertainty in
data comes from various sources. To protect privacy, people delib-
erately introduce disturbance to the confidential data before further
processing. In a sensor network, sensor readings are interfered with
noise generated by the equipment itself or other exterior influences.
The readings here could be the temperature measurements, or the
location or speed of moving objects. In this application, a false neg-
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Figure 1: Uncertain time series model.

ative (e.g., not discovering speeding or equipment over-heating) is
much less desired than a false positive. On the other hand, in some
situation, the false negatives tend to be more tolerable. For exam-
ple, in mobile network applications, location privacy is an impor-
tant issue. To protect locations of users in wireless network, the
telecommunication companies might blur the true position data of
users to other applications. In this case, a false negative (i.e., over-
protecting) tends to be more acceptable than a false positive which
could lead to privacy leak. Therefore, a proper control threshold
on the false positives and the false negatives is indeed application-
dependent and very important to achieve the desired functions of
such applications.

In this paper, we study the problem of processing similarity queries
over uncertain time series. In time series databases, uncertainty
also exists. In the process of data collection, the data value at
each timestamp can be blurred with uncertainty. The uncertainty
at each time point can be modeled as a continuous random vari-
able, in which the exact probability distribution is unknown. In
contrast to data with certainty, each time series now is considered
as an ordered sequence of random variables. Furthermore, the pos-
sible value of each random variable is continuous, which is differ-
ent from those tuples with limited possible values in probabilistic
databases. Hence, it becomes a big challenge to find the distance
between two uncertain data series.

This problem was first studied in [19], by Lian et al., in the con-
text of time series. They treated the time series with uncertainty
ascloaked time series. A general model of the cloaked time se-
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ries was proposed with a high dimension (e.g. 128), similar to the
oneshown in Fig. 1. At each time point, no detailed distribution
of each random variable is known except the mean and the devia-
tion. Based on this assumption, they defined a new pattern match-
ing query over the cloaked time series databases. They further sped
up the matching process by taking advantage of R-tree indexing.

However, many applications have endless data streams, instead of
time series with a fixed length. For example, daily stock trading
prices, daily temperature observations, and video surveillance data
are potentially limitless streams. In this case, on-line summariza-
tion, like wavelet synopses, is usually maintained, instead of off-
line indexing, like R-trees. Hence, we need to find a new way to
deal with uncertainty in processing similarity queries in a streaming
environment.

For the above reasons, we present PROUD - A PRObabilistic ap-
proach to processing similarity queries over Uncertain Data streams.
First we discuss the case when raw uncertain time series are pro-
cessed. Then we discuss how to apply PROUD in a streaming en-
vironment when only synopses are available. Given a reference un-
certain series, and a specified time range, we report the series with
a high enough probability that their distances to the referenced one
are within a given distance bound. The user can decide how high
the probability is acceptable by controlling a probability threshold.
Based on the same general uncertain data model as shown in Fig. 1
and similar assumptions as those in [19], i.e., only the mean and the
deviation of each random variable at each timestamp are available,
the statistics of the distance between two uncertain series are com-
puted. The uncertain distance between two sequences of random
variables is also a random variable. First we describe how to obtain
the expected value and the variance of this distance random vari-
able. Then, by using the central limit theorem, we show how this
distance random variable can be modeled as a normal distribution.
Finally, based on the normal distribution, we derive mathematical
conditions for progressively pruning candidates to reduce the com-
putation cost of PROUD.

In a streaming environment, usually only the summarization of
data, instead of raw data, are retained. Therefore, how to com-
pute the statistics of distance between two uncertain streams di-
rectly using these synopses is an important problem. Based on the
way of processing raw uncertain data, we then apply PROUD to
stream synopses, in particular, the Haar wavelet-based synopses. It
is noted that the uncertain streams we discussed here are time se-
ries data streams with continuous uncertainties, which are different
from the streams constituted of probabilistic tuples drawn from a
finite domain indicated in [10, 17].

To evaluate the effectiveness of PROUD, we conduct extensive ex-
periments using both real and synthetic data. For comparisons,
we implement a deterministic method for computing distances, re-
ferred to asDet. In Det, the distance is directly computed from
uncertain data, treating them as if they were data without uncer-
tainty. We measure both the quality of solution and the computa-
tion time cost. The results show that both have similar computa-
tion costs. However, PROUD offers a flexible trade-off between
false negatives and false alarms by controlling a probability thresh-
old parameter. If the user sets a high probability threshold, only
candidates with a very high probability that their distances to the
reference stream are closer than the given distance bound are re-
tained. As a result, it may reduce the false alarms and increase the
false dismissals. On the contrary, for a low probability threshold, it

may reduce the false negatives and increase the false alarms. This
is the flexibility that Det does not have. The trade-off is important
as in some cases false negatives are more costly, while in others,
it is more critical to keep the false positives low. Users can then
decide how high the probability threshold should be depending on
their specific applications.

Our contributions can be summarized as follows:

• We presented PROUD - a new probabilistic approach to pro-
cessing similarity queries within an arbitrary time range among
multiple uncertain streams.

• We demonstrated how various probabilistic theories can help
us deal with similarity query processing over multiple uncer-
tain data streams.

• We showed how to process probabilistic similarity queries
using only the stream synopses, for example, the wavelet-
based synopses, instead of raw data.

• We conducted extensive studies to show that PROUD pro-
vides a flexible trade-off between false negatives and false
positives by controlling a probability threshold, while Det
does not.

The remainder of this paper is organized as follows. The problem
definition is given in Section 2. In Section 3, we describe how to
compute various statistics of the distance random variable. Sec-
tion 4 describes how PROUD is applied directly on the stream syn-
opses. The experimental studies are presented in Section 5. Finally,
the work is concluded in Section 6.

2. PROBLEM STATEMENT
In this section, we first describe the problem of range-specified sim-
ilarity queries over multiple series. The basic notations and defini-
tions are introduced as follows.

• A time seriesSu is an ordered sequence of data values:Su =
[du1, du2,... ,dun], where at timej, Su[j] = duj .

• An uncertaintime series˜Su is a time series containing un-
certainty at each time point. Given a timej, the value of the
uncertain time series˜Su[j] is modeled as:

˜Su[j] = duj + euj ,

whereduj is the true data value andeuj is the error.

In general, the erroreuj could be drawn from any arbitrary proba-
bility distribution. Hence, we can treat˜Su[j] as a random variable
at time j. However, we do not know the detailed distribution of
the random variable˜Su[j]. We usually only have its meanµuj and
deviationσuj . In addition, all the random variables at different
timestamps are assumed to be independent.

For the similarity measure between two series, we adopt the com-
monly used Euclidean distance in this paper. The Euclidean dis-
tance between two seriesSu andSv given a specified time range
T = [ts, te] is:
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Figure 2: The probabilistic distance model.

dst(Su, Sv)|te

ts
=

√

√

√

√

te
∑

j=ts

(Su[j] − Sv[j])2. (1)

In deterministic case, given a reference seriesSref and a distance
boundr, the similarity query is to find those seriesSu’s that satisfy
the following:

dst(Sref , Su)|te

ts
≤ r. (2)

However, we cannot compute an exact value of the Euclidean dis-
tance between two uncertain time series. Instead, the uncertain
distance between two uncertain series is also a random variable.
Therefore, we define a new probabilistic similarity queries over un-
certain series as follows.

DEFINITION 1. Time-range-specified Probabilistic similarity query:
Given an uncertain reference time series˜Sref , a specified time
rangeT = [ts, te], a distance boundr, and a probabilistic thresh-
old τ , we report those series˜Su’s that satisfy the following equa-
tion:

Pr(dst(˜Sref , ˜Su)|te

ts
≤ r) ≥ τ , whereτ ∈ (0, 1]. (3)

Instead of looking for similar series using the exact Euclidean dis-
tance, we now process the probabilistic similarity query according
to the the cumulative distribution information of the distance. Ac-
cording to the given distance boundr, if an uncertain series˜Su

has a probability higher than the thresholdτ that its distance to
the reference one˜Sref is not bigger thanr, then ˜Su is a qualified
candidate.

3. SIMILARITY QUERY PROCESSING
To deal with the probabilistic similarity query defined in Defini-
tion 1, we can first transform it to the following one:

Pr([dst(˜Sref , ˜Su)|te

ts
]2 ≤ r2) ≥ τ , whereτ ∈ (0, 1]. (4)

As a result, for ease of exposition, when we use the word "dis-
tance" from now on, we mean the square of the Euclidean distance,
denoted asDst(˜Su, ˜Sv).

DEFINITION 2. Square of Euclidean distance: We define the
square of the Euclidean distance between two uncertain series˜Su

and ˜Sv asDst(˜Su, ˜Sv).

Dst(˜Su, ˜Sv)|te

ts
= [dst(˜Su, ˜Sv)|te

ts
]2. (5)

3.1 Statistics Computation of Uncertain Dis-
tance

In this section, we will show how to compute the related statistics,
i.e, the expected value and the variance of the uncertain distance
between two uncertain streams. To give a clearer illustration, we
temporarily omit the notation|te

ts
from now on in our description,

and will add it back later.

As shown in Fig. 2, we can treat the distance between two uncertain
streams as a sum of a sequence of random variables:

Dst(˜Su, ˜Sv) =
∑

j

D2
j , (6)

whereDj is a random variable representing(˜Su[j] − ˜Sv[j]).

From this formula,Dst(˜Su, ˜Sv), which is a function of a series
of independent random variablesDj , is also a random variable it-
self. Dj ’s of different j’s are also independent random variables.
Suppose the mean and the variance of the random variableD2

j is
E(D2

j ) andV ar(D2
j ), respectively, according to theCentral Limit

Theorem[32], the normal form variate,

Dst(˜Su, ˜Sv)norm ≡
Dst(˜Su, ˜Sv) −

∑

j
E(D2

j )
√

∑

j
V ar(D2

j )
, (7)

hasa limiting cumulative distribution function that approaches a
normal distribution. In other words, the distanceDst(˜Su, ˜Sv) is
a random variable which approaches a normal distribution with a
corresponding mean and variance

Dst(˜Su, ˜Sv) ∼ N(
∑

j

E(D2
j ),

∑

j

V ar(D2
j )). (8)

This makes it possible that, regardless of the probability distribu-
tions of the original random variables, we can directly use the nor-
mal distribution to model the distance random variableDst(˜Su, ˜Sv).
Furthermore, using this central limit theorem, we can efficiently
decide if a candidate series has a high enough probability of being
close to the referenced series within the given distance boundr2.

The expected value of the distance random variableDst(˜Su, ˜Sv)
can be computed as follows:

E(Dst(˜Su, ˜Sv))

=
∑

j

E(D2
j )

=
∑

j

(E(˜S2
u[j]) − 2E(˜Su[j] · ˜Sv[j]) + E(˜S2

v [j])). (9)
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Given the computational formula for the variance, the mean value
of E(˜S2

u[j]) is:

E(˜S2
u[j]) = (E(˜Su[j]))2 + V ar(˜Su[j])

= µ2
uj + σ2

uj (10)

Also, by our assumption, the random variables of different times-
tamps are all independent. Therefore, Eq.(9) becomes:

E(Dst(˜Su, ˜Sv))

=
∑

j

((µ2
uj + σ2

uj) − 2(µuj · µvj) + (µ2
vj + σ2

vj)). (11)

Next, we need to know how to compute the variance of the distance
random variableDst(˜Su, ˜Sv). SinceD2

j ’s of differentj’s are inde-

pendent of each other, the variance ofDst(˜Su, ˜Sv) is
∑

j
V ar(D2

j ).

Hence once we get the value ofV ar(D2
j ), we can compute the vari-

ance of the total distance. However, at certain timestampj, we only
know the variance of each random variable˜Su[j] or ˜Sv[j]. What
would be the variance of the function which is composed of these
variables?

To solve this problem, we use thedelta method[22], which is an
important technique used in the Statistics field. Essentially, the
delta method uses the second-orderTaylor series expansionto ex-
pand a function of a random variable about the mean of that random
variable. Then it takes the variance of the expansion result. For ex-
ample, to compute the variance of functionf(X), first we expand
f(X) about the meanµ of X:

f(X) = f(µ) + (X − µ)f ′(µ),

wheref ′() is df()/dX.

Therefore, the variance off(X) is

V ar(f(X)) ≈ V ar(X) · (f ′(µ))2.

If we want to compute the variance of a function of more than one
variables, it can be computed as follows:

V ar(f( ~X)) ≈ [
∂f(~µ)

∂Xi

] · Ω · [
∂f(~µ)

∂Xi

]T ,

where ~X is a vector of random variablesXi, ~µ is the vector of
means of those variables, andΩ is the covariance matrix of those
random variables.

Back to our case, the variance ofD2
j = (˜Su[j]− ˜Sv[j])2 is derived

as follows:

[

2(µuj − µvj) −2(µuj − µvj)
]

·

[

σ2
uj 0
0 σ2

vj

]

·

[

2(µuj − µvj)
−2(µuj − µvj)

]

= 4(σ2
uj + σ2

vj) · (µuj − µvj)
2. (12)
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Figure 3: Cumulative distribution function of a normal distri-
bution.

Finally, the variance ofDst(˜Su, ˜Sv) is:

V ar(Dst(˜Su, ˜Sv))

=
∑

j

V ar(D2
j )

=
∑

j

4(σ2
uj + σ2

vj) · (µuj − µvj)
2. (13)

In order to provide a better overview of the symbols and its related
statistics used in our paper, we summarize them in the Table 1.

3.2 Candidate Selection
To find qualified candidates of Eq. (4), we need to know the cumu-
lative distribution function (cdf) of the random variableDst(˜Sref ,
˜Su). From the previous section, we discussed how to model the
distribution of Dst(˜Su, ˜Sv) as a normal distribution with corre-
sponding mean and variance. Note that the cdf of a normal distri-
bution can be expressed in terms of the well-knownerror function.
Given the meanµ and the deviationσ of a random variableX with
normal distribution, its cdf is defined as follows:

Pr(X ≤ x)

= Φµ,σ2(x)

=
1

2
(1 + erf(

x − µ

σ
√

2
)), (14)

whereerf() is the error function. Note that the value of this error
function and its inverse function can be obtained by looking up
from an existing statistics table.

To solve the similarity query problem defined in Eq. (4), we illus-
trate our idea in Fig. 3. Given a probability thresholdτ , and the cdf
of the normal distribution, we first compute a corresponding value
r-limit which satisfied

Pr(Dst(˜Sref , ˜Su)norm ≤ r-limit) = τ. (15)

DEFINITION 3. r-limit: Using the standard normal distribution
functionN(0, 1) and its cdf, given a probability thresholdτ , we
can obtain a corresponding valuer-limit:

r-limit =
√

2erf−1(2τ − 1), (16)

whereerf−1(2τ − 1) can be obtained by looking up a statistics
table.
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Table 1: Main symbols used in this paper.
Symbol Description
˜Su uncertain time series with identityu
˜Su[j] the value of˜Su at timestampj
µuj the expected value of the uncertainty at timestamp j of˜Su

σuj the deviation of the uncertainty at timestamp j of˜Su

Dj = ˜Su[j] − ˜Sv[j]

D2
j = (˜Su[j] − ˜Sv[j])2

Dst(˜Su, ˜Sv) =
∑

j
(˜Su[j] − ˜Sv[j])2

E(Dst(˜Su, ˜Sv)) expected value of the uncertain distance between˜Suand˜Sv

V ar(Dst(˜Su, ˜Sv)) variance of the uncertain distance between˜Suand˜Sv

The r-limit value defined in Definition 3 gives us a limit that, the
probability of a normalized distance bound which is smaller than
this value would definitely not be higher thanτ .

Given a reference series˜Sref , assume that the expected value and
the variance of the uncertain distance of a candidate series˜Su to
˜Sref are obtained. Then, we can normalize the value of the given
distance boundr2 using the current obtained expectation and the
variance of the uncertain distance.

DEFINITION 4. Given the user defined distance boundr, with
the expectation and variance of the uncertain distance between the
reference series˜Sref and a candidate series˜Su, we define the nor-
malized distance bound asrnorm, and it is

rnorm(˜Sref , ˜Su) =
r2 − E(Dst(˜Sref , ˜Su))

√

V ar(˜Sref , ˜Su))

. (17)

If a candidate series˜Su meet the following inequality

rnorm(˜Sref , ˜Su) ≥ r-limit, (18)

then

Pr(Dst(˜Sref , ˜Su)norm ≤ rnorm(˜Sref , ˜Su)) ≥ τ. (19)

, which means Eq. (4) is satisfied. As a result,˜Su will be included
in the answer set. On the contrary, if any candidate series cannot
meet the above inequality, it will be pruned away.

3.3 Progressively Pruning
In real applications, the deviation at each time point usually re-
mains the same for the same time series. For example, in the sensor
network, data series obtained from the same sensor will have the
same uncertain deviation. It is different sensors in different places
that may have different deviations of uncertainties. Hence, we fo-
cus on the model that the uncertainty deviation is only time-series
dependent hereafter. Explicitly, for a specific uncertain time series
˜Su, the deviations of uncertainty at different time points are:

σuj = σu, ∀j.

In accordance with the model that the uncertain deviation is time-
series dependent, the expected value and the variance of the uncer-

tain distance between two streams now are:

E(Dst(˜Su, ˜Sv)|te

ts
)

= (σ2
u + σ2

v) · (te − ts + 1) +

te
∑

j=ts

(µuj − µvj)
2 (20)

and

V ar(Dst(˜Su, ˜Sv)|te

ts
)

= 4(σ2
u + σ2

v) ·
te

∑

j=ts

(µuj − µvj)
2. (21)

Under this assumption, we do not need to compute the final ex-
pected value and the variance to decide if a candidate stream is
qualified for the given thresholdτ . In other words, if we can de-
cide whether to prune a candidate or not with only part of random
variablesDj ’s, it may save a lot of processing time.

Without loss of generality, assume we update the expected value
and the variance in Eq. (20) and (21) starting from the very begin-
ning of the given time rangets. At certain timetk ∈ [ts, te], the
partial values of Eq. (20) and (21) are:

E(Dst(˜Su, ˜Sv)|tk

ts
)

= E(Dst(˜Su, ˜Sv)|tk−1

ts
) + (µutk

− µvtk
)2 (22)

and

V ar(Dst(˜Su, ˜Sv)|tk

ts
)

= V ar(Dst(˜Su, ˜Sv)|tk−1

ts
)

+4(σ2
u + σ2

v)(µutk
− µvtk

)2 (23)

Accordingly, at timetk, having the current expected value and the
variation from Eq. (22) and Eq. (23), we can compute the current
normalized distance bound which is defined in Definition 4 as:

rnorm(˜Sref , ˜Su)|tk

ts
=

r2 − E(Dst(˜Sref , ˜Su)|tk

ts
)

√

V ar(˜Sref , ˜Su)|tk

ts
)

. (24)
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It is clear that both of Eq. (22) and Eq. (23) are non-decreasing as
tk approacheste. Furthermore, the value in Eq. (24) will approach
the value in Eq. (17). Ifrnorm(˜Sref , ˜Su)|tk

ts
can be monotonically

non-increasing astk approacheste, once

rnorm(˜Sref , ˜Su)|tk

ts
< r-limit, (25)

as illustrated in Fig. 3, we can stop computing the expected value
and the variance for a candidate stream˜Su and prune it away.

Therefore, we want to examine in what condition will Eq. (24) be
non-increasing. To do this, we check the difference of Eq. (24)
between two consecutive timestamps:

rnorm(˜Sref , ˜Su)|tk−1

ts
− rnorm(˜Sref , ˜Su)|tk

ts

=
r2 − E(Dst(˜Sref , ˜Su)|tk−1

ts
)

√

V ar(˜Sref , ˜Su)|tk−1

ts
)

−
r2 − E(Dst(˜Sref , ˜Su)|tk

ts
)

√

V ar(˜Sref , ˜Su)|tk

ts
)

. (26)

We will prove in the Appendix that when we update to certain
timestamptk, if

r2 − (σ2
ref + σ2

u) · (te − ts + 1)

+

√

√

√

√

tk−1
∑

j=ts

(µrefj − µuj)2 ·

tk
∑

j=ts

(µrefj − µuj)2 ≥ 0, (27)

the difference in Eq. (26) will always be positive when updating
to the following timestamps, which means that we can guarantee
rnorm is non-increasing. Hence, we can safely prune the candidate
accordingly.

3.4 The PROUD Algorithm
We summarize the PROUD algorithm in Fig. 4. Given a reference
series˜Sref , a time rangeT = [ts, te], a distance boundr, and a
probability thresholdτ , the algorithm will output the desired series
that have a probability no smaller thanτ where their distances to
the reference one are not bigger thanr. First, all the sub-series
within the time rangeT are extracted. Without loss of generality,
starting from the random variables at timets, we incrementally
update the expected value and the variance of the uncertain distance
between a candidate and the reference series according to Eq. (22)
and Eq. (23). We check if the condition in Eq. (27) is satisfied
to guarantee thatrnorm(˜Sref , ˜Su)|tk

ts
is non-increasing. Once this

condition is met, we can prune the candidate according to Eq. (25).
Note if the condition in Eq. (27) has never been met (only if the
given r is really large, which rarely happens), the prune is only
performed after the entire data are computed.

4. APPLYING PROUD TO WAVELET SYN-
OPSES

More and more emerging applications are required to handle a large
amount of data in the form of rapidly arriving streams under limited
resources. Due to memory constraints, instead of storing the whole

Algorithm: PROUD
Input: ˜Sref , T = [ts, te], r, τ

Output: The series which have distance to˜Sref not big-
ger thanr with probability not lower thanτ
1. Extract relevant random variables of˜Sref in [ts,te].
2. for(j = ts; j ≤ te; j++){
3. tk=j;
4. Update E(Dst(˜Sref , ˜Su)|tk

ts
) and

V ar(Dst(˜Sref , ˜Su)|tk

ts
) for each candidate˜Su

5. if(Eq. (27) is met){
6. if(Eq. (25) is met){
7. prune˜Su away
8. }
9. }

10. else if(jequals tote){
11. if(Eq. (25) is met){
12. prune˜Su away
13. }
14. }
15. }

Figure 4: Algorithm of PROUD.

datastream, usually only the sketches of the stream are retained.
In this section, we will discuss how our PROUD method can be
applied when only summarization of streams is available.

When the uncertain series we formerly considered become endless
streams, we need a way to properly summarize the mean and vari-
ance of each coming random variable. Follow the assumption in
Sec. 3.3, to deal with similarity queries with uncertainty, we need to
compute the expected value and the variance of uncertain distances
between streams according to Eq. (20) and Eq. (21). Therefore, we
need to know how to compute the above two values with stream
synopses.

There are many summarization methods for data streams such as
discrete Fourier transform, discrete wavelet transform, singular value
decomposition, piecewise linear approximation and so on. Here we
mainly focus on how to use PROUD under the Haar wavelet de-
composition. One reason is that wavelet transform plays an impor-
tant role in time series analysis [24]. In addition, it has the multi-
resolution property in decomposing the original data. Last, but not
least, the Haar wavelet decomposition is simple and can be main-
tained online. We leave the application of PROUD to other kinds
of summarization methods as future work.

4.1 Wavelet Summarization for Uncertain Data
Streams

In this section, we discuss how we use the Haar wavelet decomposi-
tion to summarize an uncertain data stream. By the assumption that
the variance is the same at differentj, for a stream˜Su, we need to
summarize its meanµuj at differentj’s and keep oneσ2

u. In other
words, to summarize an uncertain stream means to summarize a
stream of mean values.

The Haar wavelet decomposition is achieved by averaging two ad-
jacent data values of a sequence of data at different time resolu-
tions. An example is given in Table 2. The final wavelet coeffi-
cients are{5.875,−0.625,−0.25, 0.5,−1, 1.5, 1,−1}.
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Table 2: The Haar wavelet decomposition.
averages wavelet coefficients

raw data {4, 6, 7, 4, 8, 6, 5, 7} -
high resolution {5, 5.5, 7, 6} {−1, 1.5, 1,−1}
mid resolution {5.25, 6.5} {−0.25, 0.5}
low resolution {5.875} {−0.625}
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Figure 5: (a)The error tree for Table 2. (b)The notation of an
error tree proposed in [16].

To better illustrate the Haar wavelet decomposition, a widely used
data structure callederror tree is proposed in [21]. The error tree
for the decomposition in Table 2 is shown in Fig. 5(a). This tree is
composed of wavelet coefficients as nodes and signs as edges.

We will similarly use an error tree to illustrate our idea. We slightly
modified the node labeling method proposed in [16], which is shown
in Fig. 5(b). The leaf nodes represent the sequence of means of an
uncertain stream˜Su. Each non-leaf node is labeled with an identi-
fier with two attributes as subscripts:levelandplacement. A node
with a label ofn(u)

(l,p)
means that it is in thep-th placement of level

l in the error tree corresponding to streamSu. This notation can
be efficiently maintained when data keep steaming in. Moreover,
when not all wavelet coefficients are retained, we can easily find
the relative positions of the retained coefficients in the error tree
via the node labels.

For an uncertain data stream˜Su, the mean valuesµuj are used to
build this tree. Under the assumption that the variance of uncer-
tainty at each timestamp is the same for a specific stream, we keep
the variance for each stream at the root node of the highest level as
shown in Fig. 5(b).

Generally, not all the wavelet coefficients in an error tree are re-
tained because memory space is limited. To meet different error
requirements between the raw data and the retained coefficients,
many online approaches to selecting wavelet synopses have been
proposed [11, 13, 14, 18]. Fortunately, our proposed method is
dependent only on the retained coefficients, and is independent of
how the coefficients are retained. Therefore, we do not further dis-
cuss the relationship between our method and any specific on-line
approaches to retaining wavelet synopses.

Given the retained coefficients of a stream, we can efficiently ex-
tract the relevant coefficients within any time range [ts, te]. As sug-
gested in [16], the extraction method is outlined in Fig. 6, where the
black nodes represent retained coefficients, while the white ones
are those being discarded. Assume the given range is[t0, t11],
which contains the shaded triangular area, we can decompose it
into two complete error subtrees where one covers[t0, t7] and the
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Figure 6: Coefficients extraction.

other [t8, t11]. For each complete error subtree, the new average
node will be computed by traversing from the original root node
n

(u)

(4,−1)
to the root of the subtree. For example, in Fig. 6, the new

average nodea(u)

(3,0)
equals ton(u)

(4,−1)
+ n

(u)

(4,0)
. Finally, the infor-

mation of the varianceσ2
u of this stream is the same kept at the root

of the complete tree with highest level.

4.2 Statistic Computation Using Wavelet Co-
efficients

In this section, we described how to compute the expectation and
the variance value of the uncertain distance between two uncertain
streams when only partial coefficients are retained. According to
Eq. (20) and Eq. (21), we need to compute

te
∑

j=ts

(µuj − µvj)
2 and(σ2

u + σ2
v)

to answer the probabilistic similarity queries. Since we do not
transform the variance of each stream,(σ2

u + σ2
v) can be obtained

directly. Now, the mean values are summarized as coefficients, and
some of them are missing. Under this case, we show how to com-
pute the distance directly from the retained coefficients.

Recently, the authors of [33] provided a way of computing the dis-
tance between two streams directly using their retained wavelet
coefficients in a level-wise fashion. Given a specified time range
T = [ts, te] and the retained wavelet coefficients, the distance be-
tween two streamsSu andSv is:

Dst(Su, Sv)|te

ts
= Dst(Su, Sv)|L1

=
∑

p

[n
(u)

(l,p)
− n

(v)

(l,p)
]2 × 2L + ... +

∑

p

[n
(u)

(l,p)
− n

(v)

(l,p)
]2 × 21

=

L
∑

l=1

∑

p

[n
(u)

(l,p)
− n

(v)

(l,p)
]2 × 2l, (28)

whereL = ⌊lg2(te − ts + 1)⌋ is the highest level number of the
extract subtrees,n(u)

(l,p)
andn

(v)

(l,p)
are retained coefficients inside the

[ts, te] range ofSu andSv.
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Back to our case, according to Eq. (28), the expected value and the
varianceof uncertain distance shown in Eq. (20) and Eq. (21) can
be computed directly using the wavelet coefficients respectively as
follows:

E(Dst(˜Su, ˜Sv))

=
L

∑

l=1

∑

p

[n
(u)

(l,p)
− n

(v)

(l,p)
]2 × 2l

+(σ2
u + σ2

v) · (te − ts + 1), (29)

and

V ar(Dst(˜Su, ˜Sv))

= 4(σ2
u + σ2

v) ·
L

∑

l=1

∑

p

[n
(u)

(l,p)
− n

(v)

(l,p)
]2 × 2l, (30)

whereL = ⌊lg2(te − ts + 1)⌋ is the highest level number of the
extract subtrees,n(u)

(l,p)
andn

(v)

(l,p)
are retained coefficients inside the

[ts, te] range transformed fromµuj ’s andµvj ’s.

With the above two equations, we can compute the statistics of the
uncertain distance between two uncertain streams directly using the
retained wavelet coefficients.

4.3 Pruning Strategy
By means of level-wise computation, and computing the distance
from highest level to the lowest, we can gradually get a clearer
view of the expected value and the variance of the uncertain dis-
tance. Because usually we can first get the rough view at higher
levels with few coefficients and then details at lower levels. This is
how we can leverage the multi-resolution property of the wavelet
decomposition. As a result, starting from highest levelL, when we
update Eq. (29) between the reference˜Sref and some stream˜Su to
certain levelρ ∈ [1, L], it is:

E(Dst(˜Sref , ˜Su)|Lρ )

=
L

∑

l=ρ+1

∑

p

[n
(ref)

(l,p)
− n

(u)

(l,p)
]2 × 2l

+
∑

p

[n
(ref)

(ρ,p)
− n

(u)

(ρ,p)
]2 × 2ρ

+(σ2
ref + σ2

u) · (te − ts + 1), (31)

Similarly, the current variance is:

V ar(Dst(˜Sref , ˜Su)|Lρ )

= 4(σ2
u + σ2

u) · (
L

∑

l=ρ+1

∑

p

[n
(ref)

(l,p)
− n

(u)

(l,p)
]2 × 2l

+
∑

p

[n
(ref)

(ρ,p)
− n

(u)

(ρ,p)
]2 × 2ρ). (32)

After we update the coefficients at levelρ, we can compute the

normalized distance bound similar in Eq. (24) as follows:

rnorm(˜Sref , ˜Su)|Lρ =
r2 − E(Dst(˜Sref , ˜Su)|Lρ )

√

V ar(˜Sref , ˜Su)|Lρ )
. (33)

If rnorm(˜Sref , ˜Su)|Lρ can be monotonically non-increasing asρ
approaches to1, once

rnorm(˜Sref , ˜Su)|Lρ < r-limit, (34)

as illustrated in Fig. 3, we can stop computing the expected value
and the variance for a candidate stream˜Su and prune it away.

We will give the proof in the Appendix that at certain levelρ, once

r2 − (σ2
ref + σ2

u) · (te − ts + 1)

+

√

√

√

√

L
∑

l=ρ+1

∑

p

[n
(ref)

(l,p)
− n

(u)

(l,p)
]2 × 2l

·

√

√

√

√

L
∑

l=ρ

∑

p

[n
(ref)

(l,p)
− n

(u)

(l,p)
]2 × 2l

≥ 0, (35)

we can guarantee thatrnorm(˜Sref , ˜Su)|Lρ will be monotonically
non-increasing asρ approaches to the following lower levels. There-
fore we can do the pruning safely as described in Eq. (34)

5. PERFORMANCE STUDY
We conducted a series of experiments with both real and synthetic
data to evaluate PROUD. We compared PROUD with a determin-
istic approach, referred to asDet, where the similarity queries are
processed on uncertain data as if they were data with certainty.
In addition, the pruning strategy for Det is similar to that used in
PROUD. When updating the distance between a candidate stream
and the reference one, once it exceeds the given distance boundr,
we prune that candidate away. Both approaches were implemented
in Visual C++ and the experiments were run on a PC with 2.8GHz
CPU and 2GB RAM.

We processed the range-specified probabilistic similarity queries
on both real and synthetic data. To generate an uncertain stream
˜Su, we did the following. First, we had the true data streamSu.
We computed the standard deviation of the entire streamSu, which
is σSu

. Then, we picked a set of value: [0.01, 0.02, 0.05, 0.1, 0.2,
0.5, 1, 2] ofσSu

as the deviation of the uncertaintyσu. Given aσu,
for each timestampj, we randomly drew a number from a normal
distribution or uniform distribution with mean equals toSu[j] and
the deviation equals toσu to be the uncertain value˜Su.

To measure the performance of PROUD and Det, we compared
these two methods in terms of quality of query results and compu-
tation time cost. In quality, we compared thefalse alarm ratioand
themiss ratio1 of both two methods. The ground truth is based on
the query result with the same distance bound without uncertainty

1The false alarm ratio and miss ratio were computed as the frac-
tions of the number of false alarms and the number of misses over
the size of the ground truth, respectively.
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T = 30

Deviation Ratio
PROUD

Det
τ = 0.01 τ = 0.5 τ = 0.9

0.02 0.0609 0.0000 0.0000 0.0066
0.10 0.2241 0.0000 0.0000 0.0457
0.50 0.0306 0.0000 0.0000 0.0023
2.00 0.0000 0.0000 0.0000 0.0000

T = 100
0.02 0.0262 0.0000 0.0000 0.0045
0.10 0.0821 0.0000 0.0000 0.0026
0.50 0.0037 0.0000 0.0000 0.0000
2.00 0.0000 0.0000 0.0000 0.0000

T = 300
0.02 0.0255 0.0000 0.0000 0.0100
0.10 0.0175 0.0000 0.0000 0.0000
0.50 0.0000 0.0000 0.0000 0.0000
2.00 0.0000 0.0000 0.0000 0.0000

Table 3: False alarm ratio of PROUD and Det (real data.)

on the true dataSu. In computation time cost, we measured the
CPU time of processing a query on average.

The following experiments were all conducted on wavelet synopses
of the uncertain data. It is noted that PROUD is independent of the
way wavelet coefficients are chosen. Without loss of generality,
here the wavelet coefficients were retained using the method pro-
posed in [13], which retains theB largest coefficients in terms of
absolute normalized coefficient values. We randomly picked a few
different streams from our dataset as the reference stream and per-
formed queries. Then the averaged results are reported.

5.1 Experiments with Real Data
The real data we used here were the daily average temperature data
of 300 cities around the world, which were obtained from the tem-
perature data archive of the University of Dayton2. The data from
each city was regarded as a stream, each of which has3, 416 data
points.

Table 3 and Fig. 7 show the quality of query results for the real
data. We varied the time range (T) of queries and the magnitude of
the uncertain deviation to have a series of subplots. The uncertain
deviation were varied from 0.02 to 2 of the deviation of each orig-
inal stream. Furthermore, for PROUD, we show the results under
three differentτ ’s: [0.01, 0.5, 0.9].

First, let us look at the false alarm ratios listed in Table 3. Both
Det and PROUD, withτ = 0.5 and τ = 0.9, barely incur any
false alarms. This can be explained from Eq. (11) or Eq. (20).
The summation of the variances of two uncertain variables at each
timestamp are also included. Since this value is always positive, it
makes the expected value likely to be larger than the true distance.
However, for PROUD, there are more false alarms whenτ = 0.01
than whenτ = 0.5 or τ = 0.9.

Fig. 7 shows the impact of uncertainty level on the miss ratio, under
three different time rangesT ’s and thresholdτ ’s. Thex-axis is the
deviation ratio, and they-axis is the miss ratio. Generally, the miss
ratio increases as the uncertain deviation ratio increases. The miss
ratio of Det is always around that of PROUD whenτ = 0.5. When

2http://www.engr.udayton.edu/weather/
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Figure 7: The miss ratio of PROUD and Det (real data.)
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Figure 8: The trade-offs between false alarms and misses of-
fered by PROUD (real data.)

τ = 0.01, PROUD has lower miss ratios than Det. On the other
hand, whenτ = 0.9, PROUD has higher miss ratios than Det. Con-
trasting this observation with the false alarm ratios from Table 3, it
clearly shows that PROUD offers a flexible trade-off between miss
ratios and false alarms by controllingτ . With a smallerτ , PROUD
offers a solution with lower miss ratios and higher false alarms. In
contrast, with a largerτ , it provides a solution with higher miss
ratios and lower false alarms.

To clearly illustrate the trade-offs between false alarms and misses
offered by PROUD, we further plot the false alarm ratio versus miss
ratio under differentτ ’s and uncertain deviation ratios in Fig. 8.
Theτ ’s are [0.001, 0.01, 0.1, 0.5, 0.9] and the deviation ratio ranges
from 0.1 to 1. Each line in this figure represents differentτ ’s un-
der the same specific uncertain deviation ratio. Although the false
alarm ratios are relatively small compared with the miss ratios, we
clearly observe the trade-off between them. For a smallerτ , the
false alarm ratio is higher and the miss ratio is lower. In contrast,
for a largerτ , the reverse is true. As the uncertain deviation ratio
gets larger, the curves move toward the higher miss ratio region.

As the time range becomes bigger, i.e.,T = 100 or T = 300,
the miss ratios of PROUD with differentτ ’s become closer to one
another. For example, when deviation ratio is 0.2, the miss ratio of
PROUD withτ = 0.01 is about 1/2 of that withτ = 0.9 when
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Figure 9: The computation time cost of PROUD and Det (real
data.)

T = 100, and about 3/4 whenT = 300. This is because when
the time range is large, more random variables are involved, and
the law of large numberdominates. Almost all uncertain distance
values fall very close to the expected value. Therefore, we cannot
tell much difference under differentτ ’s. The size of uncertainty
decides the quality.

Fig. 9 shows the corresponding computation time cost of Fig. 7.
The computation cost decreases when the deviation of the uncer-
tainty increases for both Det and PROUD. This is because when the
uncertainty is really high, the expected value of the uncertain dis-
tance becomes very high as well. As a result, unqualified or even
qualified candidates are easily pruned away. After pruning, only
few candidate streams are left. In addition, with a smallerT , the
computation time for Det is smaller than that for PROUD. How-
ever, with a largerT , and the uncertain deviation ratio is higher,
PROUD spent less time than Det. This shows that, under similar
query result quality, the prune efficiency of PROUD is even higher.

In summary, PROUD and Det have similar computation costs. How-
ever, PROUD offers a flexible trade-off between miss ratios and
false alarms by controllingτ ’s. Det does not have such flexibility.
This trade-off is important as in some applications false negatives
are more costly, while in others, it is more critical to keep the false
positives low.

5.2 Experiments with Synthetic Data
The synthetic data were generated by a random walk data model
proposed in [35]. For a streamSi, it was generated as follows:

Si = 100 +

i
∑

j=1

(uj − 0.5),

whereuj was randomly picked from [0,1]. We generated 1,000
streams in total, where each stream has 20,000 data points. Here
we consider the following ratios of the uncertain deviation [0.01,
0.02, 0.05, 0.1, 0.2].

The behavior of false alarm ratio in synthetic data is similar to that
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Figure 10: The miss ratio of PROUD and Det (synthetic data.)

in real data. Therefore, we omit it here. Fig. 10 shows the miss
ratios for both Det and PROUD underT = 30 to T = 300. Ba-
sically, under allT values, the miss ratio increases as the ratio of
the uncertain deviation increases. AtT = 30, the miss ratio is
very high even when the deviation ratio is only 0.01. This is be-
cause,σSu

, the deviation of the entire 20,000-point-long random
walk data stream, is quite high compared to the data of small range
of 30. As T gets larger, the miss ratio at a small deviation ratio
reduces. This phenomenon is not observed in the experiments with
real dataset. It is because that the deviation of a 3,416-long temper-
ature stream of a city is relatively low.

For the computation time cost, the results are also similar as those
for real data. The corresponding charts are shown in Fig. 11. The
computation time costs for both PROUD and Det are similar. AsT
gets larger, the computation time cost increases as well. Also, when
the deviation ratio is higher, a larger expected value of the uncertain
distance results in earlier pruning, hence the computation cost is
smaller. WhenT gets larger, the pruning efficiency of PROUD is
better than Det.

6. CONCLUSION
In this paper, we presented PROUD - a probabilistic approach to
processing similarity queries over multiple uncertain data streams.
We demonstrated how various probabilistic theories can help us
deal with similarity queries over uncertain data streams. We showed
how we can progressively prune candidates. Furthermore, we showed
how to apply PROUD using only wavelet synopses instead of raw
data. We conducted extensive experiments with both real and syn-
thetic data. The results show that, compared with Det, PROUD
provides a flexible trade-off between false alarms and miss ratios
by controlling a threshold, while maintaining a similar computa-
tion cost. In contrast, Det does not have such flexibility.

As future work, we will extend our work to other kinds of queries
on uncertain streams, like probabilistic nearest neighbor queries for
example. We will also explore probabilistic similarity queries over
uncertain streams using other similarity measurements than the Eu-
clidean distance.
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Appendix
Here,we provide the proof thatrnorm(˜Sref , ˜Su) is monotonically
non-increasing during the updating process. First, we prove that it
is non-increasing in raw uncertain series cases, and then we prove
that it is also non-increasing in the case when we use the wavelet
coefficients directly.

A1 Proof of non-increasingrnorm in raw uncer-
tain series case
For ease of exposition, we restate Eq. (26) using some substitutes.
According to Eq. (22) and Eq. (23), we can substitute the terms as
follows. Let

α =

tk−1
∑

j=ts

(µrefj − µuj)
2,

β = (µreftk
− µutk

)2,

and

∆ = (σ2
ref + σ2

u) · (te − ts + 1).

With the above substitution, we have

E(Dst(˜Sref , ˜Su)|tk

ts
)

=

tk−1
∑

j=ts

(µrefj − µuj)
2 + (µreftk

− µutk
)2

= α + β,

and

V ar(Dst(˜Sref , ˜Su)|tk

ts
)

= 4(σ2
ref + σ2

u)

tk−1
∑

j=ts

(µrefj − µuj)
2

+4(σ2
ref + σ2

u)(µreftk
− µutk

)2

= 4(σ2
ref + σ2

u)(α + β).

Therefore, Eq. (26) is restated as follows:

rnorm(˜Sref , ˜Su)|tk−1

ts
− rnorm(˜Sref , ˜Su)|tk

ts

=
r2 − α − ∆

√

4(σ2
ref + σ2

u) · α
−

r2 − α − β − ∆
√

4(σ2
ref + σ2

u) · (α + β)

=
(r2 − ∆ +

√

α(α + β)) · (
√

α + β −
√

α)
√

4(σ2
ref + σ2

u) · α · (α + β)
. (36)

It is clear thatr2 −∆ is a constant whents andte are given. Also,
it is obvious that(

√
α + β −

√
α) is always non-negative. As the

timestamptk approachesto the end of query time rangete, the term
√

α(α + β) is definitely growing or non-decreasing. Therefore,
once

(r2 − ∆ +
√

α(α + β)) ≥ 0,

,which means that

r2 − (σ2
ref + σ2

u) · (te − ts + 1)

+

√

√

√

√

tk−1
∑

j=ts

(µrefj − µuj)2 ·

tk
∑

j=ts

(µrefj − µuj)2 ≥ 0,

the Eq. (36) will always be positive. This gives us the proof that
rnorm|tk

ts
is then non-increasing astk approaches tote.

A2 Proof of non-increasingrnorm in wavelet syn-
opses case
To prove that Eq. (33) is non-increasing, we prove the following.
When updating the statistics from levelρ + 1 to ρ, the difference
of rnorm values at two levels is:

rnorm(˜Sref , ˜Su)|Lρ+1 − rnorm(˜Sref , ˜Su)|Lρ . (37)

For ease of exposition, we do the following substitutions which are
similar to the previous section. Let

α =
L

∑

l=ρ+1

∑

p

[n
(ref)

(l,p)
− n

(u)

(l,p)
]2 × 2l,

β =
∑

p

[n
(ref)

(ρ,p)
− n

(u)

(ρ,p)
]2 × 2ρ,

and

∆ = (σ2
ref + σ2

u) · (te − ts + 1).

According to Eq. (31) and Eq. (32), Eq. (37) then becomes:

rnorm(˜Sref , ˜Su)|Lρ+1 − rnorm(˜Sref , ˜Su)|Lρ

=
r2 − E(Dst(˜Sref , ˜Su)|Lρ )

√

V ar(˜Sref , ˜Su)|Lρ+1)
−

r2 − E(Dst(˜Sref , ˜Su)|Lρ )
√

V ar(˜Sref , ˜Su)|Lρ )

=
(r2 − ∆ +

√

α(α + β)) · (
√

α + β −
√

α)
√

4(σ2
ref + σ2

u) · α · (α + β)
.

It is clear thatr2 −∆ is a constant whents andte are given. Also,
it is obvious that(

√
α + β −

√
α) is always non-negative. As the

we progress from levelρ + 1 to level ρ, the term
√

α(α + β) is
definitelygrowing or non-decreasing. Therefore, once

(r2 − ∆ +
√

α(α + β)) ≥ 0,

,which means that

r2 − (σ2
ref + σ2

u) · (te − ts + 1)

+

√

√

√

√

L
∑

l=ρ+1

∑

p

[n
(ref)

(l,p)
− n

(u)

(l,p)
]2 × 2l

·

√

√

√

√

L
∑

l=ρ

∑

p

[n
(ref)

(l,p)
− n

(u)

(l,p)
]2 × 2l

≥ 0,

the valuernorm(˜Sref , ˜Su)|Lρ is non-increasing asρ approaches to
the lowest level.
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