
Finding Frequent Co-occurring Terms in Relational
Keyword Search

Yufei Tao Jeffrey Xu Yu
Chinese University of Hong Kong

ABSTRACT
Given a set Q of keywords, conventional keyword search (KS)
returns a set of tuples, each of which (i) is obtained from a
single relation, or by joining multiple relations, and (ii) con-
tains all the keywords in Q. This paper proposes a relevant
problem called frequent co-occurring term (FCT) retrieval.
Specifically, given a keyword set Q and an integer k, a FCT
query reports the k terms that are not in Q, but appear
most frequently in the result of a KS query with the same
Q. FCT search is able to discover the concepts that are
closely related to Q. Furthermore, it is also an effective tool
for refining the keyword set Q of traditional keyword search.
While a FCT query can be trivially supported by solving the
corresponding KS query, we provide a faster algorithm that
extracts the correct results without evaluating any KS query
at all. The effectiveness and efficiency of our techniques are
verified with extensive experiments on real data.

1. INTRODUCTION
Given a set Q of keywords, a keyword search (KS) query

returns a set of tuples, each of which (i) is obtained from a
single relation or by joining several tables, and (ii) contains
all the keywords1. To illustrate, we use four tables whose
schemas are shown in Figure 1, where the underlined are
primary keys. Each arrow represents a primary-to-foreign
key relationship. For example, AUTHOR → WRITES means
that the primary key A id of AUTHOR is referenced by the
A id in WRITES. Figure 2 demonstrates the partial content
of each table. Given a set Q of keywords: {Tony, paper},
the KS query returns the result in Figure 3.

To understand the result, first notice that Figure 3 is ac-
tually the output of the natural join:

AUTHORA name = Tony ./ WRITES ./ PAPER.

1This is the AND semantic, as is the focus of this paper.
The OR semantic has also been addressed by [11, 16], where
a qualifying tuple only needs to cover at least one query
keyword.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

AUTHOR
A_id, A_name

WRITES
A_id, P_id

PAPER
P_id, P_title, C_id

CONF
C_id, C_name, C_year

Figure 1: An example database schema

This expression is generated by the system automatically,
as will be explained in Section 3. Second, each tuple in
the result contains all the keywords in Q, treating the table
name as an implicit keyword in every tuple of the table [16].
Third, the result is obtained with the smallest number of
joins necessary. Specifically, the keywords Tony and paper
are available only in AUTHOR and PAPER, respectively. Hence,
every result tuple must combine a tuple in AUTHOR with one
in PAPER, which, in turn, necessitates joins with WRITES.

Frequent Co-occurring Term Search. This paper pro-
poses a new operator, frequent co-occurring term (FCT) re-
trieval, which adds a mining flavor to keyword search. Given
a set Q of keywords, and an integer k, a FCT query returns
the k most frequent terms in the result of a KS query with
the same Q. For example, consider again the the result in
Figure 3. Given the same Q and k = 8, a FCT query returns
the 8 terms in Figure 4, which appear most frequently in
Figure 3. Note that stop-words, such as “the”, “of”, etc. are
excluded. Also excluded are the obvious noisy terms such
as the table name WRITES. Furthermore, the keywords in Q
are not considered either, since they must trivially appear in
all result tuples. Finally, the standard word-stemming tech-
nique should be applied, so that words like “preservation”
and “preserving” can be regarded as the same word.

Intuitively, a FCT query extracts the concepts that are
most closely associated with the keyword set Q. For ex-
ample, the terms in Figure 4 are indeed strongly related
to Tony, since he has published primarily in two areas: (i)
spatio-temporal (indexing and query processing) and (ii) pri-
vacy preserving data publication. Although the above dis-
cussion is based on the artificial example of Figure 2, similar
observations indeed exist in the real world. For example,
query and spatio-temporal are really the two most frequent
terms in the titles of the papers by Tony; they appear 20
and 13 times, respectively.

Relevance to Traditional Keyword Search. The pro-
posed FCT operator has a fundamental difference from the
conventional KS queries: FCT search extracts terms, while
KS fetches tuples. In particular, FCT search is different

839

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1516360.1516456&domain=pdf&date_stamp=2009-03-24

symbols introduced for

illustration purposes

AUTHOR

A_id A_name

Tonya1

.

.

P_id

p1

p2

p3

p5

p6

p4

A_id

a1

a1

a1

a1

a1

a1

WRITES

w1

w2

w3

w4

w5

w6

PAPER

P_id

p1

p2

p3

p4 Personalized Privacy Preservation c4

p5

p6

.

P_title C_id

The MV3R-Tree: A Spatio-Temporal Access

Method for Timestamp and Interval Queries
c1

Time-Parameterized Queries in

Spatio-Temporal Databases
c2

The TPR*-Tree: An Optimized Spatio-Temporal

Access Method for Predictive Queries
c3

m-Invariance: Towards Privacy Preserving

Re-publication of Dynamic Datasets
c5

Preservation of Proximity Privacy in

Publishing Numerical Sensitive Data
c6

C_id

c1

c2

c3

c5

C_name C_year

2001

2002

2003

CONF

c4

VLDB

SIGMOD

VLDB

SIGMOD

SIGMOD

2006

2007

c6 SIGMOD 2008

.

Figure 2: The table contents

A_name
Tony
Tony
Tony

Tony
Tony

Tony

A_id
a�
a�
a�
a�
a�
a�

P_id
p�
p�
p�
p� �����	
���� ����
�� �������
���	 c�
p�
p�

P_title C_id��� ���������� � ��
������ ���
� ������������ !�� �� ���
 �
	� "	����
� #$����� c��� ���
�
 ������� #$����� �	��
������ ���
� %
�
&
��� c���� ���'������ �	 (��� ��� ��
������ ���
������� ������ !�� ���������� #$����� c� �"	�
��
	��� ��)
��� ����
�� ��������	*����$&���
���	 �! %�	
 �� %
�
���� c��������
���	 �! ���+� ��� ����
�� �	�$&�����	* ,$ ����
� ��	������ %
�
 c�
Figure 3: Result of a KS query {Tony, paper}

from top-k KS [11, 16, 17]. Given a keyword set Q and an
integer k, a top-k KS query finds the k tuples (in the result
of a normal KS query) most relevant to Q. The relevance is
calculated by treating each tuple as a small document, and
then applying an IR-style or page-rank relevance function.
Hence, in top-k KS, tuples are mutually independent, as the
relevance of a tuple does not depend on the others. In con-
trast, a FCT query must view all tuples in a holistic manner
in order to aggregate the frequency of a term. Note that
the k terms produced by FCT retrieval do not necessarily
appear in the k tuples fetched by top-k KS. The reasons
are two-fold. First, in top-k KS, the relevance of a tuple is
decided by the keywords in Q, and hardly reflects the fre-
quencies of the terms outside Q. Second, a tuple itself being
relevant to Q does not imply that the terms it contains are
globally frequent in the query result.

The explorative nature of FCT search also makes it an
effective tool for refining KS queries. For example, consider
someone that is interested in the research of Tony, but is not
familiar with the areas he has worked in. Running a simple
KS query with Q = {Tony, paper} would return too many
tuples, one for each publication. With a FCT query, s/he
would be able to identify important terms that can be added
to Q to formulate a more selective KS query. As shown in
Figure 4, such terms could be spatio-temporal and query.
Thus, next s/he would execute a KS query Q = {Tony,
spatio-temporal, query, paper} to retrieve only the papers of
Tony on spatio-temporal queries.

Contributions. This paper presents a systematic study
on FCT retrieval. We first provide a formal formulation of
the problem, and then, propose a fast algorithm to solve it.
We show that a FCT query can be answered without per-
forming all the joins needed by the corresponding KS query.
For instance, the terms in Figure 4 can be derived without
computing the tuples in Figure 3. We have experimentally

frequency
3
3
3

2
2

3

term
spatio-temporal

query
privacy
preserve
tree

access
method 2
publish 2

Figure 4: The 8 most frequent terms in Figure 3

evaluated our technique on a real dataset IMDB, which in-
corporates the information of over 800k movies and TV pro-
grams. Our results show that FCT retrieval is effective,
by revealing many interesting observations. Furthermore,
our FCT algorithm significantly outperforms the straight-
forward approach of evaluating the corresponding KS query
completely, achieving a maximum speedup of 4.

The rest of the paper is organized as follows. Section 2
formally formulates the problem of retrieving frequent co-
occurring terms. Section 3 reviews the previous work on
keyword search. Section 4 proposes an efficient FCT algo-
rithm, and Section 5 extends the algorithm to the scenario
where term appearances in various tables have different im-
portance. Section 6 contains our experimental evaluation.
Finally, Section 7 concludes the paper with directions for
future work.

2. PROBLEM DEFINITION
We consider that the database has n tables R1, R2, ..., Rn,

referred to as the raw tables. Their referencing relationships
are summarized in a schema graph:

Definition 1 (Schema Graph). The schema graph
is a directed graph G such that (i) G has n vertices, cor-
responding to tables R1, ..., Rn respectively, and (ii) G has
an edge from vertex Ri to vertex Rj (1 ≤ i 6= j ≤ n), if and
only if Rj has a foreign key referencing a primary key in Ri.

For example, Figure 1 shows the schema graph of a
database with n = 4 tables. Let Q be a set of m keywords
kw1, ..., kwm. Each answer of the traditional keyword search
is an MTJNT defined as follows:

840

a- w-
p-.

.
a/ w/

p/
c/

(a) An MTJNT (b) Not an MTJNT

Figure 5: MTJNT illustration with Q = {Tony, pa-

per}

Definition 2 (MTJNT). A minimum total join net-
work (MTJNT) is an undirected tree satisfying three require-
ments:

• (join) Each vertex is a tuple of a raw table. Let t and
t′ be any two adjacent vertices, and assume that they
are in raw tables R and R′ respectively. Then, R and
R′ must be connected in the schema graph, and t ./ t′

must belong to R ./ R′.

• (total) Every keyword in Q is contained in at least one
vertex.

• (minimal) No vertex of the tree can be removed such
that the remaining part is still a tree fulfilling the above
requirements.

We assume that the name of a raw table R is an implicit
term in each tuple in R. To illustrate MTJNTs, let us in-
troduce some conventions for tuple referencing. For a tuple
in tables AUTHOR, PAPER, CONF in Figure 2, we refer to it by
its primary key, e.g., c1 represents the first tuple in CONF.
Given a tuple in WRITES, we denote it using the symbols
w1, w2, ... shown in Figure 2, e.g., w1 is the first tuple in
WRITES. Figure 5a demonstrates an MTJNT for a query Q
= {Tony, paper}. The tree in Figure 5b, however, is not an
MTJNT, as it violates the minimal requirement in Defini-
tion 2. Namely, removal of vertex c1 does not compromise
the join- and total-requirements.

Definition 3 (Keyword Search). Given a set Q of
keywords and a number Rmax, a keyword search (KS) query
returns the set KS(Q) of all possible MTJNTs that have at
most Rmax vertices.

The parameter Rmax is introduced to prevent excessively
large MTJNTs. For instance, with Q = {Tony, paper} and
Rmax = 3, KS(Q) contains 6 MTJNTs, each of which is
translated to a different tuple in Figure 3. In particular, the
MTJNT in Figure 5a belongs to KS(Q), and depicts the
first tuple in Figure 3.

Let T be any MTJNT in KS(Q). Given a term w, we use
count(T, w) to denote the number of occurrences of w in T ,
i.e., totally how many w are in the texts of the vertices of T .
For example, let T be the MTJNT in Figure 5a. Then,
count(T, spatio-temporal) = 1 and count(T, privacy) = 0,
since the first tuple in Figure 3 contains one occurrence of
spatio-temporal but no privacy.

Equipped with function count(., .), the total frequency of
w in all MTJNTs can be obtained as:

freq(Q,w) =
∑

∀T∈KS(Q)

count(T, w). (1)

Now we are ready to define frequent co-occurring term re-
trieval:

Definition 4 (FCT search). Given a set Q of key-
words, a number Rmax, and an integer k, a frequent co-
occurring term (FCT) query returns the k terms with the
highest frequencies among all terms that (i) are not in Q,
and (ii) in the result of a KS query with the same Q and
Rmax.

Optionally, a user, who has some knowledge of the schema
graph, may require that all the terms reported should appear
in a particular set of relations.

As an example, given the database in Figure 2 and a query
Q = {Tony, paper} and Rmax = 3, a FCT query with k = 4
reports terms spatio-temporal, query, privacy, preserve, be-
cause they have the highest frequency 3 (see Table 4) among
all terms in Figure 3 except Tony and paper.

As explained in Section 1, the motivation of FCT retrieval
is to discover the concepts that best describe the character-
istics of the query keyword set Q. Since it is based on term
matching, standard pre-processing is needed to increase the
accuracy. First, all the stop-words (i.e., common words such
as“of”, “is”, etc.), noisy terms (i.e., words without significant
meanings), and numerical data are excluded from consider-
ation. Second, words with the same root (e.g., “preserving”
and “preservation”) should be counted as an identical word,
as can be achieved through word-stemming.

3. RELATED WORK
The previous works on relational keyword search can be

divided into two categories, depending on whether they re-
trieve MTJNTs based on candidate networks (CN) or data-
graph traversal. In the sequel, we outline their central ideas
of both categories. Our discussion focuses on relational
database (as is the topic of this paper). Nevertheless, at
the end of the section, we will briefly survey relevant works
on other types of data.

Methods Based on Candidate Networks. Keyword
search (KS) aims at offering greater convenience to users
in inquiring the database. Compared to conventional SQL
queries, however, the convenience of KS is at the cost of
higher complexity in query processing. As explained in
the sequel, a major complication arises from the fact that
MTJNTs may be produced from numerous different joins,
depending on the distribution of the keywords in the raw
tables.

Consider a KS query with a keyword-set Q. Given a raw
table R and a subset S of Q, let RS be the set of the tu-
ples in R that (i) contain all the keywords in S, but (ii) do
not include any keyword in Q − S. For example, consider
the tables in Figure 2 and a KS query with a set Q of two
keywords: kw1 = Tony, kw2 = paper. Then, AUTHORkw1 in-
cludes all tuples that have Tony but not paper. As a special
case, when S = ∅, RS is the set of tuples in R that do not
contain any keyword in Q at all. In general, for any non-
empty S, RS is called a non-free tuple-set. Otherwise (i.e.,
S = ∅), RS is a free tuple-set.

Before accessing the underlying tables, the database must
enumerate all the possible algebra expressions that may pro-
duce MTJNTs. The simplest expression is AUTHOR{kw1,kw2},
namely, if a tuple in AUTHOR contains both Tony and paper,

841

0
AUTHOR12345WRITE12365 7 7WRITE

AUTHOR
89:;< PAPER

89:=<
(a) For expression E1 (b) For expression E4

Figure 6: Candidate network examples

the tuple itself constitutes an MTJNT. By the same rea-
soning, the other one-table expressions yielding MTJNTs
are WRITES{kw1,kw2} , PAPER{kw1,kw2}, and CONF{kw1,kw2}.
There are more MTJNT-expressions involving two tables,
for example:

AUTHOR{kw1} ./ WRITES{kw2}, (E1)

AUTHOR{kw2} ./ WRITES{kw1}, (E2)

WRITES{kw1} ./ PAPER{kw2}, ..., (E3)

to list just a few. There exist even more MTJNT-expressions
with three tables:

AUTHOR{kw1} ./ WRITES∅ ./ PAPER{kw2}, (E4)

AUTHOR{kw2} ./ WRITES∅ ./ PAPER{kw1}, (E5)

WRITES{kw1} ./ PAPER∅ ./ CONF{kw2}, ..., (E6)

Similarly, we can create a large number of MTJNT-
expressions involving four tables. To avoid excessive expres-
sions, a common approach [11, 12, 16, 17, 18] is to place an
upper bound Rmax on the number of tuple-sets in an ex-
pression. For example, with Rmax = 3, it is not necessary
to examine expressions with more than 3 tuple-sets.

An MTJNT-expression can be converted to a candidate
network (CN). Specifically, given such an expression E, a
CN is a directed tree where (i) a vertex corresponds to a
(non-free or free) tuple-set in E and (ii) an edge between two
vertices indicates that the two tuple-sets should be joined in
evaluating E, and the edge’s direction follows the direction
of the corresponding edge in the schema graph. For example,
Figure 6a (6b) presents the CN of the MTJNT-expression
E1 (E4) shown earlier.

Hristidis and Papakonstantinou [12] develop an algorithm
for generating all the candidate networks efficiently, subject
to the upper bound Rmax. This algorithm is deployed as
the first step by all KS solutions [11, 12, 16, 17, 18] based
on CNs. As a second step, a KS algorithm executes all the
CNs (a.k.a MTJNT-expressions) to produce the MTJNTs.
Note that a CN may not necessarily return any result. For
example, AUTHOR{Tony, paper} is empty because no tuple in
AUTHOR contains both Tony and paper simultaneously. The
simplest approach of CN evaluation is to perform an SQL
query for each CN. Various optimizations are possible for
reducing the computation time. For example, many CNs
may share common subexpressions, which, therefore, only
need to be evaluated only once [12, 18]. Furthermore, if the
goal is to report only the top-k MTJNTs (according to a
certain scoring function) [11, 16, 17], the processing can be
accelerated using the well-known thresholding technique [7]
or a skyline-sweep approach proposed in [17].

Methods Based on Data Graphs. Based on their
foreign-to-primary key relationships, the tuples in the raw
tables can be connected into a data graph. Specifically, this
is a directed graph, where (i) each vertex represents a tuple
in a raw table, and (ii) there is an edge from tuple t to t′ if
and only if t′ has a foreign key referencing the primary key
of t. To illustrate, Figure 7 shows the data graph resulting

a>?
c> c@ cA cB cC cDp> p@ pA pB pC pDw> w@ wA wB wC wD

Figure 7: The data graph of the database in Figure 2

from the database in Figure 2. Following the naming con-
vention in Figure 5, for each tuple in AUTHOR, PAPER, CONF,
we label its vertex with its primary key, whereas, for tuples
in WRITES, their vertices are labeled with symbols w1, w2, ...
defined in Figure 2. There is an edge from, for example, a1

to w1 because tuple w1 (first row of WRITES) references the
primary key of tuple a1 (first row of AUTHOR).

Given a set Q of keywords, the MTJNTs can be found
by traversing the data graph. Next we explain the back-
ward [4] strategy, which is the foundation of other more
complex approaches [10, 14]. Let Q contain two keywords
kw1 = Tony and kw2 = paper. Backward first fetches the
set S1 (S2) of tuples whose texts contain kw1 (kw2). In
Figure 7, S1 = {a1} and S2 = {p1, p2, ..., p6}, which can
be easily obtained given an inverted index2. To obtain an
MTJNT, backward picks two vertices from S1 and S2 respec-
tively, and gradually expands their neighborhoods, until a
common vertex is encountered in both neighborhoods. For
instance, assume that we pick a1 from S1, and p1 from S2.
For a1, backward identifies its 1-edge neighborhood, i.e., the
set {w1, w2, ..., w6} of vertices that can be reached from a1

by crossing one edge. Similarly, the 1-edge neighborhood of
p1 is {w1} (c1 is not included, because the edge between p1

and c1 is pointing at p1). As w1 appears in both the 1-edge
neighborhoods of a1 and p1, backward outputs the MTJNT
in Figure 5a, with w1 being the root, and p1, a1 the leaves.
In our example, all MTJNTs can be derived from 1-edge
neighborhoods. In general, however, further neighborhood
expansion may be necessary to guarantee no false miss.

All the algorithms [3, 4, 6, 10, 14] leveraging data-graphs
deal with top-k KS, where the score of an MTJNT is cal-
culated based on its tree structure, instead of purely from
its texts. For example, the score of an MTJNT can be de-
fined as the sum of the weights of all its edges. In this
case, fast discovery of the top-k MTNJTs requires neigh-
borhood expansions to be performed in a prioritized man-
ner. This creates tremendous opportunities for optimiza-
tion, aiming at expanding the most promising neighbor-
hood earlier. Retrieval of the top-1 MTNJT is actually a
classical steiner-tree problem, for which Ding et al. [6] give
a dynamic-programming algorithm with good asymptotical
performance. Kimelfeld and Sagiv [15] propose a theoretical
algorithm for the general top-k version.

Whether edge weights are important is a crucial factor
in choosing between KS solutions based on CNs (candidate
network) and data graphs. In case edge weights must be
considered, a data-graph method should be applied, because
CN-algorithms are aware of only the foreign-to-primary con-
nections at the schema level, but not at the tuple level.
On the other hand, when edge weights are irrelevant, CN-

2For every term w in the database, the inverted index con-
tains a list of tuples where w appears.

842

algorithms have better performance, since they can exploit
the powerful execution engine of the database to extract
multiple MTJNTs via a single join. For this reason, we also
design our FCT algorithm following the CN-methodology.

Other Works. Keyword search has also been studied on
non-relational data. In particular, considerable efforts [2,
9, 13, 21] have been made on XML documents. Recently,
keyword-driven query processing is also introduced in spatial
databases [8] and OLAP [20]. The above discussion focuses
on centralized DBMS, whereas keyword search in distributed
systems has also been investigated [19, 22].

4. THE STAR ALGORITHM
This section discusses the algorithmic issues in FCT

search. Section 4.1 first provides the high-level description of
the proposed algorithm. Then, Sections 4.2 and 4.3 explain
the details of two major components.

4.1 High-level Description
A straightforward solution, referred to as baseline, to FCT

retrieval is to first solve the corresponding KS query, and
then extract the term frequencies. Specifically, given a set
Q of keywords and an integer k, baseline applies a conven-
tional KS algorithm (surveyed in Section 3) to retrieve the
set KS(Q) of all MTJNTs. Then, the algorithm computes
the frequency freq(Q, w) of each term w by Equation 1, and
reports the k most frequent terms.

Baseline incurs expensive cost because it completely eval-
uates all the joins necessitated by a KS query in order to
obtain KS(Q). While complete join-evaluation is manda-
tory for reporting MTJNTs, can it be avoided if our objec-
tive is to derive only the term frequencies? The answer is
yes. Next, we design an algorithm star to acquire all term
frequencies without producing the MTJNTs.

Star applies the methodology of candidate networks (CN)
reviewed in Section 3. Specifically, given the query keyword-
set Q, it employs the CN-generation algorithm in [12] to
obtain all the CNs. Let us use h to represent the number
of CNs, and denote them as CN1, CN2, ..., CNh, respec-
tively. Recall that, as explained in Section 3, a CN can
be regarded as an algebra expression, which retrieves a set
of MTJNTs. We deploy MTJNT(CNi) to denote the set of
MTJNTs resulting from executing CNi (1 ≤ i ≤ h). Clearly,
MTJNT(CNi) ∩MTJNT(CNj) = ∅ for any 1 ≤ i 6= j ≤ h,
that is, no MTJNT can be output by two CNs at the same
time. It follows that

KS(Q) =
h

⋃

i=1

MTJNT(CNi). (2)

Let freq-CN(CNi, w) be the total number occurrences of
term w in all the MTJNTs of MTJNT(CNi), or formally:

freq-CN(CNi, w) =
∑

∀T∈MTJNT (CNi)

count(T, w). (3)

where count(T, w), as defined in Section 2, is the number
of occurrences of w in a single MTJNT T . Thus, the total
frequency freq(Q, w) can be calculated as:

freq(Q, w) =
h

∑

i=1

freq-CN(CNi, w). (4)

ERF RGH G RIHIJ RKL K
RMLM RNLN ROLORPLP RQLQ

R
L

(a) (b) (c)

Figure 8: Star-CN examples

Therefore, the key to computing freq(Q, w) is to calculate
freq-CN(CNi, w) for a single candidate network CNi.

The crucial observation behind the design of our star algo-
rithm is that freq-CN(CNi, w) can be calculated efficiently
when CNi is a star-CN:

Definition 5 (Star Candidate Network). A star
candidate network (star-CN) is a CN where a vertex, called
the root, connects to all the other vertices, called the leaves.

Figure 8 demonstrates several example of star-CNs. Note
that the simplest star-CN can have only a single tuple-set
RS (as explained in Section 3, RS is the set of tuples in the
raw table R that contain only the terms in S but not any
term in Q−S, where Q is the query keyword-set). Also note
that a star-CN can have any number of leaf tuple-sets. Fur-
thermore, the edge directions can be arbitrary. For instance,
in Figure 8c, some edges are pointing at the root RS, while
others away from RS. In other words, RS may reference the
primary keys of some leaf tuple-sets, and meanwhile may be
referenced by other leaves.

As elaborated in the next section, given a star-CN CN and
a term w, freq-CN(CN, w) can be obtained at cost consid-
erably lower than deriving the MTJNTs in MTJNT(CNi).
This is why the proposed star algorithm is significantly faster
than baseline. Apparently, when the schema graph itself is
a star, all the CNs are definitely star-CNs. This makes our
star algorithm especially suitable in data warehouse appli-
cations (where star schemas are common).

In case the schema graph is not a star, some CNs CN may
not be star-CNs. In this case, we perform an interesting op-
eration, called starization, to transform CN into a star-CN
CN ′ that returns the same MTJNTs. Then, star proceeds
normally with CN ′. Intuitively, starization evaluates only
the minimum set of joins to complete the conversion of CN
into a star-counterpart. Note that those joins must be per-
formed by the baseline approach anyway. In other words,
starization carries out some of the work done by the base-
line approach, but just enough to enable the application of
star.

In the next subsection, we elaborate how to obtain the
term frequencies from a star-CN. Then, Section 4.3 presents
the details of starization.

4.2 Term Frequency Retrieval in a Star-CN
This section settles the following problem: given a star-

CN CN , find the frequencies freq-CN(CN, w) of all terms w
that appear in at least one MTJNT of MTJNT(CN).

Let RS be the tuple-set at the root of CN . Use l to denote
the number of leaf tuple-sets in CN , and RSi

i be the i-th leaf
tuple-set (1 ≤ i ≤ l). Deploy Ai to represent the set of join-

ing attributes between RS and RSi

i . Hence, conceptually RS

843

has columns {A1, A2, ..., Al, text}, where text incorporates all
the attributes other than A1, ..., Al. In the same fashion,
RSi

i can be regarded to have a schema {Ai, text}. Following
the convention of previous work [11, 12, 17, 16], we assume
that the data of each tuple-set have been collected into a
file. (This can be easily achieved with a single scan of all
the raw tables. Furthermore, all the tuple-sets together con-
sume exactly the same amount of space as the raw tables,
because every tuple in a raw table belongs to precisely one
tuple-set.)

We will use the running example in Figure 9 to illustrate
our solution. Figure 9a gives the CN under consideration,
assuming that the query keyword-set Q has three terms kw1,
kw2, and kw3. The root of CN is a free tuple-set R∅, i.e.,
no tuple in R∅ should contain any keyword in Q. All leaf

tuple-sets are non-free. For example, in R
{kw1}

1 , each tuple
must include only kw1, but not kw2 and kw3. Notice that

R∅ has two primary keys A1 and A2, referenced by R
{kw1}

1

and R
{kw2}

2 respectively, whereas R∅ itself references the

primary key A3 of R
{kw3}

3 .
Figures 9b-9e give the contents of the four tuple-sets. We

use symbols α1, α2, ..., β1, ..., γ1, ..., δ1, ... to facilitate
tuple pinpointing. For instance, α1 denotes the first tuple
in Rkw1

1 . Note that some foreign-key values (e.g., x3) of

Rkw1
1 are absent from the primary-key A1 of R∅. This is

reasonable because R∅ may not contain all the tuples in the
raw table R (recall that R∅ is only a subset of R). Similar
phenomena can be observed for the foreign-key values in
other tables.

Figure 10 shows the result of completely evaluating CN .
We refer to each tuple in the result as a join tuple,
which is essentially a flat representation of an MTJNT in
MTJNT(CN). Symbols λ1, λ2, ... are added for tuple
pinpointing. For example, tuple λ1 is the join result of
tuples α3, β1, γ1, and δ2. It is easy to verify that term
w1 occurs 16 times, i.e., freq-CN(CN, w1) = 16. Simi-
larly, freq-CN(CN, w2) = 13, freq-CN(CN, w3) = 4, and
freq-CN(CN, w4) = 5. In the sequel, we present the star
algorithm that obtains these frequencies without producing
the results in Figure 10.

Volume. Let t be a tuple in any tuple-set of CN . We define
its volume, denoted as vol(t), as the number of join tuples
determined by t. For instance, as mentioned earlier, join
tuple λ1 in Figure 10 is produced by tuple α3 in Figure 9b
(together with β1, γ1, δ2). In fact, the volume vol(α3) is 2,
because α3 also produces another join tuple λ2. To see more
examples, vol(β3) = 0 (since β3 does not produce any join
tuple), and vol(γ1) = vol(δ2) = 6 (since γ1 determines λ1,
λ2, ..., λ6, and so does δ2).

The central idea underlying star is that, once we have ob-
tained the volumes of the tuples in each tuple-set, we can
precisely calculate the number of occurrences of any term.
Let us consider, for example, term w1. This term appears
twice in α3. As α3 yields vol(α3) = 2 join tuples, w1 also
appears twice in each of those two join tuples, thus con-
tributing totally 4 occurrences. Similarly, w1 also emerges
once in γ1 (or δ2), and hence, has one occurrence in each
of the vol(γ1) = 6 (or vol(δ2) = 6) join tuples determined
by γ1 (or δ2). This leads to another 12 occurrences of w1,
resulting in freq-CN(CN, w1) = 4 + 12 = 16.

Motivated by this, star executes in two steps. The first
phase, called the volume step, computes the volumes of all

 A1 A2 A3 R1
{ kw1} .text R2

{ kw2}.text R3
{ kw3} .text R∅.text

 λ1 x2 y1 z1 kw1, w1, w1, w2 kw2, w4 kw3, w1 w1, w2
λ2 x2 y1 z1 kw1, w1, w1, w2 kw2, w2 kw3, w1 w1, w2
λ3 x2 y1 z1 kw1, w2 kw2, w4 kw3, w1 w1, w2
λ4 x2 y1 z1 kw1, w2 kw2, w2 kw3, w1 w1, w2
λ5 x2 y1 z1 kw1, w3 kw2, w4 kw3, w1 w1, w2
λ6 x2 y1 z1 kw1, w3 kw2, w2 kw3, w1 w1, w2
λ7 x4 y3 z2 kw1, w4 kw2, w3 kw3, w4 w3

Figure 10: Result of complete evaluation of CN

tuples in each tuple-set of CN . Then, the second phase, the
frequency step calculates the frequency of each term.

Volume Step. This phase is further divided into the leaf-
stage and the root-stage. The leaf-stage scans each leaf tuple-
set RSi

i (1 ≤ i ≤ l) of CN once. The purpose is to prepare

a num-array for the column Ai of RSi

i . For every value v

in this column3, num(v) equals the number of tuples in RSi

i

carrying v. For instance, for our running example in Fig-
ure 9, the leaf-stage outputs the num-arrays in Figure 11a.
For example, num(x1) equals 2, because in Rkw1

1 two tuples
have x1 as their A1-values. Notice that the num-array of
each RSi

i can be regarded as a compressed version of its col-
umn Ai. In particular, if a value v occurs many times in Ai,
it is stored only once, but associated with its num-value.

The root-stage, on the other hand, reads the root tuple-set
RS once, and creates an abridged root tuple-set RS

∗ , which
has at most the same cardinality as RS. Furthermore, this
stage also obtains the volumes of all the tuples in every
(root/leaf) tuple-set. At the beginning, the root-stage initi-

ates a vol-array for each leaf tuple-set RSi

i (1 ≤ i ≤ l). For

every value v in the column Ai of RSi

i , the array has an entry
vol(v), which is initialized to 0. At the end of the root-stage,

vol(v) will be identical to the volume of each tuple in RSi

i

whose Ai-value equals v. It suffices to keep only one volume
for all tuples having the same Ai-value, as their volumes are
equivalent.

Next, we process each tuple of the root tuple-set RS in
turn. Let t = (v1, v2, ..., vl, text) be the tuple being pro-
cessed, where vi (1 ≤ i ≤ l) is its value on column Ai.
Then, we check if t can be discarded. Specifically, as long
as any vi (1 ≤ i ≤ l) does not exist in the num-array of

leaf relation RSi

i , t does not produce any join result, and
hence, can be safely eliminated. Otherwise (i.e., t cannot be

discarded), we increase entry vol(vi) in the vol-array of RSi

i

(1 ≤ i ≤ l), using the data in the num-arrays of the other
leaf tuple-sets. Formally, the update of vol(vi) is by:

vol(vi) = vol(vi) +
∏

j 6=i,1≤j≤l

num(vj). (5)

We also calculate the volume of t as

vol(t) =

l
∏

j=1

num(vj). (6)

Finally, we write to the abridged root tuple-set RS
∗ the tuple

t, augmented with an additional field vol(t), and continue
with the next tuple in RS.

Let us demonstrate the root-stage with our running ex-
ample. Recall that, in the leaf-stage, the num-arrays in

3In case Ai is a set of attributes, v is a vector.

844

RRSTURV
{AR, text}

{AR, AW, AX, text}Y R

RXSTUXV
{AX, text}RWSTUWV

{AW, text}
 A1 text

α1 x1 kw1, …
α2 x1 kw1, …
α3 x2 kw1, w1, w1, w2
α4 x2 kw1, w2
α5 x2 kw1, w3
α6 x3 kw1, …
α7 x4 kw1, w4

 A2 text
β1 y1 kw2, w4
β2 y1 kw2, w2
β3 y2 kw2, ...
β4 y3 kw2, w3

 .

 A3 text
γ1 z1 kw3, w1
γ2 z2 kw3, w4
γ3 z3 kw3, ...

.

 A1 A2 A3 text
δ1 x1 y4 z1 ...
δ2 x2 y1 z1 w1, w2
δ3 x4 y3 z2 w3

.

(a) Star-CN CN (b) Rkw1
1 (c) Rkw2

2 (d) Rkw3
3 (e) R∅

Figure 9: A running example (kw1, kw2, and kw3 are query keywords)Zx[x\ x] x^
num 2 3 1 1

y[y\ y]
num 2 1 1

z[z\ z]
num 1 1 1

(a) The num-arrays of Rkw1
1 , Rkw2

2 , and Rkw3
3_x` xa xb xc

vol 0 0 0 0
y` ya yb

vol 0 0 0
z` za zb

vol 0 0 0

(b) The vol-arrays at the beginning of the root-stagedxe xf xg xh
vol 0 2 0 0

ye yf yg
vol 3 0 0

ze zf zg
vol 6 0 0

(c) The vol-arrays after processing δ2ixj xk xl xm
vol 0 2 0 1

yj yk yl
vol 3 0 1

zj zk zl
vol 6 1 0

(d) The vol-arrays after processing δ3

 A1 A2 A3 text vol
δ2

* x2 y1 z1 w1, w2 6
δ3

* x4 y3 z2 w3 1

(e) R∅

∗

Figure 11: Illustration of the volume step

Figure 11a have been calculated. Before scanning the root
tuple-set R∅, we initialize the vol-arrays of Rkw1

1 , Rkw2
2 and

Rkw3
3 as in Figure 11b. We proceed to process the first tuple

δ1 of R∅, and discard it immediately because its A2-value y4

does not exist in the num-array of Rkw2
2 , implying that δ1

does not produce any join tuple.
The next tuple processed is δ2, which cannot be discarded

because its A1-, A2-, and A3-values x2, y1, z1 all appear
in the num-arrays. Thus, we update three entries in the
vol-arrays, i.e., vol(x2), vol(y1), and vol(z1), resulting in the
new vol-arrays in Figure 11c. Note that the updates are
according to Equation 5. For example, vol(x2) is obtained
as num(y1) · num(z1) = 2 · 1 = 2. Next, the volume of δ2 is
calculated with Equation 6, leading to vol(δ2) = num(x2) ·
num(y1) · num(z1) = 3 · 2 · 1 = 6. Finally, we append t to

the abridged root tuple-set R∅

∗ along with its volume 6.
The last tuple δ3 of RS is processed in the same manner,

yielding vol(δ3) = 1, and the final vol-arrays in Figure 11d.
Some entries in the vol-arrays are 0, indicating that their
corresponding tuples do not produce any join tuples. For
example, in Rkw1

1 , tuples with A1-value x1 do not generate
any join tuple. The root-stage terminates. Figure 11e gives
the content of the current R∅

∗. Notice that symbols δ∗2 and
δ∗3 are introduced to enable tuple pinpointing. We formally
summarize the entire volume-step in Figure 12.

Frequency Step. Once the tuple volumes have been com-

Algorithm volume-step

/* Input: star-CN CN with root tuple-set RS and l leaf tuple-sets

R
S1
1

, ..., R
Sl

l
*/

1. scan each leaf tuple-set to prepare its num-arrays
2. initialize an all-zero vol-array for each leaf tuple-set
3. initialize an empty abridged root tuple-set RS

∗

4. while there are still un-processed tuples in RS

5. get the next un-processed tuple t = (v1, ..., vl, text)
/* vi (1 ≤ i ≤ l) is the Ai-value of t */

6. if all v1, ..., vl appear in the num-arrays
7. for i = 1 to l
8. vol(vi) = vol(vi) + Πj 6=inum(vj)
9. vol(t) = Πl

j=1
num(vj)

10. t∗ = everything in t together with vol(t)
11. add t∗ to RS

∗

Figure 12: The volume step of algorithm star

puted, it is relatively easy to obtain the term frequencies.
Towards this purpose, the frequency step performs one more
scan on each leaf tuple-set and the abridged root tuple-set.
Specifically, initially, freq-CN(CN, w) equals 0 for every w.
Let t be a tuple in any of the tuple-sets mentioned earlier.
When t is encountered, for each occurrence of a term w in
t, we simply increase freq-CN(CN, w) by vol(t). It remains
to clarify how to retrieve vol(t). If t is in the abridged root
tuple-set RS

∗ , vol(t) is directly fetched along with t. Oth-

erwise, assume that t comes from a leaf tuple-set RSi

i (for
some i ∈ [1, l]). We only need to obtain the Ai value v of
t, and then, set the volume of t to the entry vol(v) in the
vol-array.

To illustrate, let us calculate freq-CN(CN, w1) in the ex-
ample of Figure 9, from the vol-arrays (Figure 11d) and

abridged root tuple-set R∅

∗ (Figure 11e) returned by the vol-
ume step. At the beginning, freq-CN(CN, w1) = 0. As (i)
w1 appears twice in α3 and once in γ1 and δ∗2 respectively,
and (ii) vol(α3) = 2, vol(γ1) = 6, vol(δ∗2) = 6, we have
freq-CN(CN, w1) = 2 · 2 + 1 · 6 + 1 · 6 = 16. In particular,
vol(α3) is retrieved from the entry vol(x2) in the vol-arrays,
where x2 is the A1-value of α3. Likewise, vol(γ1) equals
vol(z1) with z1 being the A3-value of z1. Finally, vol(δ∗2) is

acquired directly from the abridged tuple-set R∅

∗.

Discussion. The star algorithm described above is highly
efficient. Specifically, regardless of the number l of leaf tuple-
sets, star requires reading each tuple-set of CN only twice,
and writing a tuple-set RS

∗ once that is no larger than the
root tuple-set RS. This is much faster than the full eval-
uation of CN (i.e., returning all the join tuples as in Fig-
ure 10), which demands more passes on the participating
tuple-sets. As mentioned before, the efficiency of star arises
from the fact that it focuses on calculating only tuple vol-

845

Algorithm frequency-step

/* Input: the leaf tuple sets R
S1
1

, ..., R
Sl

l
, the abridged root tuple-set RS

∗

and the vol-arrays output by the volume-step */
1. freq-CN(CN, w) = 0 for all terms w

2. for each leaf tuple-set R
Si

i (1 ≤ i ≤ l)

3. while there are still un-processed tuples in R
Si

i
4. get the next un-processed tuple t = (v, text)
5. for each occurrence of any term w in t
6. freq-CN(CN, w) = freq-CN(CN, w) + vol(v)
7. while there are still un-processed tuples in RS

∗

8. get the next un-processed tuple t∗ = (v1, ..., vl, text, vol(t
∗))

9. for each occurrence of any term w in t∗

10. freq-CN(CN, w) = freq-CN(CN, w) + vol(t∗)

Figure 13: The frequency step of algorithm star

umes. Indeed, tuple volumes capture less information than
join tuples (note that the latter can produce the former but
not the vice versa), and hence, are cheaper to calculate.

4.3 Conversion to Star-CNs
This section deals with the following starization prob-

lem: given a non-star CN , transform it to a star-CN CN ′

that returns the same set of MTJNTs, i.e., MTJNT(CN) =
MTJNT(CN ′). The goal is to minimize the total cost in-
curred in the transformation and executing the star algo-
rithm (presented in Section 4.2) on CN ′.

A basic observation is that, if CN has s vertices, then it
has s equivalent star-CNs each of which has a different ver-
tex as the root. Let us explain this with a concrete example.
Consider the non-star CN in Figure 14a, corresponding to
the schema graph in Figure 1 and a query keyword-set Q =
{Tony, conf}. Figure 14b gives an equivalent star-CN CN ′

1,

where WRITE∅ is the root. Notice that, conversion from CN
to CN ′

1 requires a join between PAPER∅ and CONF{conf}, and
the result of the join becomes a leaf tuple-set in CN ′

1. Sim-
ilarly, Figure 14c shows another equivalent star-CN CN ′

2,
which necessitates a join AUTHOR{Tony} ./ WRITES∅. Fig-
ures 14d and 14e present the other two equivalent star-CNs
CN ′

3 and CN ′

4.
The quality of a star-CN CN ′ depends on two types of

cost: the overhead of (i) converting CN to CN ′, and (ii)
executing star on CN ′. Hence, finding the optimal CN ′

would be trivial if we were able to predict both costs accu-
rately. While the overhead of (ii) may be easy to estimate
(as mentioned earlier, star scans each participating tuple-set
twice, and writes the abridged root tuple-set once), predict-
ing the overhead of (i) is hard for several reasons. First,
join selectivity estimation is known to be a tricky problem
[5]. Although there exist solutions [1] specifically designed
for foreign-joins, they cannot be applied in our case, because
the joins here – although they look like foreign-joins – are
not exactly so. Recall that in a traditional foreign-join, ev-
ery foreign key will definitely be joined with a primary key.
This property no longer holds in our scenario due to the
keyword-screening process. For example, consider the join
AUTHOR{Tony} ./ WRITES∅. Apparently, most foreign-key val-
ues in WRITES∅ will not find their matching primary-keys in
AUTHOR{Tony}, because AUTHOR{Tony} consists of only tuples
containing the keyword Tony. Second, selectivity estima-
tion demands specialized structures such as sample sets [5],
synopses [1], etc. Such structures cannot be pre-computed
because the tuple-sets of CN are dynamically generated ac-
cording to the query keyword-set Q. Constructing the struc-

AUTHORnopq rs tuvw WRITE PAPER CONFnxvyq w
(a) A non-star CN CN

AUTHORz{|} ~� ����WRITE

PAPER CONFz���} �
(b) An equivalent star-CN CN ′

1

PAPER

CONF����� �AUTHOR���� �� ���� WRITES

(c) Equivalent CN ′

2

AUTHOR���� �� ����
WRITE PAPER CONF����� � CONF����� �

AUTHOR���� �� ���� WRITE PAPER

(d) Equivalent CN ′

3 (e) Equivalent CN ′

4

Figure 14: Multiple starization choices

tures on the fly entails large cost itself [1, 5].
A good strategy in starization is to avoid joins that pro-

duce gigantic results. For example, the CN ′

1 in Figure 14b
is a poor choice, because PAPER∅ ./ CONF{conf} essentially
joins two sizable tuple-sets (in particular, CONF{conf} is the
table CONF itself – recall that every tuple in CONF implicitly
includes the table name as a term). Not only that the join
itself incurs expensive cost, but also it creates a huge leaf
tuple-set for CN ′

1, leading to large cost in the subsequent
application of the star algorithm. The CN ′

2 in Figure 14c
is a much better choice. In particular, AUTHOR{Tony} is a
very small tuple-set. As a result, the join AUTHOR{Tony} ./
WRITES∅ is fairly efficient, and produces only a small number
of tuples.

Typically, a join is expensive if its participating tuple-
sets have large cardinalities. There is a close connection
between the size of a tuple-set and its type. We already
know that a tuple-set RS can be free or non-free. Here, we
further divide non-free RS into two types: RS is strongly
non-free, if S contains at least a keyword that is not the
name of the raw table R; otherwise, RS is weakly non-free.
For example, AUTHOR{Tony} is a strongly non-free tuple-set,
whereas CONF{conf} is weakly non-free. In general, weakly
non-free and free tuple-sets are large, whereas a strongly
non-free tuple-set is small4, because usually only a fraction
of the raw table R includes all the keywords in S. Hence, we
should avoid joins that involve no strongly non-free tuple-set
at all, e.g., PAPER∅ ./ CONF{conf}. These joins are said to be
bad.

Motivated by this, we perform starization by choosing the
star-CN that requires the least number of bad joins. In case
there are multiple such star-CNs, we select the one with the
greatest number of leaf tuple-sets (in general, the larger the
number, the fewer pairwise joins are needed). To illustrate,
consider the CN in Figure 14a. Among the equivalent star-
CNs in Figures 14b-14e, CN ′

1 and CN ′
3 require one bad join,

whereas CN ′

2 and CN ′

4 demand no bad join at all. Now we
need to make a choice between CN ′

2 and CN ′

4. As CN ′

2

has two leaves and CN ′

4 has only one, CN ′

2 requires fewer

4This observation was first made in [12].

846

Algorithm starization

/* Input: a non-star CN with s tuple-sets R
S1
1

, ..., R
Ss

1
*/

1. initialize arrays bad-num and degree each with s elements
2. for i = 1 to s

3. degree[i] = number of neighbors of R
Si

i in CN

4. remove R
Si

i from the original CN , resulting in a set of
connected components

5. bad-num[i] = number of connected components that have
at least two tuple-sets but no strongly non-free tuple-set

6. rt = ∅; min-bad-num = ∞; rt-degree = 0
7. for i = 1 to s
8. if bad-num[i] < min-bad-num OR

(bad-num[i] = min-bad-num AND degree[i] > rt-degree)

9. rt = R
Si

i
10. min-bad-num = bad-num[i]; rt-degree = degree[i]
11. return the star-CN with root rt

Figure 15: The algorithm of starization

pairwise joins, and is the final output of starization.
It remains to clarify how to obtain the number of bad

joins needed by a star-CN CN ′. Assume that the root of
CN ′ is RS. Let us examine the vertex RS in the origi-
nal CN . Removal of RS breaks CN into several connected
components. The number of bad joins equals the number of
components that have (i) at least two tuple-sets but (ii) no
strongly non-free tuple-set. This number can be found with
a single traversal of all the components.

Consider the CN in Figure 14a and RS = WRITES∅. After
deleting WRITES∅, the CN is partitioned into two compo-
nents AUTHOR{Tony} and PAPER∅ ← CONF{conf}. The second
component has two tuple-sets, neither of which is strongly
non-free. Thus, we know that the star-CN rooted at WRITES∅

necessitates one bad join. Figure 15 formally summarizes the
starization algorithm.

5. EXTENSIONS
Our analysis so far assumes that every occurrence of a

term w is counted equally in its frequency, regardless of the
raw table where w appears. Sometimes we may want to treat
the occurrences in various tables differently. For example, a
user, who wants to know more about the research of Tony,
may consider terms in PAPER more important than those in
AUTHOR (in the schema graph of Figure 1). For this purpose,
s/he may give a higher weight to PAPER and a lower one to
AUTHOR, so that every appearance of a term counts more in
PAPER than AUTHOR.

Carrying the idea further, a more general method is to
specify weights at the CN level. This is reasonable because
a term from the same table may not necessarily have the
same importance in different CNs. To explain, let us slightly
modify the schema of Figure 1, by adding one more column
comments to table WRITES (i.e., WRITES now has attributes
A id, P id, comments). This new attribute records the com-
ments of the author A id on her/his paper P id. Now con-
sider a FCT query with keyword-set Q = {Tony, spatial,
index}, and the following CNs:
CN1 : AUTHOR{Tony} → WRITES

∅ ← PAPER
{spatial, index}

CN2 : AUTHOR{Tony} → WRITES
{index} ← PAPER

{spatial}

Let w be a term in PAPER. Intuitively, an occurrence of
w in (an MTJNT output by) CN1 is more important than
that in CN2. This is because each MTJNT from CN1 corre-
sponds to a paper specifically on spatial indexing, whereas
an MTJNT from CN2 may be a paper on other spatial top-

ics, but with a comment from Tony related to indexes.
Our FCT operator can be easily extended to incorporate

weighting in the above scenarios. Actually, this is true both
conceptually and algorithmically. In particular, conceptu-
ally, the only change necessary is the definition of function
count(T, w), which here returns the weighted number of oc-
currences of w in an MTJNT T . To elaborate the details,
assume that CN is the candidate network that generates
T . Suppose that CN has s tuple-sets RS1

1 , ..., RSs

s , which,
by the weighting rules in the underlying application, bear
weights wght1, ..., wghts, respectively. Thus, count(T, w)
should be implemented as follows. First, we initialize a
counter 0. Then, for every occurrence of w in T , we first
obtain the tuple-set, say RSi

i , contributing the occurrence,
and increase our counter by wghti.

Accordingly, to support weighted FCT search, small
changes are needed in the algorithms starization and star
proposed in Section 4. Recall that, given a non-star can-
didate network CN , starization performs some preliminary
joins to transform CN into a star-counterpart CN ′. Each
join produces a leaf tuple-set in CN ′. To tackle a weighted
FCT query, terms in the join result should be accompanied
by the weights of their origin leaf tuple-sets. For example,
let CN be as shown in Figure 14a. Converting it to the CN ′

2

in Figure 14c needs a join AUTHOR{Tony} ./ WRITES∅. Then,
for every occurrence of a term w in the join result, we asso-
ciate it with the weight of AUTHOR{Tony} (or WRITES∅), if it

comes from AUTHOR{Tony} (or WRITES∅).
Given a star-CN CN , on the other hand, star computes

the total weighted occurrences freq-CN(CN, w) of each term
w in the MTJNTs determined by CN . The only mod-
ification of star is in its frequency step, which computes
freq-CN(CN, w) from the tuple volumes, by scanning each
leaf tuple-set and the abridged root tuple-set once. Specif-
ically, after fetching a tuple t, for every term w in t, we
increase freq-CN(CN, w) by vol(t) · weight(t), where vol(t)
is the volume of t, and weight(t) is the weight of the origin
tuple-set of t.

Finally, it is worth mentioning that, since a FCT query
concentrates on mining concepts, its effectiveness can be
boosted when there is a concept hierarchy. This hierar-
chy captures the belonging-to relationships among terms;
for instance, nearest-neighbor belongs to spatial. As a result,
whenever nearest-neighbor is encountered in an MTJNT, we
should increase the frequencies of both nearest-neighbor and
spatial. This strategy makes it easier for FCT queries to
discover related concepts at the high levels.

6. EXPERIMENTS
This section aims at achieving two objectives. First, in

Section 6.1, we will demonstrate the usefulness of FCT
search, i.e., it enables us to extract interesting information
from real databases conveniently. Then, in Section 6.2, we
will verify the efficiency of our FCT algorithm.

6.1 Effectiveness of FCT Search
We use a real database IMDB [17] that collects the cast,

director, and genre information of over 800k movies and TV
programs. Figure 16 presents the schema graph of IMDB,
where the table names and columns are self-illustrative. The
primary key of each table is underlined. Note that a movie
may be classified in multiple genres, and thus, may have
several records in GENRE. Furthermore, it is also possible that

847

ACTOR
Actor_id, Actor_name

ACTORPLAY
Actor_id, M_id

MOVIE
M_id, M_title

ACTRESSPLAY
Actrs_id, M_id

ACTRESS
Actrs_id, Actrs_name

DIRECT
D_id, M_id

DIRECTOR
D_id, D_name

GENRE
M_id, category

Figure 16: The schema graphs of IMDB

a movie does not belong to any genre, and hence, has no
tuple in GENRE. The entire title of a movie, and the full name
of an actor, actress, and director are treated as a single
term. This is reasonable because a word appearing in, for
example, the titles of two movies does not really bear any
obvious meaning. Table 1 shows the cardinalities of the
tables. Totally IMDB occupies 285 mega bytes.

To demonstrate the effectiveness of FCT retrieval, we will
give the results of several representative queries, and ex-
plain why they are reasonable. Recall that a FCT query has
two explicit parameters: a set Q of keywords, and the num-
ber k of terms requested. Furthermore, a FCT query also
implicitly inherits another parameter from the traditional
keyword search: Rmax, which specifies the largest size of a
CN, in terms of the number of participating tuple-sets. In
the sequel, we fix k to 10 and Rmax to 6.

First, we retrieve the most prolific comedy directors with

Q1 = {comedy, director}

yielding

Al Christie (365), Mack Sennett (303), Jules White (297)
Friz Freleng (285), Allen Curtis (278), Chuck Jones (259)
Dave Fleischer (255), Bud Fisher (252), William
Beaudine (249), William Watson (219)

The number after each name corresponds to its frequency.
Note that this result is obtained after removing the stop-
ping words and the obvious noisy terms such as the ta-
ble names MOVIE and DIRECT. All the directors in the
result are highly successful directors in history. For
example, Christie Al (1881-1951), a star on the Hol-
lywood Walk of Frame, directed over 200 motion pic-
tures, and is particularly well-known for his short comedies
(en.wikipedia.org/wiki/Al Christie).

A fan of Tom Hanks may be curious which director Tom
is most mentioned with. This can be extracted by:

Q2 = {Tom Hanks, director}

with result

Louis Horvitz (9), Jeff Margolis (8), Dave Wilson (6)
Beth Mccarthy Miller (5), Ron Howard (4), Laurent
Bouzereau (4), David Frankel (4), Robert Zemeckis (3), David
Leland (3), Penny Marshall (3)

Louis Horvitz, for instance, is indeed a director that has a
close relationship with Tom. In 2002, Louis actually directed
a TV program called AFI Life Achievement Award: A Trib-
ute to Tom Hanks. To acquire the genres of the motion
productions involving Tom Hanks, we perform

Table Cardinality
ACTOR 741449

ACTORPLAY 4244600
ACTRESS 445020

ACTRESSPLAY 2262149
MOVIE 833512

DIRECTOR 121928
DIRECT 561173
GENRE 629195

Table 1: Table cardinalities of IMDB

Q3 = {Tom Hanks, genres}

returning

comedy (44), drama (34), short (20), family (17), romance
(10), thriller (9), crime (8), music (8), fantasy (7), war (7)

Interestingly, while Tom Hanks is perhaps best known for
his dramas, he actually took parts in many comedies as well
(a recent one: The Terminal). Let us repeat the above two
queries but with respect to Jim Carrey. Specifically,

Q4 = {Jim Carrie, director}

gives

Louis Horvitz (7), Bruce Gowers (4), Michel Gondry (3)
Jeffrey Schwarz (3), Tom Shadyac (3), Bobby Farrelly (2)
Peter Farrelly (2), Beth Mccarthy Miller (2), Troy Miller (2),
Joel Schumacher (2)

The results of Q2 and Q4 indicate that Louis Horvitz works
closely with both Tom Hanks and Jim Carrie.

Q5 = {Jim Carrie, genres}

returns

comedy (40), short (14), drama (13), family (11),
action (7), fantasy (7), music (7), adventure (6),
crime (6), romance (6)

Jim Carrie is particularly mentioned only in one genre: com-
edy, whose frequency 40 is much higher than the others. As
shown in Q10, Tom Hanks seems to be more versatile, by
being heavily mentioned in both comedy and drama.

Finally, we show how to leverage FCT queries to discover
the actors and actresses closely related to a director. For
this purpose, we choose director Jules White (1900-1985),
in the result of Q1, as a representative. The next query

Q6 = {Jules White, actor, comedy}

discovers

Moe Howard (108), Larry Fine (108), Vernon Dent (70)
Shemp Howard (67), Al Thompson (49), Emil Sitka (46)
Joe Palma (45), John Tyrrell (39), Johnny Kascier (37),
Curly Howard (36)

The result is fairly reasonable. For example, Jules White
is best known (en.wikipedia.org/wiki/Jules White) for his
short-subject comedies starring the “Three Stooges” – Moe
Howard, Larry Fine, and Curly Howard – all of whom are
included in the result. As for actresses, we run

Q7 = {Jules White, actress, comedy}

and obtain

848

Q1 Q2 Q3 Q4 Q5 Q6 Q7
non-empty count 8 9 2 1 4 33 12

Table 2: CN statistics

Christine Mcintyre (38), Symona Boniface (23), Dorothy
Appleby (21), Judy Malcolm (19), Nanette Bordeaux (15)
Jean Willes (14), Barbara Jo Allen (14), Barbara Bartay
(13), Margie Liszt (11), Harriette Tarler (11)

Again, these actresses are indeed highly relevant to Jules.
For example, Christine Mcintyre stars, along with the Three
Stooges mentioned earlier, in numerous 1950-comedies by
Jules, including Punchy Cow Punchers, Hugs and Mugs,
Love at First Bite, etc (www.threestooges.com).

Summary. The effectiveness of FCT search is reflected
in two aspects. First, it is able to discover concepts that
are highly related to the set of query keywords. Further-
more, the frequencies of those concepts generally indicate
their importance. Second, a FCT query is easy to formu-
late. Specifically, as shown earlier, the keywords of all the
queries Q1-Q7 are simple and intuitive. They can be pro-
vided even by non-database experts.

6.2 Efficiency of FCT Search
This section evaluates the efficiency of the proposed algo-

rithm, referred to as star-FCT. As discussed in Section 4,
star-FCT involves two components: (i) star (Figures 12 and
13), for aggregating term frequencies from a star-CN, and
(ii) starization (Figure 15), for converting a non-star CN to
a star counterpart. We compare our solution against the
baseline approach. As mentioned in Section 4.1, given a
FCT query with a keyword set Q and an integer k, baseline
first solves a KS query with the same Q, computes the fre-
quencies of all the terms in the result, and then, outputs the
k most frequent terms.

All the results in the sequel are obtained on a computer
running a Pentium IV dual-core CPU at 2.13GHz. To be
fair for baseline, we minimize its cost by implementing a
highly efficient join engine. In particular, our implementa-
tion incorporates the expression-sharing heuristic proposed
in [12]. That is, after being computed, the result of a join is
preserved, and re-used directly if the same join needs to be
executed later. We allocate an equal amount of memory, 6
mega bytes, for both star-FCT and baseline. This memory
buffer is significantly smaller than the size (over 280 mega
bytes) of IMDB. It is worth noting that an efficient algo-
rithm must be able to work with a small amount of memory
because in practice the system may have to deal with nu-
merous queries concurrently.

We will demonstrate the performance of the two algo-
rithms on the queries Q1-Q7 analyzed in Section 6.1. Recall
that, for each query, both star-FCT and baseline need to
first enumerate all the CNs that have a chance to produce
MTJNTs, in the way explained in Section 3. Many CNs are
empty, i.e., they generate no MTJNTs at all. The number
of non-empty CNs is an important indicator of the query
overhead. In general, more non-empty CNs lead to higher
query cost. Therefore, in Table 2, we list the number of
non-empty CNs respectively for each query. Note that these
numbers are identical for star-FCT and baseline.

Figure 17 presents the elapsed time of star-FCT and base-
line. We break the performance of star-FCT into the over-
head of star and starization, respectively. Above each col-

�����
�����

36%

star
������
������
������ starization baseline

star-FCT

0

200

400

600

800

1000

1200

Q1 Q2 Q3 Q4 Q5 Q6 Q7

time (sec)

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������

�����
�����
�����

������������

51%
31% 36% 56%

61%

77%

 Figure 17: Efficiency comparison

star baselinememory consumption (mega bytes)

0
1

2
3

4

5
6

7

Q1 Q2 Q3 Q4 Q5 Q6 Q7

 Figure 18: Memory consumption comparison

umn of star-FCT, we place a value denoting how much per-
cent starization accounts for in the overall execution time.
For example, for Q1, 36% of the star-FCT cost is due to
starization. Evidently, star-FCT consistently outperforms
baseline, achieving a maximum speedup ratio of 4 at Q1. As
explained in Section 4.2, the superiority of star-FCT stems
from the fact that it acquires the term frequencies without
computing the join results of a star-CN at all.

For most queries, starization entails only a fraction of the
total cost of star-FCT, which confirms the effectiveness of
our heuristics in Section 4.3. As expected, there is a strong
correlation between the query cost (of both algorithms) and
the number of non-empty CNs. For example, Q6 and Q7
are the two most expensive queries because they have the
most non-empty CNs.

Our implementation of the star algorithm keeps the num-
and vol-arrays memory resident (see Section 4.2). Next, we
show that this is a reasonable choice, because these arrays
are so small that they easily fit in the memory. For this
purpose, we measure the largest memory consumption of
star during its execution, and compare it with baseline. As
mentioned earlier, the limit of memory usage is 6 mega bytes
for each algorithm.

Figures 18 presents the results. Baseline always uses up
all the available memory, because its join engine automati-
cally makes full use of memory to reduce the join overhead.
The consumption of star, on the other hand, varies across
queries. This is not surprising because different queries de-
mand num- and vol-arrays with different sizes, depending
on the characteristics of the CNs generated. In all queries,
star requires no more than 5 mega bytes of memory. Even
in the worst case (Q5), star takes up less than 6 mega bytes.
Finally, note that the above results apply to star. As with
baseline, the other component starization of star-FCT also
utilizes all the vacant memory to minimize the cost of joins.

Summary. The proposed star-FCT algorithm is able to
solve FCT queries efficiently. In most cases, the cost of star-
FCT is significantly dominated by its star component, thus
justifying the sophisticated heuristics in star. Furthermore,
star-FCT requires a small amount of memory, even when

849

the underlying database is larger than 280 mega bytes.

7. CONCLUSIONS
This paper proposes a novel operator called frequent co-

occurring term (FCT) search. Given a set Q of keywords and
an integer k, a FCT query returns the k terms that appear
most frequently in the result of a traditional KS (keyword
search) query. Unlike KS that produces joined tuples con-
taining all the keywords in Q, FCT search aims at extracting
the terms that most accurately characterize Q. We devise a
new algorithm that efficiently solves a FCT query without
resorting to conventional KS methods. As experimentally
evaluated with real data, (i) FCT search can indeed discover
highly intuitive observations that cannot be found via ordi-
nary KS queries; (ii) our FCT algorithm is fairly efficient,
and requires small memory space.

Our study also points to several promising topics for fu-
ture research. As shown in Figure 18, the star algorithm
typically does not consume all the memory available. Thus,
an interesting direction is to investigate the possibility of
utilizing the remaining memory to further lower the execu-
tion cost. Furthermore, we have considered only static data.
Maintenance of FCT results over a continuous data stream
demands alternative strategies to be explored. Finally, our
discussion has focused exclusively on relational databases.
Extending FCT queries to other types of data, such as XML
documents and spatial entities, deserves careful considera-
tion.

Acknowledgements
This work was partially supported by CERG grants CUHK
1202/06, 4161/07, 4173/08, and 4182/06 from HKRGC.

REFERENCES
[1] S. Acharya, P. B. Gibbons, V. Poosala, and

S. Ramaswamy. Join synopses for approximate query
answering. In Proc. of ACM Management of Data
(SIGMOD), pages 275–286, 1999.

[2] S. Amer-Yahia, E. Curtmola, and A. Deutsch. Flexible
and efficient xml search with complex full-text
predicates. In Proc. of ACM Management of Data
(SIGMOD), pages 575–586, 2006.

[3] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
Objectrank: Authority-based keyword search in
databases. In Proc. of Very Large Data Bases
(VLDB), pages 564–575, 2004.

[4] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing in
databases using banks. In ICDE, pages 431–440, 2002.

[5] S. Chaudhuri, R. Motwani, and V. R. Narasayya. On
random sampling over joins. In Proc. of ACM
Management of Data (SIGMOD), pages 263–274,
1999.

[6] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and
X. Lin. Finding top-k min-cost connected trees in
databases. In ICDE, pages 836–845, 2007.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. In Proc. of
ACM Symposium on Principles of Database Systems
(PODS), 2001.

[8] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword
search on spatial databases. In Proc. of International
Conference on Data Engineering (ICDE), 2008.

[9] L. Guo, F. Shao, C. Botev, and
J. Shanmugasundaram. Xrank: ranked keyword search
over xml documents. In Proc. of ACM Management of
Data (SIGMOD), pages 16–27, 2003.

[10] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks:
Ranked keyword searches on graphs. In Proc. of ACM
Management of Data (SIGMOD), pages 305–316,
2007.

[11] V. Hristidis, L. Gravano, and Y. Papakonstantinou.
Efficient ir-style keyword search over relational
databases. In Proc. of Very Large Data Bases
(VLDB), pages 850 – 861, 2003.

[12] V. Hristidis and Y. Papakonstantinou. Discover:
Keyword search in relational databases. In Proc. of
Very Large Data Bases (VLDB), pages 670–681, 2002.

[13] V. Hristidis, Y. Papakonstantinou, and A. Balmin.
Keyword proximity search on xml graphs. In ICDE,
pages 367–378, 2003.

[14] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional expansion
for keyword search on graph databases. In Proc. of
Very Large Data Bases (VLDB), pages 505–516, 2005.

[15] B. Kimelfeld and Y. Sagiv. Finding and
approximating top-k answers in keyword proximity
search. In Proc. of ACM Symposium on Principles of
Database Systems (PODS), pages 173 – 182, 2006.

[16] F. Lui, C. Yu, W. Meng, and A. Chowdhury. Effective
keyword search in relational databases. In Proc. of
ACM Management of Data (SIGMOD), pages
563–574, 2006.

[17] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: Top-k
keyword query in relational databases. In Proc. of
ACM Management of Data (SIGMOD), pages
115–126, 2007.

[18] A. Markowetz, Y. Yang, and D. Papadias. Keyword
search on relational data streams. In Proc. of ACM
Management of Data (SIGMOD), pages 605–616,
2007.

[19] M. Sayyadian, H. LeKhac, A. Doan, and L. Gravano.
Efficient keyword search across heterogeneous
relational databases. In Proc. of International
Conference on Data Engineering (ICDE), pages
346–355, 2007.

[20] P. Wu, Y. Sismanis, and B. Reinwald. Towards
keyword-driven analytical processing. In Proc. of
ACM Management of Data (SIGMOD), pages
617–628, 2007.

[21] Y. Xu and Y. Papakonstantinou. Efficient keyword
search for smallest lcas in xml databases. In Proc. of
ACM Management of Data (SIGMOD), pages
527–538, 2005.

[22] B. Yu, G. Li, K. Sollins, and A. Tung. Effective
keyword-based selection of relational databases. In
Proc. of ACM Management of Data (SIGMOD), pages
139–150, 2007.

850

