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ABSTRACT

This paper introduces the problem of modeling urban trans-
portation systems in a database where certain aspects of the
data are probabilistic in nature. The transportation network
is composed of multiple modes (e.g., automobile, bus, train,
pedestrian) that the user can alternate between. A trip —
a path between an origin and destination subject to some
constraints — is the central concept. How these trips and the
network can be represented as both a graph and relational
model, as well as the requirements for querying are the main
contributions of this paper. A set of operators are defined to
work over these transportation concepts and they are inte-
grated within a SQL-like syntax to express queries over the
uncertain transportation network. Additionally, the paper
shows how this model can be integrated within other mov-
ing objects and spatio-temporal data models, and how these
graph-based queries can be processed.

1. INTRODUCTION

Urban transportation systems are large, complicated, and
often difficult to utilize effectively. In recent years we have
seen a growing number of resources that provide online maps,
directories, location based services, and route planners that
attempt to bring the necessary information to users. How-
ever, these systems do not provide a comprehensive solution
to transportation information systems. Part of the difficulty
in developing fully integrated systems is the heterogeneous
nature of the data and the lack of a coherent data model that
can be used effectively. In this paper, we propose a method
to integrate the key aspects of spatio-temporal, moving ob-
jects, and graph-based databases to facilitate trip planning
in urban transportation networks.
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To motivate the scope of the paper, we begin by under-
standing what types of queries we would like to ask in order
to determine the requirements for the data model itself. For
example:

e Find a route that will get me home by my designated
time and with 90% certainty.

e Using public transportation, find a route that lets me
stop at a grocery store for 30 minutes on my way home
such that I arrive by 7:00pm.

Immediately we see that routes, or trips, are the primary
focus. These trips have spatial and temporal constraints
as well as being subject to uncertainty. This paper focuses
on the constructs, and their semantics, needed to express
such queries. The goal is to provide a powerful and easy
to use architecture for working with trips. Additionally, we
introduce a flexible approach to query processing. We do not
focus on querying for locations, nearest objects, and other
classes queries for which there has been extensive research.

The remainder of the paper is organized as follows: first
we introduce the concept of a multimodal urban transporta-
tion and how it is represented as a graph. Next we discuss
existing network database modeling languages. Then we
defineour relational network model. The relational model
introduces a set of high-level transportation relations, oper-
ators that act over them, and their semantics. Examples of
how these operators and relations can be used follow. Fi-
nally, we discuss how the model may be re-integrated with
spatio-temporal models, the problem of query processing,
and additional related work before concluding.

2. URBAN TRANSPORTATION NETWORKS

The urban transportation network has both static and dy-
namic components. The physical structure of the network
does not change — buildings, roads, lakes, and train tracks
remain constant (ignoring long term construction). How-
ever, the position of people and vehicles, status of the roads,
departure times of busses, and similar components change
continuously in real time.

The transportation network itself is composed of numer-
ous routes that correspond to some physical paths. The
most obvious paths are roads that can carry automobiles,
busses, and in some cases pedestrians. There are also rail-
road tracks that carry trains. These routes are all labeled
with unique identifiers (e.g., Red Line train, #12 bus, Roo-
sevelt Rd., Interstate 94). It is possible for the routes to
overlap on the same physical path (e.g., the #12 bus runs
on Roosevelt Rd.).



A key factor in urban transportation is the presence of
multiple modes of transportation. The modes considered
in this paper are listed in Table 1. It is important to note
that pedestrian is a specific mode of transportation. We
do not consider air, water, or long range intercity travel at
this time. These modes could likely be modeled in the same
manner, but are beyond the scope of the current research.

Mode Medium Availability
auto road network always
pedestrian Croad network | always
walkways
bus bus routes scheduled
urban rail rail network scheduled
suburban rail | rail network scheduled

Table 1: Modes of transportation

We introduce the concept of a trip, which is a path from
an origin to a destination through the network. In addition
to these two defining characteristics there are four types of
constraints that can be placed on a trip and are listed in
Table 2. Facilities are resources such as banks, ATMs, and
grocery stores that users may wish to include on a trip.
While it is possible to include a specific gas station, often
it is sufficient to include any one — hence we treat them as
homogeneous classes. Treating the facilities as homogeneous
classes does not preclude the user from including a specific
place; visiting any pharmacy may be an option, but one can
only retrieve one’s clothing from a specific dry cleaners.

Class Types of Constraints

Modal The modes that are allowed and disallowed
Physical | Restrictions on the physical path the trip
follows. E.g., avoid a specific neighborhood,
do not include bridges, stay within a
5 block radius.
Facility | Constraints on the facilities that must be

present on the route as well as the order they
occur in.

Temporal | Starting and ending time of the trip. Time
spent at facilities.

Table 2: Types of constraints on trips

Route finding, in general, attempts to find a path be-
tween points such that it is optimal according to some cri-
teria. Many systems will calculate the shortest path either
by distance traveled or duration. Users may be interested
in additional types of optimizations, such as the number of
inter-modal (e.g., bus to train) transfers they must take. Po-
tential optimization criteria include distance, duration, cost,
number of transfers, and the amount of walking.

Trips are subject to some level of uncertainty due to the
dynamic nature of transportation systems. We assume that
we have knowledge of the current speeds on links in the net-
work as well as the expected arrival and departure times for
public transportation. Being a real-world system, this infor-
mation is unreliable and likely partially accurate; therefore,
we describe it probabilistically. This allows us to determine
a quantitative measure of the uncertainty of the result gen-

erated by a query.

3. GRAPH MODEL

We begin by defining the graph model used for represent-
ing the transportation network for querying trips. For illus-
trative purposes, Figure 1 presents a small example graph
that will be referred to throughout this section.

We define a transportation network to be a tuple U =
(M, F,L,G) where M is a set of modes, F is a set of facil-
ities, L is a set of attributes, and G is a labeled, directed,
multigraph. The set M={pedestrian, auto, bus, urban rail,
suburban rail} corresponds to the modes of transportation
available in the network. The set of facilities F' represents
the classes of facilities (e.g., grocery store, fast food restau-
rant) available on the transportation network. The set L
denotes the attributes (e.g., length, name, mean speed) for
the edges in the network.

Mode Attributes
pedestrian name, geometry
auto name, mean speed (u), geometry,
speed variance (o)
urban rail, name, mean speed (u), run id,

suburban rail | speed variance (o),
departure time, geometry
bus name, run id, path
departure time

Table 3: Mode attributes

For each m € M we define a set edge_attributes,, C L
that describe attributes of the edges in the graph of that
mode. Different modes have different attributes as enumer-
ated in Table 3. Each edge has values for the attributes spec-
ified by the mode of the edge. Similarly, we define a set of at-
tributes vertex_attributes C L that describe the attributes
of vertices. Vertices are not associated with a mode, there-
fore all vertices have the same attributes vertex_attributes =
{name, geometry, facilities}. These attributes will be dis-
cussed in greater detail in the remainder of this section.

We define the graph as G = (V, E, V) where V is the set
of labeled vertices and FE is a set of labeled edges. Each
edge is defined as a 4-tuple (v1,v2, m, ¢n) where vi,vs are
the endpoints of the edge, m is the mode label of the edge,
and ¢, is a function that maps the attributes defined for
the mode to values. For each vertex v and vertex attribute
x, U specifies the value of attribute x for vertex v. First we
introduce the properties of vertices, and then in the following
paragraphs we define the edges on a per-mode basis. Note
that this defines a single unified graph. Edges of multiple
modes may be incident on the same vertices, and in fact
this is how the transfer between modes is modeled. This is
illustrated in Figure 1.

All vertices have only three attributes (name, geometry,
and facilities) as defined by vertex_attributes. The name
represents some real-world name of the vertex. For example,
it may be the name of the intersection of streets, the name of
the train station, etc. The name value may be null if there
is no appropriate name available. The geometry of a vertex
represents its real-world geometry (e.g., the x,y coordinate
on a map'). Finally, facilities represents the set, f C F, of

1A simple x,y coordinate is unlikely to suffice for a true
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Figure 1: Example network

classes of facilities (e.g., grocery store, bank) present at the
vertex. We assume that the facility is available at the given
point in time if it is present in the set.

Now we introduce the edges in the network. We begin
by describing the edges for the pedestrian mode. Intuitively
these edges correspond to links, or segments, along which
pedestrians may walk. They represent the segments be-
tween two intersections. In other words, the vertices of the
pedestrian mode represent intersections. This includes many
roads, additional pedestrian pathways (e.g., a path through
a park) and importantly the segments of sidewalk between
bus stops. The edges have a name that corresponds to the
real world name of the segment (e.g., “Taylor St.”, “Lake-
front Walk”). Like for vertices we define a geometry that
represents the real world segment (e.g., a piecewise linear
function that represents a series of x,y coordinates where
the endpoints correspond to the coordinates of the vertices).
Finally, we assume there exist global parameters jipedestrian
and Opedestrian that represent the mean speed and its vari-
ance for the pedestrian mode.

For edges of auto mode the attributes are defined the same
way as that for pedestrian edges. The edges themselves rep-
resent segments of the road system. These are generally the
segments of roads between intersections or highway ramps.
It also includes the segments between the last intersection
and the endpoint of a road (e.g., dead-end, cul-de-sac). Ver-

representation of a vertex. The actual transportation system
has objects (e.g., roads and bus stops) that have extended
spatial regions. Because vertices are assumed to exist as
connected points between modes, they must have a spatial
extent. This is why we define a generic geometry.
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tices will exist where the intersections or endpoints occur. In
other words, the coordinates of the endpoint vertices must
correspond to the endpoints of the geometry. We assume
that the speed associated with the edge is uncertain, but
can be modeled with some standard, bounded? distribution
with mean p and variance o. We call i the expected speed,
and if not specified otherwise, the speed associated with a
link is assumed to be the expected speed.

For the rail modes, both urban and suburban, we have
the same name, length, geometry, p, and o attributes as
discussed previously. The name would correspond to the
train route (e.g., “Blue Line”, “South Suburban District”).
The edges correspond to the segments of rail between con-
secutive train stations. The train stations act as vertices.
We also define a run id attribute that denotes a specific run
(e.g., the fifth southbound “Green Line” train for the day).
For each pair of vertices there will be as many edges as there
are runs. The departure time describes the expected time at
which the link will be entered. We define a derived attribute
duration that is equal to the expected amount of time spent
on the edge (i.e., the length of the edge divided by the ex-
pected speed). We define the arrival time of an edge to be
the departure time plus the duration of the edge. For any
pair of edges e1,es with the same name and run id, and
where the endpoint of e; is the start-point of ez, the depar-
ture time of e must be greater than or equal to the arrival
time of e;.

Finally, we discuss the edges of the bus mode. These edges
have all of the attributes of the rail modes, except for the

2There are no infinitely long tails of minimal mass.



geometry, u, and o; instead it has an additional path at-
tribute. The path maps the bus edge to the sequence of
auto edges that represent the sequence of road segments be-
tween the two consecutive bus stops. This is to model the
fact that busses run on the same physical roads as cars, and
that the bus stops may not have a one-to-one correspon-
dence with road intersections. For example, imagine that a
bus stops on one road, makes a turn, and then stops on a
different road. This is a single bus edge, but it corresponds
to multiple auto edges. The existence of the path attribute
obviates the need for a geometry attribute, since the geome-
try is taken from the auto (or road) network. An additional
restriction is that the (coordinates of the) vertices at the
endpoints of the edge must reside on the first and last line
segment of the path geometry. The bus stops are repre-
sented as vertices. To illustrate this point, in Figure 1 the
#4 bus has edges that map to more than one auto edge in
the network. The name attribute denotes the name of the
bus (e.g., “#8”, “Loop”). Like for the geometry, the path
attribute obviates the need for distinct speeds attributes as
they can be derived from the corresponding auto edges.

Having provided technical definitions of edges and ver-
tices, and before introducing concepts built on their aggre-
gation, we reiterate a few important points. Vertices corre-
spond to street intersections, bus stops, train stations, park-
ing lots, the intersection of a footpath and a street, etc. Bus
stops will exist either along an auto edge or at one of its end-
points. Train stations may exist along a bus or auto edge,
or separated and only accessible via a connecting pedestrian
edge. Any vertex that has incident edges of more than one
mode signifies that a change between modes may occur at
that vertex. There are no special transfer edges.

While we say that x,y coordinates or piece-wise linear
functions can be used to define the geometries, in reality
it may actually be more complex. For the purposes of this
abstract model this is a reasonable approximation.

We define a leg to be a sequence of alternating vertices
and edges starting and ending with a vertex where all of the
edges have the same name, mode, and if available, run id.
For each edge in the leg, its start vertex is same as the vertex
preceding the edge in the leg; the end vertex of an edge is
same as the vertex following the edge in the leg. We define
the departure time of a leg to be the departure time of its first
edge; similarly, we define its arrival time to be the arrival
time of its last edge. A trip is a sequence of legs, where
the beginning vertex of each succesive leg in the sequence
is same as the end vertex of the preceding leg, such that
the departure time of each subsequent leg is greater than or
equal to the arrival time of the previous leg. We define the
departure time and arrival time of a trip to be the departure
time and arrival time of the first and last leg respectively.

We define a transfer to be a vertex shared by two differ-
ent legs in the same trip. The transfer is intermodal if the
modes of the incoming and outgoing legs are different, and
intramodal if they are the same.

In addition to the duration of an edge, we can define a
similarly derived attribute for any leg, trip, or even vertex.
In the case of a vertex it represents the length of time spent
at that vertex. This is of most interest when the vertex is a
transfer.

Figure 2 illustrates a trip composed of four legs. It begins
at vertex O and transfers from the urban rail to the pedes-
trian mode at vertex 13. At vertex 14 it transfers to the
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Figure 2: Example trip

bus mode and travels to vertex 7. Once there, it transfers
modes back to pedestrian and continues to the destination
at vertex 9. Note that the rail and bus edges have been
labeled with their specific run id in addition to their name.
All of the transfers in this trip are intermodal. An example
of an intramodal transfer would be moving from the #4 to
the #9 bus at vertex 15 in Figure 1.

4. EXISTING NETWORK LANGUAGES

Before defining the relational implementation of the graph
model, we introduce a highly related work from which we
draw a great deal of inspiration, as well as listing what we
have determined to be the important limitations that our
model addresses. Giiting et al.’s Spatio-Temporal Query
Language (STQL) provides an extremely rich data model
and query language for modeling moving objects in both
open areas [9, 10, 13] as well as road networks [14].

They define both datatypes and operators for spatial and
temporal concepts. These types include point, line, and re-
gion — all of which have corresponding moving conceptu-
alizations. More specific graph point and graph line types
are provided for circumstances where the objects are con-
strained to a network (e.g., roads). This network itself has
an explicit representation built from a set of routes (roads)
and junctions (intersections). Note that this representation
is not graph based, although a graph could be generated
from the model.

Table 4 illustrates how these types can be used to de-
scribe the objects in a transportation system. Each of these
objects would likely have additional attributes that can be
described with traditional relational types (e.g., int, real,
string, boolean).

Object Type

person moving point
house point

park region

rain storm moving region
river line

car moving graph point
construction zone | mowving graph line

Table 4: STQL types used for transportation

In order to exploit the powerful type system, a set of spa-
tial and temporal operators are defined to operate over them.
Spatial predicates such as touches, overlaps, inside, and
crosses allow the user to determine how spatial objects are



related. Operators such as duration allow the user to query
how long a moving object moves while at allows them to re-
trieve a value for a specific time. For a complete list of such
operators we refer the readers to the primary literature [9];
only the general intuition of the operators is necessary to
understand our work.

While STQL enables rich description of some transporta-
tion systems, it is still not sufficient for our applications.
Most importantly, we find that:

e The STQL network model is restricted to only the road
network. Multi-modality is a requirement in most ur-
ban planning scenarios, and for our purposes must be
included in the model at the ground level.

e There are no explicit types for trip-related concepts.
A shortest path is represented as a moving point or
line. There are no explicit transfers, legs, or their con-
catenation. In order to properly model transportation
systems all kinds of transportation concepts need to be
modeled. For example, we must be able to express the
path from point a to b involving the minimum number
of transfers.

e The trip and shortest_path operations in STQL are
limited to finding a shortest (distance) path between
two points with no further restrictions. Ideally, the
computation of paths should allow for intermediate
stops as well as constraints based on mode choice, spa-
tial, and temporal properties. The criteria chosen for
optimization may mean that these are not all simple
shortest paths problems.

e There is no explicit concept of a facility (e.g., gro-
cery store, florist) in the STQL model. This must be
present in order to allow the full range of trip-based
queries we are interested in. Facilities must be compat-
ible with the trip generation aspects of the language.

e Uncertainty is not addressed by the model. This is an
important drawback because when dealing with trans-
portation systems there is always some level of uncer-
tainty inherent in the knowledge of the system state.

In Section 5 we show how we can use these types and predi-
cates in conjunction with our work on querying trips, and in
Section 8 we discuss how our trip model can be integrated
back into the STQL type system.

S. THE RELATIONAL NETWORK MODEL

In this section we define the relations and operators needed
to implement our graph model. The work focuses on query-
ing trips subject to various constraints — including that of
uncertainty.

5.1 Notation
In the remainder of the paper we use a specific notation
for relations and operators. A relation is defined as:

name (attributel:type, attribute2:type, ...)

where name is the name of the relation, attributel and
attribute2 are attributes of the relation and type is a data
type. These relations may not always be in first normal
form. We refer to the value of an attribute for a relation or
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variable as r.attribute where r is the relation or variable,
and attribute is an attribute of that relation. Relations
and relation variables are written in fixed width font.

When not included in a relation definition or query ex-
ample, all data types (e.g., int, real, string, point, line) are
written in dtalic font. The entire text for relation definitions
and example queries is written in a fixed width font.

We define an operator to be a function, denoted as follows:

operator(parltype, par2type, ...) — result

where the name is written in bold face font. If a parameter
is optional it is listed inside square braces (e.g., [mode]).
If a parameter can be of more than one type, the list of
allowed types is written as: parltype|par2type|... All of
the operators defined in this paper take a single tuple of
the relation type defined by the parameter as input. If the
output of the operator is a single tuple of a relation it will be
written in lower case fixed width font while if it returns
one or more tuple of a relation it will be written in upper
case. If it returns a type value, it will be written in italic
font.

5.2 A Relational Network

The transportation network graph can be described by
relations representing vertices and edges. All of the vertices
are modeled the same, but the edges are mode-dependent.
We provide the relation for pedestrian edges here. The edges
for the remaining modes can be defined similarly using the
attributes listed in Section 3.

vertex(name:string, geometry:point,
facilities: [set of string])

pedestrian_edge (name:string, geometry:line,
origin:vertex, destination:vertex)

This representation has been used extensively for graph-
based databases. Spatial types can be used to model the
geometries while the temporal types can be used to model
the departure times.

5.3 Querying for Trips

Our query structure builds on the standard “select, from,
where” structure of SQL. We retain the same base syntax
and structure but extend it in two important ways.

First, to query trips we introduce an operator

ALL_TRIPS(vertex, vertex) — TRIP

that accepts two vertices (the first being the origin, and the
second the destination) as input and returns a relation of
type trip that is defined as:

trip(id:int, origin:vertex, destination:vertex
path: [sequence: 1l1l:leg, ., lk:leg])

In other words, this operator returns a nonmaterialized rela-
tion of all possible trips between the origin and destination
vertices. It acts on the network graph as defined by the
vertex and edge relations. We postpone the discussion of
processing this operator until Section 9.

In addition to this operator and relation we introduce
three new clauses that allow further specification of the pa-
rameters of the trip:



WITH [ORDERED] STOP_VERTICES A set of vertices
(that may be ordered) to be included in the
trip.

WITH MODES A list of the modes to be allowed in
the trip.

OPTIMIZE A criteria by which the trip is opti-
mized (e.g., distance, time, reliability), which
is specified with the MINIMIZE or MAXIMIZE
keyword.

WITH CERTAINTY A specified minimal probability
that the trip can be executed as specified.

With these new clauses we have defined a generic query
structure:

<SELECT *>

<FROM ALL_TRIPS(origin, destination)>
<WITH STOP_VERTICES>

<WITH MODES>

<WITH CERTAINTY>

<WHERE>

<OPTIMIZE>

The query structure allows for the full description of trips in
an urban transportation system in a relational-like syntax.
To better understand this structure, we present the following
straightforward example:

SELECT *

FROM ALL_TRIPS(work, home) AS t
WITH MODES pedestrian, bus
WITH CERTAINTY .8

WHERE FINISHES(t) <= 5:00pm
MINIMIZE LENGTH(t)

This query finds paths from a vertex work to a vertex home
where only the pedestrian and bus modes are allowed. The
WHERE clause specifies that the trip must finish by 5:00 pm
and all of the constraints must be met with probability
greater than or equal to .8. After these constraints have
been met, the shortest path (by length) is selected.

The clauses are discussed in greater detail in Section 5.4
while the finishes operator, and others, are introduced in
Section 5.5. Note that some of the not yet introduced op-
erators will be used in the section on clauses. We provide
detailed technical query semantics in Section 6.

5.4 Clauses

5.4.1 With Stop Vertices

The optional WITH STOP_VERTICES clause allows the spec-
ification of variables that range over vertices that are to be
included in the trip. Inclusion of the ORDERED keyword indi-
cates that the variables must be included in the order that
they are listed. If the ORDERED flag is not present, the vari-
ables may be included in any order. Not specifying an order
may dramatically increase the computational complexity of
processing the query. If the clause is not included the trip
will be calculated between the specified origin and destina-
tion only. An example of a query using the clause is as
follows:

SELECT *
FROM ALL_TRIPS(home, work) AS t
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WITH STOP_VERTICES v1

WITH MODES pedestrian, auto

WHERE '"movie theater" IN vl.facilities
MINIMIZE LENGTH(t)

In this query, a vertex possessing a movie theater in its set
of facilities must be visited during the trip. We may specify
a trip with two ordered stop vertices where both have a
minimal duration as follows:

SELECT =*
FROM ALL_TRIPS(home, the_movie_theater) AS t
WITH ORDERED STOP_VERTICES vi1, v2
WITH MODES pedestrian, bus, urban rail
WHERE "atm" IN vli.facilities

AND DURATION(v1) > 5min

AND "pizza place" IN v2.facilities

AND DURATION(v2) = 60min
MINIMIZE DURATION(t)

5.4.2 With Modes

The WITH MODES clause simply specifies the list of allowed
modes for the trip. Many users may only be interested in
some subset of the modes available (e.g., only public trans-
portation, only a personal automobile). If the clause is not
used it is assumed that all modes in the network are allowed.

5.4.3  With Certainty

The WITH CERTAINTY clause specifies the minimal proba-
bility with which the where clause must be met. For exam-
ple, in the following query we require that the total duration
of the trip must be less than or equal to 35 minutes with a
probability greater than or equal to .9:

SELECT *

FROM ALL_TRIPS(work, home) AS t
WITH MODES pedestrian, urban_rail
WITH CERTAINTY .9

WHERE DURATION(t) <= 35min
MINIMIZE LENGTH(t)

Only the temporal aspects of the trip are subject to un-
certainty. Spatial constraints are guaranteed to be satisfied
(i.e., probability of 1.0).

5.4.4 Optimize

The OPTIMIZE clause allows the specification of the cri-
teria by which the trip should be optimized (e.g., shortest
length, least duration, fewest transfers). We allow the use
of MINIMIZE and MAXIMIZE keywords.

The optimization is applied such that any conditions in
the WHERE and WITH CERTAINTY clauses are met. That is,
only trips that meet the criteria of the where clause with
the required level of certainty are considered. Given the
following partially defined query:

SELECT *
FROM ALL_TRIPS(origin, destination) AS t

OPTIMIZE
The OPTIMIZE clause would be MINIMIZE DURATION(t) to
find the trip with the shortest duration. Generally, the op-

timization will always be a minimization, but there may
be situations for which some maximization is appropriate.



When optimized by a temporal operator the expected value
will be optimized. Only one optimality criteria may be cho-
sen for each query. This restriction is made because allowing
more than one optimization criteria on path computation is

NP-hard [11].

5.5 Operators

In addition to ALL_TRIPS, we define four sets of opera-
tors that can be used in conjunction with the transportation
relations: structural, temporal, spatial, and cost operators.

5.5.1 Structural

The first set of operators are used to manipulate the struc-
tural components of the relations. A trip is composed of
components that can be accessed using the following opera-
tors:

intermodal _transfers(trip) — TRANSFER
intramodal transfers(trip) — TRANSFER
all transfers(trip) — TRANSFER
legs(trip) — LEG

edges(trip|leg) — EDGE
vertices(trip|leg|edge) — VERTEX

We define separate operators for intermodal (e.g., bus to
rail), intramodal (bus to bus), and all transfers as the dis-
tinction may be important in certain circumstances. We
define two transportation relations, leg and transfer, as
follows:

leg(id:int, route:string, mode:string,
origin:vertex, destination:vertex, run:int,
path: [sequence: el:edge, vi:vertex, ...,
ek:edge, vk:vertex])

transfer(id:int, initial_mode:string,
final_mode:string, location:vertex)

Each of these relations captures the information necessary
to represent their corresponding concept in the graph model.
Trips, legs, and edges can also be concatenated into a new
trip using the concatenate operator, defined as:

concatenate(trip|leg|edge,
trip|legledge) — trip

Finally, we introduce a set of operators that access the count
of various transportation sub-relations within transporta-
tion relations:

num_intermodal transfers(trip) — nt
num intramodal transfers(trip) — int
num_all transfers(trip) — int

num legs(trip) — int
num_edges(trip|leg) — int
num_vertices(trip|leg) — int

Specific operators for this task have been included because
they correspond to common criteria by which a trip may be
optimized. This avoids an unnecessary nested query that
uses the COUNT operator and provides for less ambiguous
semantics.

5.5.2 Temporal

The second set of operators are to access the temporal
properties of the relations. The operators return the expected
value of the uncertain variable.
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arrival(trip) — instant
departure(trip) — instant
begins(trip) — instant
finishes(trip) — instant
duration(trip, [mode]) — real

Arrival and departure return the time at which a vertex,
or transfer on a given trip is reached and left respectively.
Begins and finishes return the time at which a component
of the given trip beings and ends respectively. The duration
operator returns the length of time spent on a component.
The duration operator takes an optional mode parameter
that restricts the calculation of the duration to only the
portion spent on the given mode. For example, to calculate
the duration of the trip spent on a bus.

5.5.3 Spatial

In addition to the temporal aspects of the transportation
relations, we may also access their spatial attributes and
corresponding geometries:

origin(trip|legledge) — point
destination(trip|legledge) — point
geometry(trip|legledge) — line
geometry(transfer|vertex) — point
length(trip|leg|edge, [mode]) — real

Similar to the duration operator, the length operator takes
an optional mode operator that restricts the calculation of
the length to only the portion spent on a given mode.

5.5.4 Cost

The final category of operators deals with the measures
of fiscal or monetary cost of a trip. At this time we define
only a single operator

cost(trip|leg, [context]) — real

that takes either a trip or leg as input and returns a real
representing the cost (e.g., $3.50). We include an optional,
undefined type for the contezt of the trip or leg. This may
represent the time of day, any special discounts applied, use
of a monthly pass, etc. that would influence the cost. This
is important because cost, unlike length, is not a monotonic
function of the edges in the path. We do not address this
issue of context at this time, rather we simply introduce the
syntactic component necessary to utilize cost information.
Once again, we postpone the discussion of processing until
Section 9.4.

6. SEMANTICS

The semantics of a query is defined as follows. First, from
the non-materialized relation returned by the ALL_TRIPS
operator, select the tuples that correspond to trips from
origin to destination using only the specified modes to ob-
tain a set F. Let X be the set of variables specified in the
STOP_VERTICES clause. For each such trip ¢, define a binding
p for STOP_VERTICES to be a function that maps X to the
set of stop vertices on the trip . We say that such a binding
p is proper if either the STOP_VERTICES clause is unordered,
or it is ordered and the following condition holds: for every
pair of distinct variables z,y € X such that x appears before
y in the STOP_VERTICES list, it is the case that the vertex
p(z) is identical to, or appears before, the vertex p(y) in t.
From the set F, we select those trips ¢t such that there exists



a proper binding p and the WHERE condition of the query is
satisfied by the pair (¢, p) with probability greater than or
equal to the value specified by the WITH UNCERTAINTY clause.
From the resulting trips, we further select those for which
the value specified by the OPTIMIZE clause is optimal where
expected values are used for the temporal operators.

Now, we define the probability of satisfaction of the where
condition with respect to a pair (¢, p) where ¢ is a trip in F
and p is a proper binding for the variables in X with respect
to t. Let ¢ be the WHERE condition of query. Now we for-
mally define the probability of satisfaction of ¢ with respect
to the pair (¢, p). First observe that ¢ is a boolean combina-
tion of atomic conditions. We say that an atomic condition
is temporal if it involves a temporal operator specified in
Subsection 5.5.2. The satisfaction of a non-temporal condi-
tion by the pair (¢,p) has no uncertainty in it. Thus, for
each non-temporal atomic condition, we determine whether
it is satisfied or not by the pair (¢, p). We replace every oc-
currence of such an atomic condition in ¢, respectively, by
TRUE or by FALSE depending on whether the atomic con-
dition is satisfied by (¢, p) or not. After such replacement,
we simplify the resulting formula. Let ¢’ be the resulting
formula. If ¢’ is equivalent to TRUE then the probability of
satisfaction of ¢ with respect to (¢, p) is defined to be 1. If
¢’ is equivalent to FALSE then the probability is defined to
be 0. If neither of the above conditions is satisfied, we define
the probability of satisfaction of ¢ with respect to (¢, p) as
follows.

First observe that every atomic condition in ¢’ is tempo-
ral. The trip ¢ is given by a sequence of legs. The binding p
maps some of the variables in X to transfer points in ¢ and
some to intermediate vertices on some leg. Note that the
transfer point is the end point of a leg and the start point
of the subsequent leg. If a variable in X is mapped to an
intermediate point on a leg in ¢ then we split that leg at that
point into two legs. By doing this, we get a trip ¢’ so that
all points in X are mapped to transfer points in ¢’ by p. We
define the probability of satisfaction of ¢ by the pair (¢, p)
to be the probability of satisfaction of ¢’ by (¥, p) that we
define as follows.

Let the trip ¢’ be the sequence of legs of the trip: (L1, L2,
wyLn). For each i = 1,...,n, let u; be the end point of
the leg L;. Note that ui,...,u,—1 are the transfer points
and u, is the terminal point. For each i, 1 < i < n,
let Y;, Z; be the departure time and duration time of leg
L; respectively. Observe that all these variables are ran-
dom variables. Let Y and Z denote the vectors of random
variables (Y1,...,Y,) and (Z1, ..., Z,) respectively. Now let

177Z~(yl, weeyYny Z1, .-y Zn ) Tepresent the joint density function

of the random variables in 17, 7 where yi, zi are variables
denoting the values of the random variables Y;, Z; respec-
tively. We also let ¥, 2’ represent the sequences of variables
Y1, ..., Yn and 21, ..., zn, respectively. Let g be the product
f}yyzﬂ(gj, Z)-dyi-dyz-...-dyn -dz1-...-dzn. Note that g denotes
the probability that Y; lies in the interval [y;,v: + dy;] and
Z; lies in the interval [z;, z; + dz;] for i = 1,...,n.

Observe that the arrival time of the trip at transfer point
u; and duration at u; are random variables given by the
expressions Y; + Z; and Y;4+1 — Y: — Z; respectively. Now
we transform the condition ¢’ into an equivalent formula
by replacing temporal operators by linear combinations of
variables in ¢ and in 2" as follows. If variable x € X is
mapped to the transfer point u; then we replace the term
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arrival(t, x) by y;+2:, the term departure(t, z) by yi+1, and
the term duration(t,z) by yi+1 — yi — z:;. We also replace
begins(t) by y1 and finishes(t) by yn + 2zn. Similarly other
terms in ¢’ are replaced by the variables in ¥ and Z. Let
¢” be the resulting formula. Intuitively, ¢ specifies the
possible_combination of values of the random variables in
Y and Z that satisfy the conditon ¢'. To the formula ¢”
we need to add additional conditions requiring that each
transfer in the trip is feasible. Consider the transfer point u;.
In order for the transfer at u; to be successful there should
be a sufficent gap between the arrival time of leg L; and
the departure time of L;+1. We assume that this required
gap is given by a positive constant d; which is associated
with the transfer point u;. Now, the condition for successful
transfer at u; is given by the atomic condition y;+1 —y; > d;.
Now, for each i = 1,...,n — 1, we add the above condition
as a conjunct to ¢”. Let 1) be the resulting formula. Now
consider the 2n-dimensional space R2" represented by the
2n variables ¢/, Z where R is the set of real numbers. Let
S be the region of points in R?" that satisfy the condition
1. We define the probability of satisfaction of ¢ by the pair
(t,p) to be the value of the definite integral of g over the
region S.

Example: Let t' be a trip having two legs L1, L2. Let ¢’
be the formula begins(trip) > 8 A finishes(trip) < 10 which
requires the trip to start after 8 and finish before 10; all units
of time are in hours. Now we have four random variables
Y1, Ya, Z1, Z2 and a joint density function f?’Za(yh Y2, 21, 22)-
Using the above construction, we get ¢’ to be y1 > 8 A y2 +
z2 < 10. Let dqi be 0.1. The transfer condition at the single
transfer point is given by y2 — y1 — 21 > 0.1. The formula ¢
is the conjunction of ¢” and the above transfer condition.

7. EXAMPLE QUERIES

In addition to our graph relations, for these examples we
will define an additional relation using a spatial type:

neighborhood(area:region, name:string,
population:int)

We also use the distance and intersects operators from
spatio-temporal modeling. We assume there are two ver-
tices, home and work, in the following examples. While any
arbitrary vertices can be used, these are chosen for their
clear meaning.

1. Find a trip home from work, using public trans-
portation, that minimizes the number of intermodal
transfers made.

SELECT *

FROM ALL_TRIPS(work, home) AS t

WITH MODES pedestrian, bus, urban_rail
MINIMIZE NUM_INTERMODAL_TRANSFERS(t)

2. Find the fastest way to work from home that
passes a pharmacy within 2 Km of the office, leaving
at 8:00. The trip may use a personal automobile in
addition to walking.

SELECT *

FROM ALL_TRIPS(home, work) AS t
WITH STOP_VERTICES v1

WITH MODES pedestrian, auto
WHERE BEGINS(t) = 8:00 AM



AND "pharmacy" IN vl.facilities
AND DISTANCE(GEOMETRY(v1), GEOMETRY(work)) < 2 Km
MINIMIZE DURATION(t)

3. With a certainty greater than or equal to .75,
find the least expensive trip home from work that
uses public transportation and visits a pharmacy
and then a florist (spending at least 10 minutes at
each)

SELECT x*
FROM ALL_TRIPS(work, home) AS t
WITH ORDERED STOP_VERTICES vi1, v2
WITH MODES pedestrian, bus, urban_rail
WITH CERTAINTY .75
WHERE "pharmacy" IN vl.facilities
AND "florist" IN v2.facilities
AND DURATION(v1) > 10min
AND DURATION(v2) > 10min
MINIMIZE COST(t)

4. Find a trip home from work using public trans-
portation that minimizes my walking and does not
go through Lincoln Park, stops at a pizza place and
spends 45 minutes there.

SELECT =*
FROM ALL_TRIPS(work, home) AS t, neighborhood AS e
WITH STOP_VERTICES vi1
WITH MODES pedestrian, bus, urban_rail
WHERE NOT INTERSECTS(GEOMETRY(t), e.area)
AND e.name "Lincoln Park"
AND "pizza" IN vl.facilities
AND DURATION(v1) = 45 min
MINIMIZE LENGTH(t, pedestrian)

5. Find the fastest automobile-based trip home from
work that stops at a preselected vertex with the
name “UIC”.

SELECT *

FROM ALL_TRIPS(work, home) AS t
WITH STOP_VERTICES vi

WITH MODES auto

WHERE v1.name "UICc"

MINIMIZE DURATION(t)

6. Find a trip home from work that arrives by 7:00
PM with certainty greater than or equal to .8, and
spends the least time possible on busses.

SELECT =*

FROM ALL_TRIPS(work, home) AS t

WITH MODES pedestrian, bus, urban_rail
WITH CERTAINTY .8

WHERE FINISHES(t) <= 7:00 PM

MINIMIZE DURATION(t, bus)

7. Find a trip home from work that leaves by 5:00
PM and arrives by 7:00 PM with certainty greater
than or equal to .8. It must spend the maximum
amount of time possible at a pizza place along the
way.

SELECT *
FROM ALL_TRIPS(work, home) AS t
WITH STOP_VERTICES vi1
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WITH MODES suburban rail, pedestrian
WITH CERTAINTY .8
WHERE BEGINS(t) >= 6:00 PM

AND FINISHES(t) <= 8:00 PM

AND "pizza" IN vl.facilities
MAXIMIZE DURATION(v1)

8. TRIPS AND OTHER MODELS

Our proposed model should not be considered entirely in
a vacuum. We have presented a novel approach to mod-
eling and generating multimodal trips for a transportation
network, but it would also be interesting to see how these
concepts could be exported to other models. Given our pre-
vious discussion of STQL (Section 4) the first step would be
to see how it and our model could be related.

Despite different underling models, both data models are
based on a network representation. If STQL were extended
with even rudimentary support for multiple modes (e.g., la-
bels on edges), we could export our trip relations to appro-
priate STQL data types. For example,

2trajectory(trip|leg|edge) — graph line
2mgpoint(trip|legledge) — moving graph point
2gpoint(vertex|transfer) — graph point

would allow for at least a minimal translation of our con-
cepts.

Implementing probabilistic link speeds, explicit timeta-
bles, runs, stops, transit routes, and other concepts would
be more difficult and are far beyond the scope of this paper.
At the same time, it would be interesting to explore ad-
ditional syntactic constructs needed given the probabilistic
aspect. Perhaps some integration with other moving objects
systems (see Section 10.3) would yield interesting results.

9. QUERY PROCESSING

Given the expressiveness of our model, the query pro-
cessing becomes an important and non-trivial consideration.
Rather than develop a single, specific algorithm for query
processing we view the solution as a framework.

We first discuss the processing of the ALL_TRIPS oper-
ator and returned relation. Depending on the specific com-
bination of the number, and type, of visits, the optimization
criteria, the modes allowed, etc., certain algorithms may be
more efficient than others in calculating a path. Secondly,
we discuss how it is possible to process the probabilistic in-
formation in order to implement the uncertainty operators.
Finally, we briefly discuss a number of general processing
steps that can be applied to most queries and the problem
of determining the cost of a trip.

9.1 Trip Algorithms

A wide range of path algorithms supporting route queries
have been developed in computer science, transportation
science, and operations research. Some of these account

transportation-specific constraints such modal transfers, sched-

ules, and cost computation. All of these algorithms utilize
a graph model. The cases each of these algorithms handle
can be expressed in a canonical form in our query language.
Once such a canonical form is recognized, we will invoke the
appropriate algorithm. This produces a framework for in-
corporating algorithms that will be developed in the future.



We propose identifying the canonical forms for specific
algorithms by the constraints specified in different clauses.
Remember that our generic query structure is:

<SELECT *>

<FROM ALL_TRIPS(origin, destination)>
<WITH STOP_VERTICES>

<WITH MODES>

<WITH CERTAINTY>

<WHERE>

<OPTIMIZE>

In the following subsections we show how this structure can
be used by enumerating three classes of queries and a corre-
sponding algorithm that can be used to process them. These
three classes of queries are not sufficient to cover all po-
tentially expressible queries at this time; rather, they are
used to demonstrate how the framework operates. The al-
gorithms listed are not necessarily the only algorithm that
work for the specified class.

9.1.1 Simple Shortest Path

With the following constraints, we can define a class of
queries that are expressible as a simple shortest path prob-
lem:

WITH STOP_VERTICES must be empty

WITH MODES may have any values

OPTIMIZE is the minimization of the sum of some
numeric edge attribute (e.g., length, duration)

An example of a query meeting these constraints would be

SELECT =*

FROM ALL_TRIPS(home, work) AS t

WITH MODES pedestrian, bus, urban_rail
MINIMIZE DURATION(t)

The constraints are such that the graph is limited to the
edges of certain modes (all edges for disallowed modes can be
ignored in computing the path) and the edges have a numeric
weight value. There is a single origin and destination vertex.
A query in this form can be calculated in O(e +v?) time (or
better depending on the data structures used to store the
graph) using a version of Dijkstra’s algorithm that has been
modified to operate on a multigraph.

9.1.2 One or More Ordered Stop Vertex

As a simple extension to the simple shortest paths form,
we consider the case where there is one or more ordered stop
vertex in the trip. We can express these constraints as:

WITH ORDERED STOP_VERTICES one or more stop
vertices for which a facility has been specified
WITH MODES may have any values

OPTIMIZE is the minimization of the sum of some
numeric edge attribute (e.g., length, duration)

An example of a query meeting these criteria would be

SELECT *

FROM ALL_TRIPS(work, home) AS t

WITH ORDERED STOP_VERTICES v1, v2

WITH MODES auto

WHERE "wine_store" IN vl.facilities
AND "hotel" IN v2.facilities

MINIMIZE DURATION(t)
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We can express the problem as a sequence of shortest paths.
A sketch of the algorithm is as follows:

input: origin, destination, ordered list of stop vertices
(with facilities), and network graph G
output: a shortest path

1. Generate a new graph, G’, with vertices corresponding
to the origin and destination.

2. In G, calculate the shortest path from the origin to all
vertices with the facility specified by the first stop vertex.
For each shortest path found add a vertex and edge to G’
where the edge weight is the length of the shortest path.

3. If there are more stop vertices remaining go to step 4.
Else, compute the shortest path from the last set of stop
vertices to the destination, adding the corresponding vertex
and edge to G’. After this go to step 5.

4. Consider the next stop vertex specification. Compute the
shortest path from all of the last set of stop vertices to all of
the vertices that have the facility specified by the next stop
vertex. Add a corresponding vertex and edge to G'.

5. In the graph G’ compute the shortest path from the origin
to the destination. Reconstruct the corresponding, complete
shortest path in G and terminate.

Each invocation of the single source shortest path algo-
rithm has complexity O(e 4+ v?). There are O(mv) such
invocations where m is the number of stop vertices. Thus,
thus the overall complexity is O(muv(e + v?)).

9.1.3 Transfer Constrained Multimodal Paths

As an example of this frame work, consider the algorithm
of Lozano and Storchi [15] for computing shortest paths in
multimodal transportation networks. A key point of the
algorithm is that it computes the shortest trip based on
some cumulative edge weight subject to a maximum number
of intermodal transfers. The class or queries handled by this
algorithm can be described canonically as:

WITH STOP_VERTICES must be empty

WITH MODES may have any values

WHERE includes a constraint on the number of
transfers

OPTIMIZE is the minimization of the sum of some
numeric edge attribute (e.g., length, duration)

and an example of such a query is:

SELECT x*

FROM ALL_TRIPS(work, home) AS t

WITH MODES pedestrian, bus, urban_rail
MINIMIZE NUM_ALL_TRANSFERS(t)

9.2 Uncertainty

Another major query processing consideration is intro-
duced by the uncertainty operators. In this section we present
a simplification to the processing mentioned in Section 6.
We assume that the duration time of travel on the links in
the network are modeled as a bounded (i.e., no infinitely
long tails of minimal density) probability distribution func-
tion that is defined by some mean and variance.

In Section 6, we gave a definition of the probability of
satisfaction of the where condition with respect to a trip ¢’
and an evaluation p. This definition uses a joint probability
density function f over random variables representing de-
parture times on each leg of the trip and the duration times
of each leg.



Now assume that these random variables are independent;
this is often reasonable because the travel times of separate
trains or busses are independent. As a consequence, the
joint density function can be written as the product of the
density functions of each of the random variables. Thus, the
assumption that we know a joint probability distribution on
a larger set of variables can be eliminated.

9.3 General Processing

One can easily disallow a mode, or edges/vertices whose
geometry intersects a region. To do so, the edges are simply
ignored by the path algorithms.

Similarly, the opening/closing times of facilities can be
taken into consideration. If we have a relation that relates
facilities and vertices, and it also maintains the periods of
time during which the facility is open, then we can ignore
the closed facilities at the appropriate times during path
computations.

9.4 Cost Processing

As mentioned in Section 5.5.4, calculating the cost of a
trip is non-trivial. Unlike measures such as length, the cost
of a trip is not a strictly monotonic increasing function of
the edges. Attributes of the trip, transportation system, and
even the user will affect how the cost is calculated.

In the case of optimization by cost alone, the calculation
will be trivial (i.e., the entire trip will be pedestrian). In
more interesting cases, such as when there is a constraint on
both trip cost and duration, the processing will probably be
NP-complete. In general, one must consider individually si-
multaneous optimization of cost and another criterion. This
discussion is beyond the scope of this paper.

10. RELATED WORK

Before concluding it is important to discuss a number of
related works. Each addresses some subset of the problems
we cover: route planning, database models, and uncertainty.
10.1 Transportation Information Systems

The transportation informations available to users today

generally fall into two categories: form-based and map-based.

Many transportation agencies [2, 18, 21] provide web sites
that allow users to plan a trip using the public transporta-
tion system. They tend to allow the specification of time
constraints, mode constraints (some include information for
the auto network as well), preferences for walking distance,
and how the trip should be optimized (e.g., duration vs.
number of transfers). If a valid trip can be constructed the
user is presented with an itinerary for its execution.

A wide range of algorithms [1, 3, 15] supporting these
route queries have been developed to account for the prob-
lems with modal transfers, schedules, and cost computation.
The algorithms utilize a graph model extend well known
shortest path algorithms (e.g., Dijkstra’s), and have poly-
nomial running times. Pending further investigation, the
fields of Transportation Science and Operations Research
will likely yield more algorithms that fit within our query
processing framework.

The second common class of planning tools have map-
based graphical user interfaces [12, 16]. Users may enter
their origin and destination via either a form or by clicking
points on a map. These generally do not allow for con-
straints on time, or the use of public transportation. Unlike
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most form-based planners, some map-based sites allow for
the insertion of multiple stops along the trip and may in-
clude some real-time traffic information.

Being end user systems, these planners do not provide
the full functionality we are looking for. The underlying
database is not open to custom queries, one cannot generate
trips subject to a wide number of constraints, and there is
no concept of uncertainty. Including facilities in the query
is cumbersome if possible at all.

10.2 Graph Query Languages

Querying of graph databases has been studied extensively.
Dar and Agrawal [7], and Cruz and Norvell [6] have pre-
sented algorithms and analysis of the computation of gen-
eralized transitive closure, and aggregative closure respec-
tively. These algorithms build on the basic concept of tran-
sitive closure to allow queries for maximum capacity path,
critical path, most reliable path, shortest path, bill of mate-
rials, and “connecting flights” among others.

Dar, Agrawal, and Jagadish [8] go on to describe algo-
rithms for optimizing these queries. This is especially im-
portant given that for some queries there is an exponential
or infinite number of possible paths. This clearly violates
the need for polynomial time algorithms. However, through
optimization of the query plan it is possible to prune the
search space dramatically — making efficient computation
possible.

These approaches do not model uncertainty in any way.
While it may be possible to specify multimodal graphs and
facilities in the models, they are not included as explicit
constructs available for direct manipulation. We introduced
a graph model that is both highly expressive as well as being
tailored to an important domain.

10.3 Moving Objects Databases

In the last fifteen years there has been an ever growing
interest in, and demand for, databases for moving objects.
Pelekis et al. [17] have compiled an extensive review of many
of the most important models. We have already explained
the works of Giiting et al., possibly the most comprehen-
sive model for spatial and temporal types in detail earlier
in the paper. There is one additional model that we should
introduce as it deals extensively with uncertain queries: the
Moving Objects Spatio-Temporal (MOST) model [19, 20].

MOST is a data model based on the authors’ Future Tem-
poral Logic and is designed to model the current and near-
future positions of moving objects. While point, line, and
region types are supported in the spatial model, only point
types may be moving. Points are represented as vectors that
capture their current position and velocity. Queries may be
issued over the current moment or times in the near future.
Future queries estimate the position of points based on their
last known position and velocity.

Predicates like SOMETIME_MAYBE and DEFINITELY_ALWAYS
have been introduced to handle the uncertainty from a lin-
guistic perspective. For example, these predicates could be
applied to a query determining whether or not a point passes
through a specific region during a time period. In the un-
derlying model, the exact position of an object is known
at the moment the record is updated. As time passes, the
level of uncertainty grows until an update is received. There
is a tradeoff between the accuracy of the database and the
frequency of updates.



Because we are not working with traditional moving ob-
jects in our work, we simplified the problem of uncertainty
down to a single clause in the query. If we were to extend
the work to integrate better with moving objects databases
(as discussed in Section 8) it would be important to consider
new uncertainty predicates.

11.

CONCLUSIONS AND FUTURE WORK

We introduced the concept of multimodal transportation
networks, their properties, and how they can be modeled
as a graph. We developed a relational model based on that
graph that supports operations on transportation-level con-
cepts. We introduced syntax to allow powerful, expressive
queries on the trips; and methods for working with uncer-
tainty. We considered the problem of query processing as a
framework rather than a single rigid algorithm. Depending
on the structure of the query we can select an appropri-
ate algorithm to process the query, which in turn allows for
more flexible extensions to the system. We explored existing
spatio-temporal models and showed that our work can lever-
age existing type and operator framework. We also demon-
strated that our trip-based framework can be exported back
into such a type system.

In the future we would like to explore the potential imple-
mentation of the model in an actual RDBMS. One consid-
eration is the development of a graphical user interface for
querying the multimodal trips. Graphical query languages
have been studied before [4, 5] and may provide a founda-
tion for defining the relationship between the graphical and
relational representations of the query. GUI-based mapping
programs and GIS systems may provide further inspiration
in how the interface should look. One potential approach
is that the trip is presented as a timeline with the origin
and destination as endpoints. Users can drop stops on the
timeline in the order in which they want them filled. Prop-
erties for each stop and leg can be specified by the use of
contextual menus and highlighting regions on a map. A
small number of global properties can be specified through
a persistent box with options. Providing a graphical query
language that has a direct correspondence to the underly-
ing syntactic query representation would allow novice and
expert users alike to develop applications using the model.

We will continue to explore additional classes of queries
and appropriate algorithms for them in our processing frame-
work. In the current work the queries only cover a query
made before a trip is executed. Another approach will be
to explore how queries could self-update as the trip itself is
executed, thus allowing for unforeseen changes.

12.
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