
Efficient Skyline Retrieval with Arbitrary Similarity
Measures

Deepak P Prasad M Deshpande Debapriyo Majumdar Raghu Krishnapuram
IBM Research, India Research Lab, Bangalore

{deepak.s.p,prasdesh,debapriyo,kraghura}@in.ibm.com

ABSTRACT
A skyline query returns a set of objects that are not dom-
inated by other objects. An object is said to dominate an-
other if it is closer to the query than the latter on all factors
under consideration. In this paper, we consider the case
where the similarity measures may be arbitrary and do not
necessarily come from a metric space. We first explore mid-
dleware algorithms, analyze how skyline retrieval for non-
metric spaces can be done on the middleware backend, and
lay down a necessary and sufficient stopping condition for
middleware-based skyline algorithms. We develop the Bal-
anced Access Algorithm, which is provably more IO-friendly
than the state-of-the-art algorithm for skyline query pro-
cessing on middleware and show that BAA outperforms the
latter by orders of magnitude. We also show that without
prior knowledge about data distributions, it is unlikely to
have a middleware algorithm that is more IO-friendly than
BAA. In fact, we empirically show that BAA is very close
to the absolute lower bound of IO costs for middleware al-
gorithms. Further, we explore the non-middleware setting
and devise an online algorithm for skyline retrieval which
uses a recently proposed value space index over non-metric
spaces (AL-Tree [10]). The AL-Tree based algorithm is able
to prune subspaces and efficiently maintain candidate sets
leading to better performance. We compare our algorithms
to existing ones which can work with arbitrary similarity
measures and show that our approaches are better in terms
of computational and disk access costs leading to signifi-
cantly better response times.

1. INTRODUCTION
The skyline operation is useful in applications that re-

quire selecting objects based on multiple criteria. The sky-
line consists of a set of objects that are not dominated by
other objects. Domination is usually assessed with reference
to a query object where an object dominates another if it
is at least as similar to the query object on all dimensions
and strictly more similar in at least one dimension. Top-k

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

retrieval, a related problem, finds objects similar to a given
query based on a weighted similarity function where the sim-
ilarity is, most usually, computed as a monotonic aggregate
(e.g., a weighted sum) of similarities in multiple dimensions
considered. Skyline query is notably different in that it does
not require weighting among the different dimensions. Fur-
ther, the skyline contains every object that is closest to the
query based on any monotone aggregation function of simi-
larities. In addition, for every point in the skyline, there ex-
ists a monotone scoring function that is maximized at that
point. Thus, the skyline does not contain any object that is
not the best according to some possible weighting.

We encountered the skyline problem in the IT service sce-
nario where a system administrator who has come across a
problem on a server, seeks to find similar servers since they
may have encountered similar problems before so that (s)he
could reuse their solutions. In this case, it is difficult to
come up with a weighting for attributes as the attributes
are as diverse as operating system, network card details, ap-
plications and software installed. The skyline of servers is
suitable here as it includes all the relevant servers.

1.1 Non-metric Spaces
Many attributes in various applications are categorical

and the similarities between the various values often come
from domain knowledge e.g., the set of operating systems
where a domain expert has defined the similarities for each
pair of operating systems. These similarity measures are ar-
bitrary and are most often non-metric. The cardinality of
intersection, the most common similarity measure for set-
values attributes (such as software installed) is also non-
metric. Such attributes are also encountered in a variety
of real-world scenarios where skyline queries are of interest.
For example, in the case of a hotel search, the set of ameni-
ties provided is a commonly considered set valued attribute.
While searching for TVs, the display type (Plasma, CRT,
LCD) is an important attribute with non-metric similarity
measure. It may also be noted that such attributes do not
have a total order among their values consistent with the
similarity measure. The values can be ordered only with
respect to a query based on the distance from the query
value. For example, in Figure 1, Server 1 and Server 2 con-
stitute the skyline for a query (DB2, Windows XP) when
the attributes considered are Database Server and Operating
System. In this example, (Windows Vista, Red Hat Linux,
AIX) are the Operating Systems in the database in the non-
decreasing order of dissimilarity from the query value, Win-
dows XP. However, there is no absolute order among the
values Windows Vista, Red Hat Linux and AIX without a

1052

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1516360.1516480&domain=pdf&date_stamp=2009-03-24

query.

Figure 1: Example

In this paper, we address skyline computation for such ar-
bitrary similarity measures where metric space approaches
cannot be used. Points in a metric space satisfy the trian-
gle inequality, i.e., d(x, y) + d(y, z) ≥ d(x, z). Most of the
spatial indexes such as R-Tree [15, 16, 17], kd-tree [5], and
B-Tree [18, 19] use this property to partition the dataset for
indexing. However, in a non-metric space, it is not possible
to statically partition the space. The value ordering is dif-
ferent for each query and depends on the query values. For
example, without the metric property, one cannot character-
ize each partition with a bounding box as is done in R-tree.
Consider two points A and B that are similar and placed
together in a R-tree node. Given a query Q, the similarity
between A and Q and that between B and Q are indepen-
dent. A may be very similar to the query Q whereas B might
be very dissimilar. One cannot bound the dissimilarity of B
based on the similarity of A with Q, as would be required
to exploit the index. The only way to use an R-tree would
be to create a new index based on the query Q. Recreating
the index for each query is infeasible since it involves the
scanning of the entire database thus defeating the very pur-
pose of usage of the index. Thus traditional spatial indexes
are not suitable for non-metric spaces. A good discussion of
metric properties and how they are used in popular indexing
structures can be found in [21].

1.2 Related Work
The need for non-metric similarity functions has been ar-

gued in [14], which says that the triangle inequality property
is too restrictive to model the (dis)similarities as perceived
by humans. The skyline operator was analyzed in detail for
the first time in [6] and since then the problem of skyline re-
trieval has been receiving increasing attention. Two flavors
of the skyline problem have been studied in literature: (1)
Retrieving the skyline for the database [17], and (2) Retriev-
ing the skyline from the database for a given query object.
The former problem is applicable only in a database where
all attributes are from ordered domains. In fact, many of
the algorithms for the more general query based skyline re-
trieval also assume that the data points are from a metric
space. Distributed skyline query processing also has been a
subject of recent research [20, 9].

Among the algorithms developed previously, the Block-
Nested-Loops (BNL) and Divide & Conquer [6] algorithms
are the ones which address the problem in the general set-
ting of arbitrary similarity measures. The worst case com-
plexity of BNL is O(n2) and that of Divide and Conquer
is O(nlog(n) + n(log(n)m−2) for a dataset of n objects and

m attributes. For most practical dataset sizes, Divide and
Conquer becomes worse than O(n2) for m ≥ 5, thus making
it unsuitable for high dimensional datasets. Although many
different algorithms and indexing structures have been pro-
posed since [6], most of them are applicable only in restricted
settings. For example, the problem has been well studied in
ordered attribute domains.

Sort-First-Skyline [7] and LESS [13] employ an initial topo-
logical sort of objects to reduce the number of comparisons
required. However, such a sorting is impractical in the case
of arbitrary similarity measures, as the order is determined
based on the dissimilarity with the query (and thus, only at
query time).

The skyline retrieval problem is also important in the
widely used middleware setting, where we get results from
different backend systems and then compute a skyline over
these results. This setting has been widely studied in the
context of top-k retrieval (by [11],[12] and many others).
Adapting the middleware algorithms for top-k to compute
skylines efficiently is not trivial since the nature of the dom-
ination relation in case of skyline is quite different from the
score aggregation based top-k retrieval. Middleware algo-
rithms for computing skyline have been first explored by
Balke et. al [3]. They primarily focus on minimizing the
fraction of the lists visited by the algorithm and do not ana-
lyze the total access cost which is a major bottleneck in case
of middleware algorithms.

1.3 Our Contributions
In this paper, we propose algorithms that work in the very

general setting where similarity measures can be arbitrary.
In the first part we consider the middleware setting, where
we develop an algorithm, namely the Balanced Access Algo-
rithm (BAA), which is provably and experimentally better
than the one in [3] in terms of IO costs. We analyze the sky-
line problem in the middleware setting and present several
insights into nature of the problem. Our analysis shows that
BAA is the best-effort middleware algorithm without prior
knowledge about data distributions thus indicating that it is
not possible to improve significantly over BAA in the mid-
dleware setting. Further, we empirically show that BAA is
very close to the absolute lower bound of IO costs for mid-
dleware skyline algorithms.

In the second part, we explore a non-middleware setting
where we have more control over the backend so that we
can build suitable indexes to optimize skyline retrieval. Re-
cently, the Attribute Level Tree (AL-Tree) [10] has been
proposed as a suitable indexing structure for top-k compu-
tation with arbitrary similarity measures. In this paper, we
develop an algorithm that uses the AL-Tree index to com-
pute the skyline efficiently and experimentally show that it
outperforms the middleware algorithms by a huge margin.

Our main contributions can be summarized as:

• A middleware algorithm for computing the skyline and
their evaluation

• Analysis of computing skyline for any middleware al-
gorithm

• An empirical comparison between our BAA algorithm
and the absolute lower bound of IO costs for middle-
ware skyline algorithms which shows that BAA is rea-
sonably close to the absolute lower bound

1053

• An AL-Tree based algorithm for computing the skyline
that can be used in a general setting

• A detailed experimental evaluation of our algorithms
along with the existing algorithms (namely, Balke’s
middleware algorithm and the BNL algorithm) which
show that our algorithms outperform the previous works
in all cases.

In Section 2, we describe the problem formally. We de-
velop the skyline algorithm for middleware in Section 3 and
the AL Tree based algorithm in Section 4. We present our
experimental evaluation in Section 5 and finally conclude in
Section 6.

2. PROBLEM DEFINITION
We will now define the skyline query problem formally.

Let D be the set of objects in the database. Assume that
each object in D has m attributes each. The dissimilarity
function di for attribute i is a function di : Ai × Ai → <
where Ai is the domain of attribute i. An object X is said
to dominate another object Y with respect to a query object
Q, (represented as X ÂQ Y) if X is at most as dissimilar
from the query on each attribute as Y and there exists at
least one attribute on which X is more similar to Q than Y :

X ÂQ Y iff

1. ∀i, di(vi(X), vi(Q)) ≤ di(vi(Y), vi(Q)) and

2. ∃i, di(vi(X), vi(Q)) < di(vi(Y), vi(Q))

where vi(O) is the ith attribute of object O. We use di(X, Q)
as a shorthand for di(vi(X), vi(Q)) in subsequent sections.
It may be noted that the second condition above ensures
that duplicates (i.e., objects which have the same value for
all attributes) do not dominate one another.

The skyline query problem is defined as follows:

Definition 1. Skyline Query Problem: Given a query
Q, find all objects from D that are not dominated (with
respect to Q) by any other object in D. This corresponds
to finding the set S ⊆ D, such that the following conditions
are satisfied:

1. ∀s ∈ S, 6 ∃d ∈ D such that d ÂQ s and

2. ∀t ∈ (D − S), ∃s ∈ S such that s ÂQ t

The first condition means that there are no objects dom-
inating the ones in S whereas the second condition ensures
that S covers all non-dominated objects. In certain cases
where the user may not want to distinguish between dupli-
cate objects, S may be pruned to remove the duplicates. As
mentioned in Section 1, we consider the case where di(., .) is
not a metric. It may be observed that S = D in the worst
case, but, in most practical scenarios, |S| << |D|. Further,
it may be noted that cases were S contains most of the ob-
jects in D may not be interesting to the user as (s)he would
then have too many results to analyze.

3. SKYLINE ALGORITHMS FOR MIDDLE-
WARE

Middleware algorithms work by accessing sub-systems to
fetch <object-id, dissimilarity score> pairs, and by combin-
ing them efficiently to arrive at a result set. Typically, there

are as many sub-systems as attributes, each sub-system pro-
vides objects (usually, identifiers for objects) along with
their dissimilarity scores in the non-decreasing order of dis-
similarity from the query on that attribute, when probed
sequentially. The middleware algorithm does not have con-
trol over the subsystems that it accesses. However, even in
cases of non-metric spaces, each subsystem could be imple-
mented in a way that does not need to do sorting of the
entire database according to that query using indirection
lists (according to the attribute that the subsystem repre-
sents); we omit those details since we focus on middleware
algorithms in this section. Sub-systems also allow random
access to retrieve the similarity score of an object to the
query. Depending on the system and implementation, ran-
dom accesses are typically 10 − 50, 000 times costlier than
sequential accesses, so the algorithm needs to carefully bal-
ance between these two types of accesses to optimize the ac-
cess cost. In this section, we propose a Minimum Stopping
Condition (MSC) and show that any middleware algorithm
for skyline retrieval can claim to be correct if and only if it
satisfies MSC. Further, we propose a middleware algorithm
for skyline retrieval, the Balanced Access Algorithm (BAA)
that seeks to balance random and sequential accesses after
MSC in a bid to optimize on IO costs. We prove that BAA
outperforms the algorithm proposed in [3] on every dataset.
We analyze how the uncertainties about domination rela-
tionships between objects get resolved incrementally as any
middleware algorithm sees more and more objects, and show
that BAA is a very reasonable best-effort strategy for gen-
eral settings.

3.1 Minimal Stopping Condition

Theorem 1. A middleware algorithm that does not make
wild guesses1 can claim that it has seen all distinct objects2

in the skyline (at least in one list) if and only if it has
seen at least one object O such that:

∀i, di(O, Q) ≤ max diss so fari

where max diss so fari is the maximum dissimilarity score
seen on the ith list through sequential accesses (objects with
the same dissimilarity score on any list may be stored in any
arbitrary order in the list). We refer to this condition as the
Minimal Stopping Condition (MSC).

Proof. We first show that attainment of MSC is a suf-
ficient condition for stopping. At MSC, let O′ be a so-far-
unseen object. By virtue of the ordering of the lists, the
following holds:

∀m
i=1, di(Q, O) ≤ di(Q, O′)

Now, O′ could either be a dissimilarity-wise duplicate of O
or may be dominated by O if it is farther away from O′ on
at least one attribute. Either way, it cannot be a distinct
object in the skyline. Now, assume that an algorithm claims
to have seen every distinct object in the skyline before reach-
ing the MSC condition. Since the algorithm cannot assume

1An algorithm that makes wild guesses may see an object
through random access before it sees it through sequential
access [12].
2Two objects are considered non-distinct if they are
dissimilarity-wise duplicates, i.e., take the same dissimilar-
ity score on all attributes. We refer to dissimilarity-wise
duplicates, as simply duplicates in later sections.

1054

anything about the unseen objects, let there exist an object
O′ such that:

∀m
i=1, di(Q, O′) = max diss so fari

and that O′ is the next item to be seen by the algorithm
through sequential access on all the lists. Now, we argue that
O′ is in the skyline. As MSC has not been reached yet, for
every object O so far seen, there exists at least one attribute
where its dissimilarity from the query is strictly greater than
max diss so fari, i.e., ∃idi(Q, O) > max diss so fari;O

′

is closer to the query than O on that attribute. It follows
that O′ is in the skyline, negating the algorithm’s claim.

If the scores on every list strictly increase (and not remain
constant), the MSC condition simply means that the algo-
rithm must see one object in all the lists through sequential
accesses. In presence of such duplicates, attainment of this
condition does not imply that we have seen all skyline ob-
jects, as duplicates of objects which enabled attainment of
the condition may not have been seen yet. We will see in
Section 5 that MSC is usually achieved very early. However,
in certain cases, the algorithm may have to read significantly
deep into the lists to achieve MSC. MSC is a generalization
of the condition in [3] and outlines the minimal stopping
condition for any middleware algorithm, as opposed to the
latter which is an if and only if condition for only those
algorithms which do only sequential accesses. MSC is the
earliest possible point at which all distinct objects in sky-
line have been seen at least once by an algorithm which does
both sequential and random accesses. The condition in [3]
is less effective as it always occurs after the MSC.

3.2 Balanced Access Algorithm (BAA)
The MSC condition ensures that the algorithm has seen all

objects in skyline at least once. Besides reaching the MSC,
the algorithm has to ensure that all uncertainties regard-
ing domination relationships between objects are resolved
to ensure that the skyline objects are correctly identified,
from among the objects seen until MSC. In this section, we
propose the Balanced Access algorithm, which can be sum-
marized to have the following properties:

1. Does Round Robin sequential accesses until MSC.

2. Uses estimates of random access and worst case sorted
access costs to schedule accesses after the MSC.

At any time, BAA maintains the set of fully seen and so-
far non-dominated objects in F , and the set of partially seen
objects in P . At any point, it does random accesses if the
candidate set cannot be held in memory. This ensures that
BAA is able to work with enough memory to hold O(|S|+θ)
candidates, where S is the set of Skyline objects (the out-
put) and θ is the length of the longest sequence of entries
with the same dissimilarity score. Once MSC is reached,
it estimates whether doing random accesses is profitable by
comparing the estimated cost of scanning the remainder of
the lists sequentially and the cost of doing random access on
all candidates in P . Once past MSC, it heeds only those
objects which are already under consideration (Ref. Theo-
rem 1 and Line 10 in Algorithm 1). BAA is able to utilize
any extra memory available to delay random accesses till
MSC, and thus may avoid some (on objects which BAA
sees soon through sequential accesses).

Alg. 1 Balanced Access Algorithm (BAA)

1 F = φ /*the set of fully seen objects*/

2 P = φ /*the set of partially seen objects*/

3 while(¬ MSC ∨ P 6= φ)
4 if(out of memory ∨ (MSC ∧ random profitable))
5 do random access on all objects in P
6 perform checks on F ∪ P and update
7 else
8 do one sequential access on each list
9 Let P ′ = bag of objects seen in this iteration
10 if(MSC) P ′ = P ′ ∩ (F ∪ P)
11 Update the sets F and P based on P ′

12 if(any object newly became fully seen)
13 perform checks on F ∪ P and update
14 If MSC is reached, set the flag

The algorithm proposed in [3] does round robin accesses
until one object is seen fully on each of the lists. It then does
sorted accesses on each of the lists separately until a score
change, to ensure that duplicates of the fully seen object
are not missed. At this point, all candidates are accessed
randomly and skyline objects are identified. To ensure level
ground for the comparison, we adopt the variant of the algo-
rithm which starts random access when one object becomes
fully seen, making the algorithm duplicate insensitive. This
adaptation is advantageous to the algorithm in that lesser
number of candidates are seen, thus reducing the IO costs.
We refer to this variant as simply Balke, in the rest of the
paper.

Lemma 1. Provided with the same amount of memory,
Balke is never better than BAA in terms of IO costs.

Proof. Due to BAA having as much memory as Balke,
it never has to do random accesses until MSC; this delays
the detection of attainment of MSC till the point when at
least one object is seen through sequential accesses on each
of the lists, which is when Balke starts to do random accesses
on all its candidates. Let the number of candidates at this
point be c. The cost incurred by Balke from hereon is c
random accesses i.e., (c ∗ cr) (where cr is the cost of one
random access). Let BAA’s worst case sequential access
cost estimate be s′. If (c ∗ cr) < s′, BAA does random
accesses on all candidates, incurring as much cost as Balke.
If (c ∗ cr) > s′, it starts doing sequential accesses, and may
switch to random access if that becomes more profitable. In
either case, the cost incurred is bounded by s′, which is in
turn lesser than the cost incurred by Balke.

3.3 Analysis of Skyline Algorithms
In this subsection, we analyze the properties of middle-

ware skyline algorithms, and show that BAA is designed
to exploit them. At MSC, every skyline algorithm would
have seen a superset of skyline objects. The task, from
hereon, is to identify the subset of skyline objects from
those seen so far. Let X ¤W Y denote the information that
∀i∈W , di(X, Q) ≤ di(Y, Q) and that the relationship between
X and Y for other attributes in {1, 2, . . . , m} −W are un-
known. Such a relation may be represented as a directed
graph (viz., the dependency graph), edges representing the
relation between candidates (nodes). We evolve the relation

1055

X ¤W Y using two operations (as more and more data is
seen):

• If Y is not closer to Q on any attributes in {1, 2, . . . , m}−
W , the edge and the node Y are dropped.

• If Y is closer to Q on at least one attribute in {1, 2, . . . , m}−
W , the edge is dropped.

This graph has the property that any object with no edges
pointing to it would be part of the skyline. It is easy to prove
that the status of objects with inward edges can be con-
firmed only after the uncertainty with respect to the edge is
removed. Every skyline algorithm would fit into an abstract
framework in Algorithm 2. The different algorithms may
differ in terms of the strategies adopted in Step 1 and Step
3 and in using weaker conditions in Step 1 and Step 2. It
may be noted that algorithms may not explicitly maintain
the dependency graph. The following are notable properties
(we omit proofs because of space constraints):

Property 1. Let ¤ be a relation depicting the existence of
any edge ¤W (for any W). This relation is transitive.

Property 2. For every algorithm that interleaves random
and sequential accesses after MSC, there exists an algorithm
which has a pure sequential access phase followed by a pure
random access phase and incurs IO costs at most as much
as the former. In other words, performing random accesses
in between sequential accesses does not help in reducing IO
cost.

Property 3. At any point after MSC, let the number of
nodes with at least a degree of 1 be p. Any algorithm that
decides to do only random accesses from thereon, cannot
claim to be correct unless it performs at least p random
accesses. This follows from Property 1 above.

The Balanced Access Algorithm is designed to exploit the
above properties. Due to the absence of any information
about attribute dependencies, we schedule sequential ac-
cesses in a round-robin fashion. Guided by Property 2 above,
BAA delays random accesses till the end. According to
Property 3, any algorithm can maintain an exact estimate of
the cost of a pure random access phase from thereon. Thus,
algorithms which reach the same MSC can differ in costs
only by means of varying the amount of sequential accesses
performed. In the course of our experiments, we observed
that, by not doing any random accesses, an algorithm has to
go very close to the end of the lists to be able to identify sky-
line objects. BAA, because of being ignorant about object
distributions in remainder of the lists, maintains an estimate
of accessing the remaining parts of the lists fully (which is
very close to the cost of a pure sequential access algorithm,
given the empirical observation), compares it with the ran-
dom access cost estimate and switches to the random access
phase at such a point when the random access cost estimate
is profitable. Intuitively, BAA is close to the optimal mid-
dleware algorithm for skyline retrieval. In Section 5.3.3 we
show that the IO cost incurred by BAA is actually very close
to an experimentally computed lower bound of the IO cost
for any middleware algorithm. Thus, the IO cost for mid-
dleware algorithm cannot be minimized much further than
what BAA does.

However, when we have more control over the storage, we
can potentially do better, as we will see in the next section.

Alg. 2 Abstract Skyline Algorithm

1 Access the lists until MSC is attained
2 while(dependency graph has edges)
3 Perform more access(es) on the lists
4 Evolve the graph using new info
5 Output all nodes

Id OS Name Memory
1 MS Windows (MSW) 512M
2 MS Windows (MSW) 2048M
3 RedHat Linux (RHL) 2048M
4 SuSE Linux (SL) 1024M
5 SuSE Linux (SL) 1024M

Table 1: Sample dataset

4. SKYLINE RETRIEVAL USING AL-TREE
In this section, we briefly describe the AL-Tree (a value

space indexing structure proposed in [10]), and propose al-
gorithms that use the AL-Tree for efficient retrieval of sky-
lines. Further, we describe heuristics that can speed up the
algorithms by pruning parts of the tree structure, thus op-
timizing on IO and computational costs.

4.1 The Attribute Level (AL) Tree
Consider the database D and a specific ordering of at-

tributes. Each database object can now be represented as a
sequence of values, the ith value in the sequence correspond-
ing to the ith value in the chosen attribute ordering. The
AL-Tree for D using the chosen ordering is then precisely
the prefix tree3 for the ordered database. In such a tree, all
the leaf nodes would be at the same level, i.e., level m, (as
every object has the same number of attributes) and each
level in the tree would correspond to a specific attribute,
according to the chosen ordering. The tree is compressed by
collapsing each chain in the tree to the head of the chain;
such compressed chains form leaf nodes at levels lesser than
m. Each leaf in the tree maintains information about the
objects that it stands for, and also any values for remain-
ing attributes (in cases of leaf nodes representing collapsed
chains). Any object in the database is uniquely associated
with a leaf node in the AL-Tree, and all duplicate objects
map to the same leaf node in the tree. For any node N in
the AL-Tree, we use Lvl(N), Obj(N) and V al(N) to denote
the level, the set of all descendant objects, and the value
corresponding to the node. We use the relation X . Y to
denote that X occurs before Y in the depth first traversal
of the ordered tree.

Figure 2: A Compressed AL Tree.

3http://en.wikipedia.org/wiki/Trie

1056

Example 1. Consider the dataset in Table 1, and the cor-
responding AL Tree. Note that for OS Name of value ’RHL’,
there is a single value of Memory (’2048M’) in the database.
So the chain can be combined into a single node B rep-
resented by (< RHL, 2048M >, {3}). Similarly, the chain
with OS Name of value ’SL’ and Memory of value ’1024M’
can be compressed into node C. The compressed tree with
both the chains compressed would be as in Figure 2.

4.2 Handling Non-metric Spaces using Indi-
rection Lists

In the sample AL-Tree in Figure 2, we assumed a certain
ordering of values for each attribute. However, in the case of
non-metric spaces, we have seen that the attribute ordering
is query specific and not absolute. During query processing,
we would like to process siblings in the non-decreasing or-
der of dissimilarity from the query (based on the attribute
corresponding to the level of the siblings). Constructing a
different AL-Tree for each query is clearly infeasible since
it involves at least one scan of the database. We accom-
plish query time sibling ordering in the AL Tree using pre-
computed indirection lists, which we describe in this section.
Let the values that attribute aj can assume be denoted by be
Aj = {Aj1 , Aj2 , . . . Ajcj

}. For every value v of attribute aj ,

we maintain a list L, of values from Aj in the non-decreasing
order of distance (non-increasing order of similarity) from v,
i.e. the following holds,

dj(L[p], v) ≤ dj(L[q], v), ∀p < q

For every attribute aj , there would be cj such lists (one list
per value from Aj), each of length cj . The total size of the
collection of lists would hence be Σj(cj

2) values. However,
as these lists are held on disk and each query needs to get
only as many lists as the number of attributes (the ordering
for children of sibling nodes would be the same for the same
query as the similarity lists are per attribute-value entities),
this approach is scalable. These similarity lists specify the
ordering for siblings of internal nodes. Each internal node
N, in the AL Tree would have a value based lookup function
for the children nodes which can be defined as follows:

ChildN (v) =

{
C, if ∃C,3: (PARENT (C) = N) ∧ (V (C) = v)
null, otherwise.

Both the tree and the indirection lists are stored in disk.
At query time, the indirection lists corresponding to the
query values are retrieved upfront from disk so that the
traversal algorithm can consult them to ensure that it tra-
verses siblings in the desired order. More details of the im-
plementation can be found in [10].

Example 2. Consider the dataset in Table 1, and the query
(RHL, 2048M). The list for the value RHL (i.e., values
of the same attribute in the decreasing order of similarity)
would thus be < RHL, SL, MSW > (the second row in
the OS Similarity Matrix) and that for the value 2048M
would be < 2048M, 1024M, 512M >. The re-ordered AL
Tree for the query (RHL, 2048M) is shown in Figure 3.
Consider the scenario in the search where we have to find
the 2nd child of A. The function progresses through the
list < 2048M, 1024M, 512M >, firing value based lookup
queries for each of the values in the list until it finds the 2nd

non-null child and returns it. The sequence of queries would
be ChildA(2048M), ChildA(1024M) and ChildA(512M).

Figure 3: Similarity Lists & a Re-Ordered AL Tree.

The iteration stops after it makes the call ChildA(512M)
because it finds the 2nd non-null child then.

The indirection enables us to address another issue. For
a certain attribute, there may be multiple values equally
dissimilar to the query value of that attribute; in such cases,
we virtually merge the corresponding nodes on the tree and
treat them as a single node, for the purpose of traversing
the tree for the specific query. Such merging can be done
trivially by using the indirection lists at tree traversal time;
we omit the details here. In particular, for a query value
1280 for the second attribute in the AL-Tree in Figure 2,
the nodes D and E may be equidistant (as they have the
values 512 and 2048 for that attribute respectively). They
would be treated as a single node while traversing the tree
for such a query.

4.3 Searching the AL-Tree for Skyline
Certain properties of the AL-Tree make it very suitable for

skyline query processing. We discuss such properties in this
section, and propose an algorithm which uses them to effi-
ciently retrieve skylines. In the rest of the paper, wherever
there is no ambiguity, for sake of simplicity, we refer to the
AL-Tree ordered according to a specific query Q and with
any mergers necessitated by the discussion in Section 4.2
already done. Some AL-Tree specific notations used in the
rest of the paper are summarized in Table 2.

Obj(N) Union of objects corresponding to
all descendants of N

X . Y true if X occurs before Y in DFS
traversal of the tree ordered according
to the query, false otherwise

RightSiblings(X) the set of all Y which are siblings of X
and X . Y

mini(F, g) denotes the value in F which is least
distant to the value g according to
the dissimilarity function di(., .)

Table 2: Notations

Lemma 2. For any pair of nodes in the AL-Tree < X, Y >,
if X . Y , no object in Obj(X) can be dominated by any ob-
ject in Obj(Y):

X . Y ⇔ ∀x ∈ Obj(X), 6 ∃y ∈ Obj(Y) 3 y ÂQ x

1057

Proof. As X . Y is true, there exists at least one at-
tribute, the one at the level of the deepest common ances-
tor, where each object of Obj(X) takes a value closer to
the query than each object of Obj(Y). Thus, no object in
Obj(X) can be dominated any object in Obj(Y).

Lemma 2 is true for every ordered case; however, the
uniqueness in this context is that the AL-Tree enables the
algorithm to traverse objects in an ordered fashion for ev-
ery query. This property leads to a simple algorithm which
traverses the leaf nodes of the tree in the DFS order, main-
taining a set of so-far non-dominated set of objects at any
point. Such an algorithm would have to see the entire tree,
and would be forced to make a lot of random accesses (no
packing of the tree on disk is likely to ensure full sequential
accesses, as the order of traversal of the nodes is decided
at query-time), thus making it prohibitively expensive in
terms of disk access costs. Pruning sections of the AL-Tree
can go a long way in reducing the disk access cost. We now
enumerate various properties of the AL-Tree and present
an improved algorithm which can prune out parts of the
tree. We focus on optimizations which need only a constant
amount of additional memory, being fully aware that an un-
bounded buffer may enable a lot more optimizations. The
heuristics do not improve the complexity of the algorithm;
we empirically show that they improve the performance of
the algorithm quite drastically(Section 5).

Lemma 3. For any internal node X at level h, if there
exists an object x in Obj(X) that takes the closest possible
value to the query for every remaining attribute, no sibling
Y of X where X . Y can have a object in the Skyline.

∃x ∈ Obj(X), ∀m
i=h+1vi(x) = mini(Ai, vi(Q)) ⇒

∀Y ∈ RightSiblings(X), Obj(Y) ∩ S = φ

Proof. We give an informal argument as proof. For ev-
ery sibling Y of X, every object in Obj(Y) would take the
same values for the first h attributes. If X .Y , any object in
Obj(Y) would take a value for the h + 1th attribute which
is farther away from the query than that of x (since internal
nodes which are equally close to the query have already been
merged). For the remaining attributes, it can come only as
close to the query as x since x already takes the closest val-
ues to the query. Thus, x ÂQ y holds for any y in Obj(Y)
eliminating y from S.

Lemma 4. For every internal node X at level m− 1, only
the first child may lead to objects in the skyline.

Proof. All children of X take the same value for the
first m − 1 attributes. The objects in the first child dom-
inate all objects in other siblings as they are closer to the
query in the only attribute in which they differ (i.e., the mth

attribute).

The simple DFS algorithm involves comparing every leaf
node to each object in the partial skyline so far (to check for
domination). At any internal node, there is a possibility that
no such check would succeed for any of its descendant leaf
nodes. To avoid such wasteful checks, it would help to have a
light-weight function which flags nodes as not−useful upon
being able to identify that none of its descendants would
succeed the check. We model such a strategy by employing

a function f(X) for every internal node X which returns a set
of objects such that the partial skyline so far not being able
to dominate all of them is a necessary pre-requisite to be able
to find at least one skyline object among the descendants of
the node in question:

(∀x ∈ f(X), ∃s ∈ S′, s ÂQ x) ⇒ Obj(X) ∩ S = φ..(1)

A function which returns the skyline among the descen-
dants of X is such a function, but its output is bounded only
by |Obj(X)|. Regardless of the size of the overall skyline of
the dataset, any subset of the dataset may have a skyline of
the size of the subset. Since we have want to employ only
constant memory, we give a linear function for f(X), β(X)
which returns a single virtual object γ per internal node:

∀m
i=Lvl(X)+1(vi(γ) = mini({vi(x)|x ∈ X}, vi(Q)))

i.e., for each attribute under X, γ takes the closest value
of that attribute which exists in the subtree rooted at X.
The values for the initial Lvl(X) attributes of γ are fixed
according to the choices made to reach the node X. An ob-
ject γ takes may not necessarily exist in the database. The
function β(.) has a complexity of O(|Obj(X)|). By design,
γ dominates all objects in Obj(X) (except duplicates of γ,
if they exist). Thus, the partial skyline so far not domi-
nating β(X) is a necessary, but not sufficient condition for
any object in Obj(X) to be in the skyline (domination is
transitive). We employ some node pruning in β(.) on the
lines of Lemma 3. The saving in terms of computational ex-
penses is that of not having to compare every leaf node under
non− interesting (as assessed by β) nodes with the partial
skyline. We present the algorithm as Algorithm 3.

Alg. 3 SkylineDFS

Input: Node X, Bag S′

1 if(X.isLeaf())
2 S′′ = {x|x ∈ Obj(x)&(6 ∃s ∈ S′, s ÂQ x)}
3 Output S′′

4 Return S′ ∪ S′′

5 if(Lvl(X) = (m− 1)) (Ref. Lemma 4)
6 return SkylineDFS′(X.firstChild(), S′)
7 ∀c ∈ X.Children()
8 if(S′ ÂQ β(c))continue;(Ref. Equation. 1)
9 S′′ = SkylineDFS′(c, S′)
10 if(closest(c) ∈ (S′′ − S′)) (Ref. Lemma 3)
11 return S′′

12 S′ = S′′

13 return S′

4.4 Analysis
The SkylineDFS algorithm has a worst case complexity

of O(m|S||D|). In step 2 (Ref. Algorithm 3), the algorithm
checks for objects in S′ that can dominate objects in Obj(X)
when it reaches a leaf node, X. Lemma 2 ensures that S′ ⊆
S. As the check needs to be be performed for every leaf node
accessed, the complexity of the algorithm is O(m|S||D|).

SkylineDFS is an online algorithm. It outputs each
object in the skyline (Step 3) as and when it processes the
leaf node associated with the object (Ref. Lemma 2). It is

1058

very interesting to note that the first leaf node that
the algorithm processes would have all its objects in
the skyline and it is reached within m steps of the
algorithm. The first leaf node is reached by following the
first child of the root, its first child and so on. As the tree
has a height of at most m, the first leaf node is reached
within m such steps.

The variable memory requirement of the basic Sky-
lineDFS algorithm is bounded by the size of the out-
put, i.e., |S|. The algorithm maintains S′, the bag of sky-
line points seen so far, which would eventually grow to reach
S. Although certain objects may be identified as skyline
points much early in the process, such points have to be
maintained in S′ to eliminate any objects (yet to be seen)
which may be dominated by them. The height of the tree,
being bounded by m, ensures that the SkylineDFS would
have to maintain at most m frames in the stack.

4.5 Comparison with Sort Based Skyline Al-
gorithms

SkylineDFS is similar in spirit to other sort based skyline
algorithms developed previously [7, 13] that sort the data
before computing the skyline. We point out the major dif-
ferences here:

• As discussed earlier, in the case of a non-metric dataset,
there is no unique ordering and the data would have
to be re-sorted for each query. This is very expensive
since it involves at least a scan of the entire dataset.
In the AL-Tree based algorithm, the tree is computed
only once. The tree is traversed in a query specific
order using indirection lists, thus saving the cost of
building the index per query.

• Other sort based algorithms use some pruning to avoid
reading in the entire sorted list. However, the prun-
ing occurs only at the end of the list since the list is
basically a linear structure. On the other hand, the
AL-Tree based algorithm prunes both leaf level and
internal nodes, leading to better pruning.

5. EXPERIMENTS
In this section, we describe our experimental results. We

perform a detailed study of the proposed middleware algo-
rithms, comparing them based on various performance mea-
sures, most of which are specific to the middleware setting.
We then do an in-depth analysis of the proposed algorithms
against the BNL algorithm, the state-of-the-art skyline al-
gorithm which handles arbitrary similarity measures.

5.1 Experimental Setup
We compare the various algorithms based on multiple per-

formance measures. Most prominent among them is the re-
sponse time, which is parameterized by the computational
and disk access costs. Our experiments were conducted on
an IBM X Series machine with Windows Server 2003 on an
Intel Pentium 3.4 GHz Processor and 2.0 GB of RAM.

IO costs are measured in terms of sequential and random
IOs. Studies on middleware algorithms have assumed the
ratio of random item accesses, cr to to the cost of sequential
item accesses cs to be between 10 and 50000. Although
an item is the conceptual unit of access, disk accesses are
typically done at the page level. If a page can hold t items,

the ratio of costs between random page accesses, pr and
sequential page accesses, ps would be (cr/cs)/t. We assume
a t of 1000, thus setting (pr/ps) to 10 and (cr/cs) = 10000,
consistently in our experiments. The aggregate IO cost is
computed as the ratio-based weighted sum of the IO costs.

Middleware algorithms mostly do sequential accesses (which
usually corresponds to the disk packing order) and thus
never revisit pages, making them insensitive to increasing
the cache size beyond one page per attribute. However, the
ALT algorithm can make use of additional cache as it sees
nodes in an order different from the disk packing order and
may revisit nodes. Unless otherwise mentioned, we use a
LRU cache of the size of 7.5% of the dataset size for our
experiments. It is particularly advantageous for middleware
algorithms to have as many disks (or diskheads) as there
are attributes, so that m pages (one per attribute) are ac-
cessible by sequential IO at any given configuration. Such a
setting necessitates fine-grained control over the storage and
makes the backend configuration dataset dependent; hence,
we employ only a single diskhead for data access when com-
paring middleware algorithms with others. It may be noted
that such a setting, besides being more realistic, ensures
fairness in comparison, as the ALT and BNL algorithms do
not require multiple diskheads. When a database of ob-
jects stored in sorted order (sorted according to a unique id)
is available(or some additional information [4]), middleware
random access translates to a single random page access.
For quantifying page IO costs of middleware algorithms, we
assume such a case, and sort objects before random accesses
to optimize IO costs. For the disk-based implementation
of the ALT algorithm, we do breadth first packing of the
AL-Tree.

To isolate the computational costs from the IO costs, we
use a scenario where all the objects and indexes are loaded
in memory when all costs become purely computational (as
IO is eliminated). The metric which is usually considered
to be of high significance (being the only measure that is
visible to the user) is response time for a disk based imple-
mentation. For our experiments, we simulate the disk based
implementation where we assume page access costs to be 1
ms and 10 ms for sequential and random access respectively
using a page size of 40 KB. These estimates are in tune with
reported figures on popular platforms [1] [8].

5.2 Datasets
Since we are interested in analyzing the performance of

the various algorithms in a very general setting, we use syn-
thetic datasets upfront to illustrate their behavior by vary-
ing the data density. Data density is computed as the ratio
of the number of data objects to the total possible num-
ber of distinct tuples in the space. We generate synthetic
datasets with uniform random distribution and random dis-
similarities between different values of each attribute. We
also run the experiments two real datasets,ForestCover4 and
Census-Income5, from the UCI Machine Learning Repos-
itory [2]. The ForestCover dataset contains data of the
Forest Cover type for 581012 cells, each of size 30×30 me-
ters over regions in the US. The attributes chosen from the
dataset had 67, 551, 2, 700, 2, 7 and 2 distinct values (The
dataset has as many as 44 binary attributes among the 55
total attributes present) leading to a data density of 0.04%.

4
http://kdd.ics.uci.edu/databases/covertype/covertype.data.html

5
http://kdd.ics.uci.edu/databases/census-income/census-income.html

1059

Figure 4: IO-Cost vs Varying
Ratio

Figure 5: Response Time vs
Density (Varying Data Size)

Figure 6: Balke Stats vs Density
(Varying Data Size)

The Census − Income Dataset contains census data for
199523 people for 1970, 1980 and 1990 from the Los An-
geles area. We choose a subset of attributes, namely Age,
Education, Number of Minor Family Members, Number of
Weeks Worked and Number of Employees, from the dataset,
based on their utility in measuring similarities between peo-
ple. The attributes chosen have 91, 17, 5, 53 and 7 distinct
values respectively leading to a high density of 6.9%.

5.3 Middleware Algorithms
In this section, we compare the BAA and Balke algorithms

in a pure middleware setting where IO costs are measured as
the weighted sum of sequential and random item accesses.
We do not have any control over the sub-systems in the
middleware scene, thus making page-access estimation im-
possible. Based on the implementations of the sub-systems,
the cr/cs ratio may vary widely. For example, a sub-system
which maintains in-memory lists may have a ratio close to
1, whereas a disk-based implementation may have a much
higher ratio. We have shown in Lemma 1 that BAA is al-
ways better than Balke in terms of IO costs. For all exper-
iments in this section, we assume that both the algorithms
are provided with the same amount of memory.

5.3.1 Performance Comparisons
We analyze the performance by varying the cr/cs ratio

from 1 to 50000 on a million object dataset with 5 at-
tributes. The Balke IO cost was observed (Figure 4) to
increase linearly with the ratio, primarily because of the
large number of random accesses (whose cost is linear on the
ratio) whereas BAA has very low IO costs. BAA switches
between random and sequential accesses, and does lesser and
lesser number of random accesses with increasing ratios. On
very high ratios, BAA evolves into a no-random-access al-
gorithm. The contrasting rates of increase is more visible at
lower ratios (inset in Figure 4).

In a different set of experiments, we vary the data den-
sity by varying the dataset size from 100,000 to one and a
half million, in the process varying the density from 0.09%
to 2.8%. We fix the cr/cs ratio at 10000 and assume that
each sequential access takes 1 µs and each random access
takes 10ms. These figures are derived from literature [1] [8]
assuming that each page can hold around 1000 items. This
quantification of IO costs in terms of time enables us to ag-
gregate IO and computational costs on a time scale, and
report response times. BAA and Balke both deteriorate
with dataset size and have a similar rate of deterioration
(Figure 5) with BAA consistently outperforming Balke by

more than two orders of magnitude. BAA has a reponse
time of around 10 seconds even on a dataset of size one and
half million whereas Balke takes close to half an hour on the
same. In a separate set of experiments, we vary the data
density from 0.2% to 1.9% by varying the number of values
per attribute on a million object database. Both algorithms
were found to be largely insensitive to the varying number of
values per attribute, BAA continuing to outperform Balke
by orders of magnitude in terms of response times.

The results were similar in real-world datasets too, BAA
continuously outperforming Balke by a factor of around 100.
For the ForestCover dataset, BAA response times were 12
seconds on the average, whereas Balke takes as much as 25
minutes to complete. On the much smaller Census−Income
dataset, BAA response time was seen to be around 2 seconds
whereas Balke takes an average of 2.8 minutes.

Balke is different from BAA in that its memory require-
ment is unbounded (Ref. Section 3). Figure 6 plots the
memory requirement in terms of the maximum number of
candidates held in memory at any point in the execution
of the algorithm. As expected, the memory requirement in-
creases with the dataset size whereas the ratio of the memory
requirement to the dataset size decreases with density, and
stabilizes at around 23% of the dataset size. Thus, it seems
reasonable to assert that the Balke can be employed only
in such scenarios where the available memory is at least a
quarter of the database size.

5.3.2 Analysis
The experiments in this section illustrate the effective-

ness of the BAA algorithm. It does not require unbounded
buffers (as Balke does) and is significantly better in terms of
IO. BAA outperforms Balke in terms of response times on a
wide range of cr/cs ratios and a wide range of data densities.
Further, it is provably better than Balke in terms of IO costs
(Ref. Section 3). This shows that BAA is the preferred algo-
rithm for virtually all possible scenarios. Thus, we pick the
BAA algorithm as the representative middleware algorithm
to compare with other algorithms in subsequent sections.

5.3.3 IO Cost Lower Bounds
In this section, we analyze the IO costs of BAA as com-

pared to the absolute lower bound of IO costs for middleware
algorithms. Taking cue from the properties of middleware
algorithms in Section 3.3, we develop an approach to com-
pute the lower bound of IO costs for any middleware algo-
rithm, and go on to show that BAA is empirically very close
to the lower bound.

1060

Figure 7: IO-Cost vs Density
(Varying Data Size)

Figure 8: Comp Time (ms) vs
Density (Varying Data Size)

Figure 9: Response Time (ms) vs
Density (Varying Data Size)

Figure 10: Comp Time (ms) vs
Density (Varying #Values)

Figure 11: Response Time (ms)
vs Density (Varying #Values)

Figure 12: IO-Cost vs Density
(Varying #Values)

The IO cost for a middleware algorithm on a given dataset
and query is computed as the weighted sum of sequential and
random item accesses. Any approach may be viewed as a
sequence of accesses, each of which could be either sequen-
tial or random. However, Property 2 suggests that for any
approach, there exists an approach which incurs the same
or lesser cost, but does all its random accesses at the end.
Property 3 further says that for any approach that decides
to do only random accesses from thereon, the number of ran-
dom accesses that need to be performed to claim correctness
can be easily computed, and is independent of the order
in which they are performed. The above properties apply
to the IO optimal approach too. However, the IO optimal
approach may choose to explore different lists to different
depths (hence, not necessarily in round robin fashion) using
sequential accesses, before it decides to do random accesses.
Therefore, the following construction gives a lower bound on
the IO cost of a middleware method for skyline: try all pos-
sible sequential scan depths in each of the input lists, and for
each such valid combination (a combination is valid only if
it contains an MSC), compute the cost of scanning until this
depth plus the cost of the then absolutely necessary random
accesses. The IO cost incurred by each combination can be
computed by simulating such an approach. We explore the
space of such combinations, simulating each combination,
and identify the cost of the approach which corresponds to
the IO optimal approach. Note that the outlined compu-
tation is not a real skyline algorithm in itself, but merely
serves to determine the lower bounds of IO costs. However,
as the space of all combinations is typically huge, we restrict
the space further by exploring only those candidates which
have each attribute as a multiple of 1000 (thus enabling us
to complete such an analysis within a reasonable amount of
time). To ensure a fair comparison, for this set of exper-
iments, we restrict BAA to explore each list in chunks of

1000 items.
We compare the lower bound of IO costs against the IO

cost incurred by the BAA algorithm on a uniform random
dataset of 50000 items with 3 attributes, each having 35 val-
ues per attribute as well as a random subset of the Census
- Income dataset with 50000 data items on 3 attributes (A
subset was chosen because the lower bound computation is
very compute intensive, making it infeasible to run on the
whole dataset). The IO costs reported here are those av-
eraged over 10 queries. We varied the cr/cs ratio from 1
to 10000. It may be noted that the access pattern of BAA
changes with the ratio, since it tries to minimize the aggre-
gate IO costs. Figure 13 shows that BAA closely follows the
lower bound in terms of IO costs on the uniform random
dataset. In the case of the real dataset, Figure 14 shows
that BAA is around consistently 10% costiler in terms of IO
costs than the lower bound when the ratio approaches com-
monly adopted values such as 10000. For both the datasets,
Balke was found to be costlier by at least a couple of or-
ders of magnitude (e.g., Figure 4) and hence, isnt shown in
these graphs. This validates our claim in Section 3.3 and
suggests that any better strategy would only give marginal
improvement over BAA in terms of IO costs.

5.4 Performance of Skyline Algorithms
We analyze the performance of BAA and ALT algorithms

against the BNL algorithm, the state-of-the-art algorithm
that handles arbitrary similarity measures. The experiments
are similar to those in Section 5.3.1, varying the density by
separately varying the dataset size and the number of values
per attribute. These experiments, being not on middleware,
use a simulation of a disk-based implementation of BAA.

Figure 7 shows that the page IO costs of all algorithms
increase with dataset size. The IO costs for the BNL and
BAA algorithms are linear on the dataset size. It is inter-

1061

Figure 13: IO Cost vs Ratio (Synthetic Data)

Figure 14: IO Cost vs Ratio (Census-Income Data)

esting to note that the rate of increase of IO costs of the
ALTree algorithm decreases with density. The ALTree algo-
rithm, as it employs a value based index, prunes out larger
parts of the tree as the probability of finding objects with the
closest value to the query on each attribute increases with
the density of the dataset. It may be noted that the BNL,
as it employs sequential scans of the database, outperforms
the other algorithms in terms of IO costs. Although BNL
and BAA algorithms spend more time in computation with
increasing dataset size(Ref. Figure 8), BNL spends much
more time than the BAA algorithm. Even though ALT and
BAA have similar complexities, BAA has a higher candi-
date maintenance cost thus resulting in higher runtimes. Of
particular significance is the behavior of the ALT algorithm
whose computational costs remain unaffected by increasing
dataset size. This is because the increased pruning in higher
densities significantly helps in reducing computational costs,
as lesser number of objects need to be checked for inclusion
in the skyline. Figure 9 plots the overall response times for
the various algorithms. The ALT algorithm overwhelmingly
outperforms the BAA and BNL algorithms (which closely
follow each other) as it leverages the increased density to
exclude database objects without even seeing them once.

Further, we analyzed the behavior of various algorithms
when the change in data density is caused by changing num-
ber of values per attribute on a million object dataset. Fig-
ure 12 shows that the IO cost of the ALT algorithm decreases
with increasing densities, as it is able to leverage the higher
densities to affect better tree pruning. The BNL algorithm
has a constant IO cost, as it performs sequential scans of
the database, whose size remains unaffected with change in
the number of values per attribute. BNL performs better
than ALT in terms of IO costs in lower densities; but, the
gap narrows with increasing density. This shows that BNL
would outperform our algorithms on extremely sparse data.

Figure 10 shows that BNL has a high computational cost,
whereas the ALT spends much lesser time in computations,
especially, in higher densities. Much on expected lines, Fig-
ure 11 shows that the ALT outperforms both of the other
algorithms by a large margin in terms of response times.
The BAA algorithm is fairly passive to varying number of
values per attribute (similar to Section 5.3.1).

The better performance of the BAA and ALT algorithms
relies on their ability to exclude objects from the skyline
without even seeing them once. This is in sharp contrast
to BNL, which needs to see the entire dataset at least once.
To analyze the effectiveness of such pruning strategies, we
analyze BAA and ALT based on the fractions of sorted lists
visited and the fraction of nodes visited respectively. ALT
displays a sharp drop in the fraction of the tree visited with
increasing density (Figure 15) and is able to manage by vis-
iting as less as 9% of the tree at high densities. BAA con-
sistently visits a much lesser fraction (4− 5%) of the sorted
lists. However, as the objects seen in the various lists may
be different, the number of objects visited may be as high
as BAA-Ratio*m (i.e., 20− 25% in this case).

5.4.1 Performance Analysis on Real Datasets
Real world datasets are usually very skewed (non-random)

and thus may be significantly different from the synthetic
random datsets, on which we reported results in the previous
sections. As mentioned in Section 5.2, we use two datasets
with widely varying densities. It may be noted that the
skyline size increases with the sparsity of the dataset, lead-
ing to reduced possibilities of pruning; thus, sparse datasets
are adverse scenarios for the BAA and ALT algorithms.
Figure 17 plots the response times for disk based imple-
mentations of the algorithms against varying cache sizes on
the ForestCover dataset, which is very sparse (density of
0.04%). ALT outperforms both BNL and BAA by close to
a factor of 4 consistently, which is tremendous, given that
sparse data and low cache sizes present an unfriendly sce-
nario to ALT. This shows that the ALT is able to exploit
the skew in the data to its advantage. The BAA algorithm
improves its response times with increasing cache size at
low densities, primarily due to being able to preserve the
objects in the same pages as those objects on which ran-
dom accesses were performed. As expected, that effect is
not so pronounced at higher densities. Thus, at reasonable
cache sizes, both the BAA and ALT algorithms outperform
BNL with ALT having remarkable response times close to
200 milliseconds. The high density of the Census− Income
dataset is favorable to BAA and ALT algorithms. Similar to
the observations for ForestCover, the ALT is able to use the
skew in the dataset to deliver very good response times (Ref.
Figure 16), consistently returning the skyline within 14 mil-
liseconds. The BAA algorithm is able to utilize the high
density to stop earlier and has a response time of around
200 milliseconds. The BNL algorithm is outperformed by
orders of magnitude by both the BAA and ALT algorithms.

6. CONCLUSIONS AND FUTURE WORK
We have presented two algorithms, namely the BAA al-

gorithm and the online AL-Tree based algorithm for skyline
retrieval with arbitrary similarity measures. We present a
general framework for middleware skyline algorithms and
analyze them formally. Through a detailed set of experi-
ments on various types of synthetically generated data and

1062

Figure 15: Fractions of Datasets
visited (Varying Data Size)

Figure 16: Response Time vs
Cache Size (Census Data)

Figure 17: Response Time vs
Cache Size ForestCover dataset

two real datasets, we draw the following conclusions.

• BAA is the preferred middleware algorithm (over Balke)
for virtually all possible scenarios. Its IO costs are em-
pirically found to be very close to the absolute lower
bound of IO costs for any middleware algorithm, and
when nothing is known about the attributes and their
dependencies, it seems unlikely that BAA can be prov-
ably improved upon, in terms of IO costs.

• Our BAA and AL-Tree based skyline algorithms out-
perform the existing BNL approach significantly in
computation cost and overall cost. In presence of a
very fast CPU with very high random access costs,
BNL may be of use.

• The AL-Tree based skyline algorithm outperforms both
BNL and the BAA middleware algorithm by orders of
magnitude in most usual settings.

BAA has a high candidate maintenance overhead. An
interesting future work will be to devise more efficient can-
didate maintaining strategies for the skyline algorithms for
middleware. It will be interesting to analyze if sequential
access scheduling approaches similar to those used for top-k
algorithms [4] can be adapted to improve skyline algorithms.
For the AL-Tree based approach, investigating whether any
specialized ordering of the attributes enables faster process-
ing, is also a potential future work. Since the AL-Tree based
approach is able to prune out large sections of the tree, bet-
ter packing approaches could help in optimizing the IO costs.
β(X) could be redesigned to return multiple (bounded by a
constant) objects for each node X, leading to better pruning.

7. REFERENCES
[1] How fast is your disk?

http://www.linuxinsight.com/how fast is your disk.html,
January 2007.

[2] A. Asuncion and D. Newman. UCI machine learning
repository, 2007.

[3] W.-T. Balke, U. Güntzer, and J. X. Zheng. Efficient
distributed skylining for web information systems. In
EDBT, pages 256–273, 2004.

[4] H. Bast, D. Majumdar, R. Schenkel, M. Theobald,
and G. Weikum. Io-top-k: Index-access optimized
top-k query processing. In VLDB. ACM, 2006.

[5] J. L. Bentley. Multidimensional binary search trees
used for associative searching. Commun. ACM,
18(9):509–517, 1975.

[6] S. Börzsönyi, D. Kossmann, and K. Stocker. The
skyline operator. In ICDE, 2001.

[7] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang.
Skyline with presorting. In ICDE, 2003.

[8] W. Chung, Gray and Horst. Windows 2000 disk io
performance. Microsoft Research TR, June 2000.

[9] K. Deng, X. Zhou, and H. T. Shen. Multi-source
skyline query processing in road networks. In ICDE,
2007.

[10] P. Deshpande, Deepak, and K. Kummamuru. Efficient
online top-k retrieval with arbitrary similarity
measures. In EDBT, 2008.

[11] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. In PODS.
ACM, 2001.

[12] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. J. Comput.
Syst. Sci., 66(4):614–656, 2003.

[13] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector
computation in large data sets. In VLDB, 2005.

[14] K. Goh, B. Li, and E. Chang. Dyndex: A dynamic
and nonmetric space indexer. In ACM Intl.
Conference on Multimedia, 2002.

[15] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars
in the sky: An online algorithm for skyline queries. In
VLDB, pages 275–286. Morgan Kaufmann, 2002.

[16] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An
optimal and progressive algorithm for skyline queries.
In SIGMOD Conference, 2003.

[17] D. Papadias, Y. Tao, G. Fu, and B. Seeger.
Progressive skyline computation in database systems.
ACM Trans. Database Syst., 30(1):41–82, 2005.

[18] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient
progressive skyline computation. In VLDB, pages
301–310. Morgan Kaufmann, 2001.

[19] Y. Tao, X. Xiao, and J. Pei. Subsky: Efficient
computation of skylines in subspaces. In ICDE,
page 65. IEEE Computer Society, 2006.

[20] S. Wang, B. C. Ooi, A. K. H. Tung, and L. Xu.
Efficient skyline query processing on peer-to-peer
networks. In ICDE, pages 1126–1135, 2007.

[21] P. Zesula, G. Amato, V. Dohnal, and M. Batko.
Similarity Search - The Metric Space Approach.
Springer, 2005.

1063

