
The Concurrency Workbench: A Semantics-
Based Tool for the Verification of
Concurrent Systems

RANCE CLEAVELAND,

North Carolina State Unwersity

JOACHIM PARROW,

Swedish Institute of Computer Science

and

BERNHARD STEFFEN

Lehrstuhl fur Informatik II

The Concurrency Workbench is an automated tool for analyzing networks of fimte-state pro-

cesses expressed m Milner’s Calculus of Commumcatmg Systems. Its key feature is its breadth,

a variety of different verification methods, includ]ng eqmvalence checking, preorder checking,

and model checking, are supported for several different process semantics One experience from

our work is that a large number of interesting verification methods can be formulated as

combinations of a small number of primitive algorithms The Workbench has been apphed to the

verification of commumcatlons protocols and mutual exclusion algorithms and has proven a

valuable a] d m teaching and research,

Categories and Subject Descriptors C 2.2 [Computer Communication Networks]: Network
Protocols—pro~ocol uer~fkat~on; D,2,2 [Software Engineering]: Tools and Techmques; D.2 4

[Software Engineering]: Program Verification: F.3. 1 [Logics and Meaning. of Programs]:
Specifying and Verifying and Reasoning about Programs —meehunzcal wrzfzcatmrz, speclfwatmn

techniques

General Terms: Verification

Addltlonal Key Words and Phrases Automatic verification, concurrency, finite-state systems,

concurrency workbench, process algebra

This research supported by British Science and Engineering Research Councd grant GC/D69464,

Authors’ addresses: R. Cleaveland, Computer Science Department, North Carohna State Univer-

sity, Box 8206, Raleigh, NC 27695, USA. Much of the work described in this paper was

performed whale the author was a research associate]n the Department of Computer Science at

the University of Sussex, Brighton, UK, J. Parrow, Swedish Institute of Computer Science, Box
1263, S.164 28 Kista, Sweden. Part of the work reported here was performed whale the author

was on leave at the Umversity of Edinburgh, supported by a grant from the Science and

Engineering Research Council. B. Steffen, Lehrstuhl fur Informatik II, RWTH Aachen, Ahorn-

strafie 55, W-51OO Aachen, Germany,

Permmsion to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the pubhcation and Its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery, To copy otherwise, or to repubhsh, requires a fee and/or

specific permission.

@ 1993 ACM 0164-0925/93/0100–0036 $01.50

ACM Tr.ansact,ons <,n Pmgramn, ng bn~ua~es and Sj stems> Vol 15> N. 1, January 1993, Pages 36–?2

http://crossmark.crossref.org/dialog/?doi=10.1145%2F151646.151648&domain=pdf&date_stamp=1993-01-01

Concurrency Workbench . 37

1. INTRODUCTION

This paper describes the Concurrency Workbench [11, 12, 13], a tool that

supports the automatic verification of finite-state processes. Such tools are

practically motivated: the development of complex distributed computer sys-

tems requires sophisticated verification techniques to guarantee correctness,

and the increase in detail rapidly becomes unmanageable without computer

assistance. Finite-state systems, such as communications protocols and hard-

ware, are particularly suitable for automated analysis because their finitary

nature ensures the existence of decision procedures for a wide range of

system properties.

A goal in the design of the Workbench is to incorporate several different

verification methods, as well as process semantics, in a modular fashion. This

means that each method may be applied to different semantic models,

yielding a spectrum of techniques for reasoning about processes. The versatil-

ity of the Workbench has many advantages: it supports mixed verification

strategies which use more than one method, it facilitates a comparison

between many techniques for formal verification, and it makes the system

easily extensible,, This versatility contrasts with existing automated tools,

which typically embody a particular semantics and a particular form of

verification. Exalmples of such systems include Ald6baran [22], AUTO [31,

CESAR [47], COSPAN [28], EMC [6], and Winston [42]. Other tools, such as

SPIN [32], perform more specialized kinds of analysis (such as deadlock

detection) and are used primarily to validate (as opposed to verify) existing

real-world systems.

In order to achieve this flexibility the algorithms in the Workbench are

partitioned into three layers. The first layer manages interaction with the

user and also contains the basic definition of process semantics in terms of

labeled transition graphs, which describe the behavior of processes in terms

of the communication events they may engage in. The second layer provides

transformations that may be applied to transition graphs. These transforma-

tions enable the user of the Workbench to change the semantic model of

processes under consideration. The third layer includes the basic analysis

algorithms for establishing whether a process meets a specification. Depend-

ing on the verification method used, a specification may either be another

process (describing the desired behavior) or a formula in a modal logic

expressing a relevant property.

The Workbench has been successfully applied to verifying communication

protocols, notably the Alternating Bit Protocol, the CSMA/CD protocol [46]

and the communication layer of the BHIVE multiprocessor [25], and mutual

exclusion algorithms [55]; it has also been used to debug the Edinburgh

Computer Science Department’s electronic mailing system. It is currently

being investigated as a tool for analyzing communications protocols by

Swedish Teleconn and by Hewlett-Packard, and it has been successfully used

in education, in industry, as well as in universities.
The remainder of the paper is organized as follows. In the next section we

describe the conceptual structure of the Workbench and give an overview of

ACM TransactIons on Programmmg Languages and Systems, Vol. 15, No. 1, January 1993.

38 . Cleaveland et al.

Fig. 1. Overview of the Workbench.

the different verification methods it supports. Section 3 presents the model of

processes used and the process transformations that enable different seman-

tics to be supported. Sections 4, 5, and 6 discuss the equivalence-checking,

preorder-checking, and model-checking facilities, respectively, while Section 7

describes actual sessions with the Workbench and concludes with a discus-

sion of performance aspects of the system. Section 8 contains a brief account

of some of the ways in which the system is being extended, and Section 9

presents our conclusions and directions for future work.

2. THE ARCHITECTURE OF THE WORKBENCH

Figure 1 provides an overview of the Workbench. In order to supply a wide

variety of approaches for verification while maintaining a conceptually eco-

nomical core, the system is highly modularized. The system includes three

major layers.

2.1 The Interface Layer

The interface layer oversees the interaction between the Workbench and the

user. Its key component is a command interpreter, which invokes the appro-

priate parts of the other layers and presents analysis results. Each verifica-

tion method is implemented as one command, which may require parameters
in the form of processes and modal formulas. Parsers transform the concrete

syntax of such parameters into parse trees, which may be stored in en uiron -

ments maintained by the Workbench. There is also a package defining the

basic semantics of processes. Following Milner [43], a process is interpreted

as labeled transition graph that describes the states a process may enter

and the state transitions that result when a process executes an action.

A description of the syntax and semantics of processes can be found in

Section 3.

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 1, January 1993

Concurrency Workbench . 39

2.2 The Semantics Layer

The semantics layer consists of algorithms for transforming the transition

graphs generated by the interface layer. For example, the observation trans-

formation adds transitions by permitting visible actions to absorb sequences

of internal computation steps; thus the resulting transition graphs do not

record the timing of internal computations in the corresponding processes.

The deterministic transformation makes the transition graphs deterministic

in the usual sense of the word: the resulting graphs do not record nondeter-

ministic choices or internal computation steps. The acceptance transforma-

tion yields deterministic graphs augmented with information regarding the

potential for infinite internal computation and for nondeterminism (and

hence deadlock) in the form of acceptance sets. These transformations are

described in Section 3.3.

The semantics layer refers to processes represented as transition graphs

rather than processes in the abstract syntax. Thus, future changes of the

particular syntax will not require changes in this layer.

2.3 The Analysis Layer

The Workbench provides three main methods for proving that processes meet

their specifications, and the analysis layer contains the corresponding basic

analysis algorithms. In the first method, specifications are themselves pro-

cesses that describe precisely the high-level behavior required of an imple-

mentation. The corresponding algorithm determines whether two processes

are equivalent in the sense of having the same behavior. This algorithm can

also be used to minimize a process, i.e., compute an equivalent process with a

minimal number of states. The definition of equivalence and a brief account

of the algorithm can be found in Section 4.

The second method also uses processes as specifications, but these specifi-

cations are treated as minimal requirements to be met by implementations.

In this approach specifications can be annotated with “holes” (or “don’t care”

points); an implementation satisfies one of these partial specifications if it

supplies at least the behavior demanded by the specification while filling in

some of these holes. The method relies on an ordering relation, or preorder,

between processes: a process A is “more defined than” a process B if A has

the same behavior as B except for the holes in B. The preorder algorithm

determines if a process is more defined than its specification in this sense. A

definition of the preorder and an account of the algorithm can be found in

Section 5.

The third method involves the use of a modal logic, the propositional

(modal) mu-calculus. Assertions formulated in this logic are viewed as specifi-

cations; examples of such assertions are “there are no deadlocks” or “every

action of type a is always followed by an action of type b.” The logic exhibits

a considerable expressive power [20, 50]. The model-checking algorithm

determines whether a process satisfies such an assertion; it is described in
Section 6.

The basic analysis algorithms are “polymorphic” in the sense that they

work equally well on the different kinds of transition graphs supplied by the

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 1, January 1993.

40 . Cleaveland et al,

semantics layer. For instance, the equivalence algorithm computes CCS

strong equivalence on transition graphs. If applied to observation graphs

then this equivalence corresponds to CCS observation equivalence on the

original transition graphs; if the transition graphs have been made determin-

istic it corresponds to trace equivalence. Observation congruence and testing

(failures) equivalence can also be computed by first choosing appropriate

transformations and applying the general equivalence-checking algorithm.

Analogous results hold for the other basic analysis algorithms.

3. REPRESENTATION OF PROCESSES

This section describes the syntax of the Calculus of Communicating Systems

(CCS), which is used to define processes, or agents, used in the Workbench,
and it shows how such agents are interpreted as transition graphs. Transfor-

mations of transition graphs are also introduced. They enable changes in the

process semantics under consideration. We assume the reader to have some

familiarity with CCS.

3.1 Actions and Agents

CCS agents are built from a set of actions containing a distinguished

unobservable (or silent) action ~. The observable (or communication) actions

are divided into input actions and output actions, In the following a, b, , . .

will range over input actions, and Z,%, . . . will range over output actions.

Input action a and output action ii are said to be complementary, reflecting

the fact that they represent input and output on the “port” a. We consider

only communication actions without value parameters. Agents are defined

using the following standard operators from Milner [43].

Nil Terminated process

L Undefined process

a. Prefixing by action a; unary prefix operator

Choice; binary infix operator

1+ Parallel composition; binary infix operator

/L Restriction on (finite) set L of actions; unary postfix operator

[f] Relabeling by f, which maps actions to actions; unary postfix

operator

Relabeling functions f are required to satisfy two conditions: f(T) = T, and

f(ii) = f(a). They are frequently written as a sequence of substitutions; for
example p[al/bl, a2/b2] is the process p whose bl, b2, bl, and b2 transitions

are relabeled to al, a2, al, and a2, respectively.

We also assume a set of agent identifiers. An identifier A may be bound to

an agent expression pA that may itself contain A. This enables recursively

defined processes.
Agents are given an operational semantics defined in terms of a transition

relation, ~ , where a is an action. Figure 2 defines this relation formally.

Intuitively, p ~ p‘ holds when p can evolve into p‘ by performing action a;

ACM Transactions on Programmmg Languages and Systems, Vol. 15. No. 1, January 1993

Concurrency Workbench . 41

p.stp’

p~ -s+p’

* p+q~p’

* p+q=+g’

* p\q3p’lq

* plq3plff’

* Plq J+ P’ld

~ p\ L&p’\L

* P[tl ~ P’[t]

+ A-%p’ where pAisthe agent expression boudtoidentfier A

Fig.2. Theoperational semantics of CCS.

in this case, p’ is said to be an a-derivative of p. The transition relation is

defined inductively on the basis of the constructors used to define an agent.

Thus, a.p ~p holds for any p, and p + q ~p’ if either p :P’ or q :P’.

The agent p Iq behaves like the “interleaving” of p and q with the possibility

of complementary actions synchronizing to produce a ~ action. p \ L acts like

p with the exception that no actions in L are allowed, while P[f] behaves

like p with actions renamed by f. The agents Nil and L are incapable of

any transitions; the former represents a terminated process, while the latter

can be thought of as a “don’t care” state, or as an agent whose behavior is

unknown.

An agent is said to be (globally) divergent if it is capable of an infinite

sequence of r actions or if it may reach a state containing an unguarded

occurrence of L by performing some number of ~ actions. Here, one agent

expression, E, is guarded in another, E‘, if a. E is a subexpression of E r for

some action a. If E is unguarded in E‘, then E is “top-level” with respect to

E‘ in the sense that the initial transitions available to E also affect the initial

transitions of E‘.

Examples of agents defined in CCS appear in Figure 3.

3.2 Transition Graphs

The Workbench uses transition graphs (or rooted labeled transition systems)

to model processes. These graphs statically represent the operational behav-

ior of agents; given an agent, the system generates the corresponding transi-

tion graph on the basis of the transitions available to the agent. A transition

graph contains a set of nodes (corresponding to processes) with one distin-

guished node, the root node, and an action-indexed family of sets of edges

(corresponding to transitions between processes). If an edge comes from a set
labeled by a, we say that it is labeled by a. An edge labeled by a has source n

and target n‘ iff p $ p‘ holds of the corresponding processes. The root is

indicated by an unlabeled arrow. Figure 4 contains examples of transition
graphs.

Each node additionally carries a polymorphic information field, the con-

tents of which vary according to the computations being performed on the

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 1, January 1993.

42 . Cleveland et al,

● B UP. defies a btier of capacity n.

BUFn = BUF:

BUF: = in.BuP~

BUF; = in. BUF~+l + ~.BuF~–l for i = 1, . . .,n – 1

BUF~ = GZ. BUF~-l

. CB UF. defines a compomiionai butTer of capacit y n.

CBUFn = (BLIP, [z,/out] I I BUF1 [z,/in, z,+l/ouf] I . ..1 BuF1 [z~_l/in])\ {zI,., zn_I}

.=l,...,2. -2

. The parfia[bu,fer of capacity n, PBu Fn, specik agents that behave like btiers of capacity

% provided that no attempt is made to insert additional elements when the buffer is full,

PBUF,, = PBUF~

PBUF~ = *n, pBu Fn-l
.

PBUF; = !n.PBUF~+l + iiii. PBUF:-l for i = 1,. ... n - 1

PBUP: = in.1 + &7. PBuF:-1

Fig. 3. Examples of buffers defined in CCS.

Oc)”””cr)
out z a a

The transition graph for BUFn , the buffer of capacity ~.

The transition graph for CBUFZ , the compositional butfer of capacity 2.

Fig. 4. Examples of transition graphs.

graph. For example, the algorithm for computing testing equivalence and the
algorithm for computing preorders store acceptance sets and divergence

information, respectively, in this field.

It should be noted that the transition graph corresponding to an agent is

not necessarily finite, owing to the fact that CCS permits the definition of
processes that can create an arbitrary number of subprocesses. For example,

an “unbounded counter” p can be defined as i .(d. Nil Ip). Here i stands for

increment and d for decrement; when an increment occurs the counter

creates a new copy of itself that then runs in parallel with d. Nil, the

subprocess that can respond to decrement requests. The graph of p can be

seen to have infinitely many states. Of course the Workbench cannot con-

struct such graphs explicitly, and when presented with agents such as p the

algorithm for graph generation will not terminate. In general, most interest-

ing decision problems are undecidable on agents with infinite state spaces.

ACM Transactions on Programmmg Languages and Systems, Vol. 15, No. 1, January 1993

Concurrency Workbench . 43

3.3 Graph Transformations

As we indicated previously, several transformations on transition graphs are

used in conjunction with general algorithms to yield a variety of verification

methods. We briefly describe some of these transformations here.

3.3.1 Observation Graphs. The transition graphs as described in Section

3.2 are synchronous in the sense that they faithfully represent 7 actions, and

hence the “timing behavior,” of agents. Many verification methods require

this information; however, others do not, and to cater for these the Work-

bench includes a procedure for computing observation graphs.

Observation graphs are based on the notion of obser-uatiorzs. These are

defined as follows.

n$n’ iffn &*n’

so = is defined as the transitiveand reflexive closure of ~ , and ~ is

defined in terms of relational products of ~ and ~ . These relations allow ~

actions to be absorbed into visible actions, so that the precise amount of

internal computation is obscured.

The observation graph transformation takes a graph and modifies the

edges to reflect the ~ and ~ relations instead of the ~ and ~ relations.

It uses well-known methods for computing the product of two relations and

the transitive and reflexive closure of a relation. Figure 5 indicates the

nature of the transformation (for clarity, we have omitted the ~-loops result-

ing from the reflexive closure of L ; there will be one such self-looping edge

from each node).

The transformation takes time that is cubic in the number of nodes in

the graph. In most cases the subroutine for transitive closure accounts for

more than 80 percent of the execution time when determining observation

equivalence.

A variation of the observation transformation computes congruence graphs,

which are used to check for observational congruence [43] and weak precon-

gruence [54]. Intuitively, these graphs are observation graphs that record the

possibility of initial ~-actions. To construct them, a copy of the root node is

created; this new node becomes the root node of the congruence graph, and by

construction it has no incoming edges. Subsequently, the observation trans-

formation is applied as before, except that for the new root node, the

transitive closure of ~ is applied, rather than the transitive and reflexive

closure.

3.3.2 Deterministic Graphs. The strong and observation equivalences and

preorders distinguish agents on the basis of the exact points during their

executions where nondeterministic choices are made. Accordingly, the transi-
tion graphs mentioned in Sections 3.2 and 3.3.1 faithfully record each time an

agent makes such a choice. However, other relations do not require such

detailed accounts of the choice structure of agents; for example, the may

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 1, January 1993.

44 . Cleaveland et al.

out

in z

Fig. 5. The observation graph for CBUF2.
in 1 E in

I
out in

a

preorder and equivalence [29] (which coincide with trace containment and

equivalence, respectively) require only information about an agent’s lan-

guage, or the sequences of visible actions the agent may perform. In order to

compute these relations the Workbench includes an algorithm for transform-

ing transition graphs into language-equivalent deterministic graphs (also

called Dgraphs by Cleaveland and Hennessy [9]), i.e., graphs having no

r-derivatives and at most one a-derivative per node for any action a. As a

simple example, the transition graph

As another example, the deterministic graph of CBUFZ is precisely the

transition graph of BUFZ. The algorithm for computing deterministic graphs

is well-known from automata theory (e.g., see Hopcroft and Unman [33]). In

general, this transformation has an exponential complexity, owing to the fact

that it is theoretically possible to have a node in the deterministic graph for

each subset of nodes in the original graph. Our experience, however, indicates

that the number of nodes is usually smaller than the number of nodes in the

original graph, owing to the collapsing of ~-transitions.

3.3.3 Acceptance Graphs. In addition to the language of an agent, other

relations, such as the testing and failures equivalences and preorders [29,
3 1], require information about an agent’s di,,ergence potential and degree of

nondeterminism as it attempts to execute a sequence of visible actions. The

appropriate transition graphs for these relations are acceptance graphs (also

called Tgraphs in [9]); these are deterministic graphs whose nodes addition-

ally contain information regarding divergence and nondeterminism encoded

as acceptance sets. The acceptance set n. ace of a node n is a set of sets

of actions. Each element in the acceptance set corresponds to a stable state

(a state from which no internal action is immediately possible) in the original
graph, and it contains precisely the actions that are immediately possible

ACM TransactIons on Programmmg Languages and Systems, Vol 15, No 1, January 1993

Concurrency Workbench . 45

4“2
Giii Fig. 6. Theacceptance graph forcBuF2.

nQ.acc = {{in}}
n~ ace = {{in,~~

nz.acc = ‘[m}

from this stable state. For example,

>(, has the acceptance graph

●J j,~o *2 ● <.

where the root node has acceptance set

{0, {b}}

and each leaf node has acceptance set

{@} .

Here, the two ellements of the acceptance set correspond to the possibilities of

the original graph to evolve unobservably along the right branch (where no

further action is possible) or the middle branch (where only b is possible).

Note that {a} is not a member of the acceptance set of the start state set since

it is not possible to reach a stable state in which only an a is possible from

the start state of the original graph. As another example, Figure 6 shows the

acceptance graph resulting from the transformation of CBUFZ.

Acceptance sets may also be used to record divergence information. By

convention, if an acceptance graph node has an empty acceptance set, then

the execution of the sequence of actions leading from the root node to the

present node cam diverge, i.e., result in an infinite internal computation.

A closely related kind of graph, the must graph (also called STgraph), is

appropriate for the must equivalence and preorder ([29]). Must graphs are

like acceptance graphs, except that divergent nodes have no outgoing edges.

The algorithm for generating acceptance and must graphs is described by

Cleveland andl Hennessy [9].

4. EQUIVALENCE CHECKING

The first analysis procedure we present computes equivalences between two

agents. As indicated in Section 2, our approach is to convert the agents to

transition graphs of the appropriate type and then apply a general equiva-

lence algorithm.

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 1, January 1993.

46 . Cleveland et al.

4.1 Definition of the Equivalence

The Workbench uses a general notion of equivalence between transition

graphs that is based on node matching. Intuitively, two transition graphs are

deemed equivalent if it is possible to match up their nodes in such a way that

(1) two matched nodes have compatible information fields (the specific notion
of compatibility will depend on the equivalence being computed);

(2) if two nodes are matched and one has an a-derivative, then the other
must have a matching a-derivative; and

(3) the root nodes of the two transition graphs are matched.

This intuitive account may be formalized as follows. Let GI and Gz be

transition graphs with node sets NI and Nz, respectively; let N = NI U Nz,

and let % G N X N be an equivalence relation reflecting a notion of “compati-

bility” between information fields.

Definition 4.1. A %-bisimulation on GI and Gz is a relation J%?c N X N

such that (m, n) = # implies that

(1) if m ~m’ then 3n’: n ~n’ and (m’, n’) ==, and

(2) if n $n’ then 3m’: m ~m’ and (m’, n’) =9, and

(3) (m, n) = ~.

Two transition graphs are said to be %-equivalent if there exists a @-bisimu-

lation relating the root nodes of the transition graphs.

4.2 Derived Equivalences

Many equivalences turn out to be instances of %-equivalence combined with

graph transformations.

—Let U denote the universal relation, i.e., U = N x N. A U-bisimulation is a

bisimulation in the sense of Milner [43] and U-equivalence is strong

equivalence in CCS. Observation equivalence corresponds to U-equivalence

on observation graphs, observation congruence to U-equivalence on congru-

ence graphs, and trace (or may) equivalence to U-equivalence on determin-

istic graphs.

—Let .@ be defined by: (m, n) = JY exactly when m. ace and n. ace are

compatible, i.e., each element of m. acc is a superset of an element of n. ace,

and vice versa. Two transition graphs are must equivalent if their associ-

ated must graphs are .&-equivalent, and they are testing (failures) equiva-
lent if their associated acceptance graphs are .cf~equivalent [9].

As an example, recall the definitions for BUF~ and CBUF~ (see Section 3).

For each n, these two agents can be shown to be equivalent according to each

of these equivalences, with the exception of strong equivalence.

4.3 The Algorithm

Our algorithm is adapted from one presented by Kanellakis and Smolka [37].

It works by attempting to find a %-bisimulation relating the root nodes of the

ACM Transactions on Programmmg Languages and Systems, Vol. 15, No. 1, January 1993.

Concurrency Workbench . 47

transition graphs. To do so, it maintains a partitioning of the nodes in G1

and Gz, the transition graphs under consideration. A partitioning is a set of

blocks, where each block is a set of nodes, such that each node is contained in

exactly one block. Such a partitioning naturally induces an equivalence

relation on the nodes of the transition graphs: two nodes are related precisely

when they belong to the same block.

The algorithm starts with the partition containing only one block and

successively refines this partition. It terminates when the roots of the two

transition graphs end up in different blocks (in which case the transition

graphs are not equivalent) or the induced equivalence relation on the nodes

becomes a %-bisimulation (in which case the transition graphs are &-

equivalent). In order to determine whether a partition needs further refine-

ment, the algorithm examines each block in the partition. If a node in a block

BI has an a-derivative in a block Bz, then the algorithm examines all the

other nodes in BI to see whether they also have a-transitions into the same

block. If some nodes do not, then the block is split into the set of those nodes

that do and the set of those nodes that do not, resulting in a refined partition.

The time and space complexities of this algorithm are O(k *1) and O(k + 1),

respectively, where k is the number of nodes, and 1 is the number of

transitions, in the two transition graphs. In [44] an algorithm is proposed

whose worst case time complexity is O(log(k) * 1); however, there is not yet

enough evidence to suggest that this algorithm is appreciably faster in

practice. In any event, this complexity is not a limiting factor; tests with

the Workbench have shown that the time consumed by this algorithm is only

a small fraction of the total time spent when computing observation

equivalence. Most of the time is consumed in graph construction and

transformation.

One final interesting point is that the algorithm can be trivially modified to

determine the coarsest t?-bisimulation on the nodes of a single graph. This

can be used to transform a graph into a ‘%-equivalent graph which has a

minimum numlber of states: first compute the coarsest %’-bisimulation and

then collapse each block in the final partition into a single node.

5. PREORDER CHECKING

The second basic analysis computes preorders between two agents. This is

done in a way similar to equivalence checking; after converting the agents to

transition graphs we then apply a general preorder algorithm. The preorder

is based upon the following generalization of the notion of equivalence

introduced in Section 4.1.

5.1 Definition oil the Preorder

The general preorder used by the Workbench is similar to the general
equivalence discussed in Section 4.1 in that it is also based on a notion of

node matching; however, the requirements on matched nodes are relaxed

somewhat. Intuitively, one transition graph is less than another if the states

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 1, January 1993.

48 . Cleveland et al.

of the first can be matched to those in the second in such a way that

(1) if a state in the lesser graph is matched to a state in the greater, then the
information field of the former must be “less” than the latter (the appro-

priate notion of “less” will in general depend on the precise preorder being

computed);

(2) if a state in the lesser graph is matched to a state in the greater, and the
latter has valid a-transitions, then each a-transition of the former must

be matched by some a-transition of the latter (the appropriate notion of

“valid” will depend on the preorder being computed);

(3) if a state in the lesser graph is matched to a state in the greater, and the
former has “viable” a-transitions, then each a-transition of the latter

must be matched by some a-transition of the former (the appropriate

notion of “viable” will depend on the preorder being computed); and

(4) the start state of the lesser is matched to the start state of the greater.

To formalize this, let GI and Gz be transition graphs with (disjoint) node sets

NI and iVz, let N = NI U IV2, and let % G N x N be a preorder reflecting a

notion of ‘<ordering on information fields” (a preorder is a transitive and

reflexive relation). Also let @~ c N and d. c N be predicates over N, where

a ranges over the set of actions. Intuitively, 9. and E?. capture the notions of

“viable” and “valid” mentioned above; in other words, they are used to

determine the states from which a-transitions must be matched.

Definition 5.1. A parameterized prebisimulation between GI and Gz is a

relation w c N x N such that (m, n) = W implies that:

(1) if n ●9. then [if m ~m’ then =n’: n ~n’ and (m’, n’) ●@], and

(2) if m G@a then [if n ~rz’ then 3m’: m ~m’ and (m’, n’) =3], and

(3) (m, rz) =%’.

The parameterized preorder is defined by: GI E3’ ‘“ G2 if there exists a

parameterized prebisimulation relating the roots of the two transition graphs.

Note that when fl~ = ~~ = N and %“ is an equivalence relation, then a

parameterized prebisimulation is just a g’-bisimulation.

5.2 Derived F’reorders

Many preorders turn out to be instances of the parameterized preorder

combined with graph transformations. Let U denote the universal relation on

N and J a the local convergence predicate on a: n L a holds if n is not
globally divergent and cannot be triggered by means of an a-action to reach a

globally divergent state. For details of this predicate see Stirling [52] and

Walker [54].

—The bisimulation divergence preorder [52, 54] results by setting:

Y. =N,@’~ ={nln Ja} and %= {(m, n)]forall a:mjJa-n Ja}.

This defines the strong version of the divergence preorder. The weak

ACM TransactIons on Programmmg Languages and Systems, Vol. 15, No. 1, January 1993

Concurrency Workbench . 49

version, p , where r-actions are not observable, can be obtained from the

corresponding observation graphs.

—The may, must, and testing preorders require the transformation of graphs

into deterministic, must, and acceptance graphs, respectively. Then these

relations are the following instances of the general preorder [9].

— The may preorder: P. = N, @~ = 0, and ‘%’= U.

— The must, preorder: Pu = 0, @. = {mlm. acc # 0], and {m, n) E ‘%
holds exactly when either m.acc = 0, or both m. acc and n. ace are

nonempty and each element in n. acc is a superset of some element in

m.acc.

— The testing preorder: 9. = N, &?’c= {mlm. acc # 0}, and & is defined
as for the must preorder.

A preorder can be regarded as a specification -implementation relation in

which P ~ Q is interpreted as “Q is closer to an implementation than P.”

This interpretation is based upon regarding divergent states as being under-

specified. For example, L can be seen as the totally unspecified state that

allows any process as a correct implementation. We shall sometimes call

processes containing divergent nodes partial specifications, in contrast to

complete specifications that do not possess any divergent nodes. Partial

specifications are interesting in their own right, since a system designer

might want to allow freedom for the implementation. In addition, the diver-

gence preorder yields a compositional proof technique for bisimulation equiv-

alences that enables partial specifications to be used in proofs that implemen-

tations are equivalent to complete specifications (see Cleaveland and Steffen

[14, 15], Larsen and Thomsen [39], and Walker [54]). The key observation

underlying this technique is that some processes, although not equivalent,

may be used interchangeably in certain contexts. As an example, assume that

we have a transport protocol with sender entity SENDER and receiver entity

RECEIVER interconnected through ports L with a medium MEDIUM. To verify

this protocol, we might want to establish its observational equivalence to a

complete service specification SERVICE:

SERVICE == (SENDER IRECEIVER IMEDIUM) \ L. (1)

Now assume that we have already proved the protocol correct when MEDIUM

is replaced by tile partial buffer of capacity n PBUFn, for some n:

SERVICE p (SENDER IRECEIVER lPBUFn) \ L. (2)

We may then proceed to prove that

PBUFn ~ BUFn

for any particular m > n. Since “[” and “/L” contexts preserve ~ , we
therefore obtain:

(SENDER IRECEIVER IPBUF.) \ L g (SENDER IRECEIVER lBUFm) \ L. (3)

ACM Transactions on Programmmg Languages and Systems, Vol. 15, No. 1, January 1993.

50 . Cleaveland et al.

Together with (2) and the transitivity of ~ , this enables us to conclude the

following.

SERVICE ~ (SENDER lRECEIvER lBUFm) \ L. (4)

It is easy to see that the preorder p coincides with = for complete

specifications. In fact, whenever the left-hand side process is completely

specified then so is the right-hand side process, and the processes are

equivalent. Thus the completeness of SERVICE yields:

SERVICE = (SENDER IRECEIVER lBUFm) \ L

and therefore establishes all buffers of capacity greater than n as correct

implementations of the medium.

5.3 The Algorithm

The algorithm for computing the parameterized preorder works by attempt-

ing to find a parameterized prebisimulation relating the roots of the transi-

tion graphs. In contrast to Section 4.3, however, preorders cannot be repre-

sented by partitions. We obtain an appropriate representation by annotating

every node n with a set of nodes considered to be “greater” than n.

In principle, the preorder algorithm proceeds in the same way as the

equivalence algorithm. It starts by considering all states to be indistinguish-

able, i.e., every node is annotated with the set of all nodes N. Then it

successively reduces the annotation of each node until the root node of Gz no

longer is in the annotation of the root node of GI (in which case GI !2$’ r Gz)

or the annotations determine a %’-prebisimulation (in which case G1 E;’”

Gz). The reduction of the annotation of a node proceeds according to two

rules. First, if the node has an a-derivative n then each node in its annota-

tion that satisfies Y. must also have an a-derivative that is in the annota-

tion of n; nodes not meeting this condition are deleted from the annotation.

Second, if the node satisfies E?’. and a node n in its annotation has an

a-derivative n‘ then the node must have an a-derivative having n‘ in its

annotation; otherwise, n is deleted from the annotation as well.

The time and space complexities of this algorithm are O(k 4 *1) and

0(k 2 + 1), respectively, where h is the number of states, and 1 is the number

of transitions, in the two transition graphs. Cleveland and Steffen [16]

propose an algorithm whose worst-case time complexity is 0(1 z). The imple-
mentation of this algorithm is underway. The loss of efficiency compared with
the equivalence algorithm is due to the fact that we cannot use the same

compact representation of behavioral relations as in Section 4.3.

6. MODEL CHECKING

The Workbench also supports a verification method based on model checking

[5, 6, 7, 20, 53], in which specifications are written in an expressive modal

logic based on the propositional (modal) mu-calculus. The system can auto-

matically check whether an agent meets such a specification.

ACM Transactions on Programmmg Languages and Systems, Vol. 15, No. 1, January 1993.

Concurrency Workbench . 51

The Workbench actually uses two logics, an interface logic and a system

logic. The former is a “syntactically sugared” version of the latter that also

provides for user-defined propositional constructors, called macros. The model

checker establishes that a node in a graph enjoys a property in the interface

logic by first translating the property into the system logic, which is simpler

to analyze. We shall only describe the interface logic here.

6.1 The Logic

The interface logic includes traditional propositional constants and connec-

tive together with modal operators and mechanisms for defining recursive

propositions. The formulas are described by the grammar in Figure 7. In this

description X ranges over variables, a over actions, B over user-defined

macro identifiers, and arg-list over lists of actions and/or formulas that B

requires in order to produce a proposition. There is a restriction placed on @

in VX.CII and ~X. @ that requires any free occurrences of X to appear

positively, i.e., in the scope of an even number of negations. The formulas are

interpreted with respect to nodes in transition graphs. ttand ff hold of every

node and no node, respectively. X is interpreted with respect to an environ-

ment binding variables to propositions; n. satisfies X if it satisfies the

formula to which X is bound in the environment. ~ @ holds of a node n if @

does not hold of n, 01 V @2 holds of n if either @l or @z does, @l A @2 holds

of n if both @l and @z do, and @l = Oz holds of n if, whenever @~ holds of

n, then @z does as well.

The modal constructors (a), [a], (.) and [.] make statements about the

edges leaving a node. A node n satisfies (a)@ if it has an a-derivative

satisf~ng @, while n satisfies [a]@ if all its a-derivatives satisfy @. In the

case that n has no such derivatives, n trivially satisfies [a]@. In (.)@ and

[.]0, the “.” should be thought of as a “wild-card” action; n satisfies (.)@ if it

satisfies (a) @ for some a, while it satisfies [.]@ if it satisfies [a]@ for all a.

A macro can be thought of as a “function” that accepts some number of

arguments, which may be either actions or formulas, and returns a proposi-

tion. A formula B arg-list is then interpreted as the proposition returned by

B in response to arg-list.

Formulas of tlhe type vX.CD and pX.@ are recursive formulas; they corre-

spond to certain kinds of infinite conjunctions and disjunctions in the follow-

ing sense. Let 00 be the proposition tt,and define Q,+ ~ to be the proposition

@[cP,/X], namely, the proposition obtained by substituting Q, for free occur-

rences of X inn O. Then vX.CP corresponds to the infinite conjunction A~= ~

Q,. Dually let @o be the proposition ~~, and let @,. ~ be defined a: @[@,/X].

Then wX.@ may be interpreted as the infinite disjunction V;. ~ @t.

The recursive proposition constructors add tremendous expressive power to

the logic (see Emerson and Lei [20] and Steffen [50]). For example, they allow

the description of invariance (or safety) and eventuality (or liveness) proper-

ties. However, the formulas are in general unintuitive and difficult to under-
stand. We have found that the most effective way to use the model checker is

to choose a collection of intuitively well-understood operators and then “code

up” these operators as macros. For instance, it is possible to define the

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 1, January 1993.

52 . Cleaveland et al,

Fig. 7. The syntax of formulas

operators of the temporal logic CTL [6] as macros. Examples include the

following.

AG@ = vX.(@ A [.]X)

AF@ = KX.(@ v ((.)tt A [.1X))

AUl@ V = vX.(@ V (IV A [.] X))

Ai72 @ !!7 = pX.(@ V (IY A (.)tt A [.1X))

AG @ holds of n if @ holds of every node reachable (via some sequence of

transitions) from n, while AF @ holds of n if along every sequence of

transitions leaving n, some state n‘ satisfies 0. AU 1 @ IVholds of n if, along

every maximal path of nodes starting at n, ~ is true until a state is reached

where @ is true. AU2 @ V is the same as AU1 @ T, except that here @

additionally is required to hold eventually. AU 1 corresponds to the CTL

“weak” until operator, while AU2 corresponds to the CTL “strong” until

operator (over all paths). It is also possible to write formulas expressing

properties that are useful in describing fairness constraints; many of these

involve the use of mutually recursive greatest and least fixed point formulas

[20].

6.2 The Algorithm

The algorithm for determining whether a node satisfies a system logic

formula works on sequents of the form H K n = @, where n is a node, @ is a

formula, and H is a set of hypotheses, or assumptions of the form n‘: vX.@’.

The (informal) interpretation of this sequent is that under the assumptions

H, n satisfies @. The procedure is tableau-based, meaning that it attempts to

build a top-down “proof’ of H + n ● @. The method used comes from Clevel-

and [7]; we shall not describe it here. Another tableau-based approach is
presented by Stirling and Walker [53], while a semantics-based algorithm is

given by Emerson and Lei [20]; an automated proof system for a subset of the

logic is presented by Larsen [38].

Applying the algorithm to graphs generated by the different graph trans-

formations yields different notions of satisfaction. For instance, checking

propositions against observation graphs causes the modal operators to be

insensitive to T-actions; one should also note that the observation graph

transformation causes information about the eventuality properties of an

agent to be lost, owing to the fact that every state in these graphs has an

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 1, January 1993.

Concurrency Workbench . 53

E-transition to itself. Accordingly, every property of the form AF @ will be

false for every state that does not satisfy 0.

As an example, it is possible to show that CBUFn, for particular n, is

deadlock-free as follows. Define the macro Deadlock by

Deadlock = ~(.) tt.

This proposition is true of states that cannot perform any actions. Using the

model checker, one can establish that CBUFn satisfies the formula

AG(--I Deadlock)

where AG is tlhe macro defined above; this formula states that it is always

the case that CBUFn is not deadlocked. It is also possible to show that C~Fn is

live, i.e., always capable of eventually enga~ng in either an in or an out, by

automatically verif~ng that CBUFn satisfies the following formula.

AG((AF(in)tt) V (AF(out)tt)).

The algorithm in general has complexity that is exponential in the size of

the formula being checked, although for special classes of formulas it is

well-behaved. A linear-time algorithm for a particular subclass of this logic

has been proposed by Cleveland and Steffen [17] and will be incorporated in

future versions of the Concurrency Workbench.

7. USING THE CONCURRENCY WORKBENCH

In this section we illustrate the main analysis procedures of the Workbench

by verifying a very simple communications protocol. We then discuss a more

substantial example in which we use the Workbench to debug a faulty

implementation of the Alternating Bit Protocol. The section concludes with a

discussion of performance aspects of the system.

7.1 A Simple Protocol

In the next three subsections, we analyze the folIowing simple communica-

tions protocol in order to illustrate how one uses the verification facilities

implemented in the Workbench. The seruice specification of the protocol

requires that any message sent must be received before a second message

may be sent. The protocol specification requires two processes, a sender and

a receiver, and a medium that connects them. After sending a message via

the medium to the receiver, the sender blocks until the receipt of an acknowl-

edgment enables it to send a new message. An acknowledgment is sent from

the receiver as soon as it receives a message. It is also sent via the medium.

After sending the acknowledgment the receiver is ready to receive another

message.

What follows is an edited account of an actual session with the Workbench.
We show how the above protocol may be formalized and verified in different

frameworks using the equivalence, preorder, and model checking features of

the system.

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 1, January 1993.

54 . Cleaveland et al.

When the Workbench is first invoked, the following appears on the screen.

Welcome to the Concurrency Workbench! (V 5.0)
Command:

The system employs a “command loop”; it accepts commands from the user,

prints its responses on the screen, and prompts for the next command. It is

possible to define processes and propositions, and to invoke the analysis

procedures this way.

7.2 Defining Agents and Checking Equivalence

In order to verify the communications protocol, we first must enter its service

specification into the Workbench. For equivalence checking, we formalize

specifications and implementations as processes. Processes can be entered

using the command bi (for bind identifier). In response to this command the

system then prompts us for the corresponding arguments.

Command: bi
Identifier SERVICE
Agent: send.’receive.SERVlCE
Command.

In fact, the command above defines a process SERVICE that is capable of

performing an infinite sequence of strictly alternating send and ‘receive
actions. The ‘ is Workbench notation for action complementation.

The protocol specification can be formalized as the parallel combination of

three processes: one for the sender, one for the receiver, and one for the

medium. The sender initially waits for a message to send, after which it

passes the message to the medium using the channel from and then awaits an

acknowledgment on the channel ack _to. When the medium receives a mes-

sage along its channel from it makes it available on its channel to, and when

it receives an acknowledgment on its channel ack –from it ma-kes it available

on its channel ack _to. When the receiver gets a message on channel to, it

announces that the message is available for receipt and then sends an
acknowledgment along the channel ack –from. The corresponding processes in

the Workbench are defined using the following commands.

Command: bi
Identlfler: SENDER
Agent, send,’from.ack_to. SENDER
Command: bi
Identlfler: MEDIUM
Agent: from,’to, MEDIUM + ack_from.’ack_to. MEDlUM
Command: bi
Identlfler: RECEIVER
Agent: to.’recewe ‘ack_from.RECEIVER
Command: bi
Identifier: PROTOCOL
Agent (SENDER IMEDILJMIRE12EWER) \ {from, to, ack_from, ack _tO}

The use of the restriction operator \ {from, to, ack -from, ack -to} in the

definition of PROTOCOL ensures that the channels listed are “internal,” i.e.,

ACM TransactIons on Programmmg Languages and Systems, Vol. 15, No, 1, January 1993

Concurrency Workbench . 55

not accessible to processes other than the sender and receiver, To view the

process definitions entered so far, we may now invoke the pe (print environ-

ment) command.

PROTOCOL = (SENDERIMEDIUMIRECEIVER) \ {from, to, ack _from, ack _tO}

RECEIVER = to.’ receive,’ack _from.RECEIVER
MEDIUM = from.’to.MEDIUM + ack _from.’ack_to.MEDlUM
SENDER = send.’from.ack_to. SENDER
SERVICE = send.’receive.SERVlCE

In the equivalence-checking verification method, we show the correctness

of this protocol by establishing that it is semantically equivalent to the

service specification. We do so by invoking the equivalence-checking com-

mands of the Workbench. In this example, we use the commands eq to

determine whether the PROTOCOL and SERVICE are obseruationally equiva-

lent and testeq to determine if they are testing equivalent. In each case, the

Workbench prompts the user for the necessary process arguments.

Command: eq
Agent: PROTOCOL
Agent: SERVICE
true
Command: testeq
Agent: PROTOCOL
Agent: SERVICE
true

The responses show that the two processes are observationally equivalent

and testing equivalent.

7.3 Preorder Checking

To illustrate the use of preorders in the Workbench, we employ the technique

described at the end of Section 5.2 to prove another version of the protocol

correct. We modify the definition of the medium in the protocol specification;

the new definition is partial, reflecting the fact that there may be semanti-

cally different implementations for the medium that still lead to a correct

overall implementation of the service specification. As in Section 5.2 we then

show how to use the preorder to deduce that the protocol is still correct when

the specification of the medium is replaced by any of its implementations (i.e.,

any agent that it precedes in the preorder).

The new medium specification, and the protocol obtained by substituting

this specification for the old medium, are given as follows.

Command: bi
Identifier: PARTIAL-MEDIUM
Agent: from. (’to. PARTIAL _MEDIUM + ack _from.@) +

ack _from. (’ack –to. PARTIAL _MEDIUM + from.@)
Command: bi
Identifier: PARTIAL _PROTOCOL
Agent: (SEN13ERpARTIAL –MEDIUMIRECEIVER) \ {from, to, ack -from, ack_to]

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 1, January 1993

56 . Cleaveland et al

The symbol @ is Workbench notation for the agent L . Intuitively, after

receiving a message on the channel from, PARTIAL –MEDI UM may either

deliver it on its channel to, or receive a message on its channel ack –from, in

which case its behavior is unspecified. The medium behaves “dually” in

response to acknowledgments. It should be noted that PARTIAL –PROTOCOL
is both observationally equivalent and testing equivalent to S ERVICE; this

may be checked using the equivalence checking commands illustrated above.

We now define an implementation of this medium specification. It consists

of two one-place buffers running in parallel: one for messages, and one for

acknowledgments.

Command: bi
Identifier, NEW_ MEDIUM
Agent: MESSAGE _BUFFERIACK_BUFFER
Command: bl
Identifier. MESSAGE _BUFFER
Agent from.’to.MESSAGE _BUFFER
Command: bi
Identlfler: ACK_BUFFER
Agent: ack _from.’ack _to,ACK_BUFFER

Using the preorder checker, it is now possible to show that the protocol

implementation

NEW _PROTOCOL = (SENDERINEW _MEDIUMIRECEIVER) \ {to, from, ack _to, ack _
from}

is obseruationally equivalent to SERVICE. We first check that the partial

medium is less than NEW –M EDIUM in the bisimulation preorder using the

command wpr (weak preorder).

Command: wpr
Agent PARTIAL _MEDIUM
Agent, NEW_ MEDIUM
true

One can also verify that PARTIAL –PROTOCOL never reaches an underspeci-

fied state using, for example, the model-checking facility. Therefore NEW_

PROTOCOL is equivalent to PARTIAL -PROTOCOL, and hence to SERVICE.
Note that we could substitute other implementations of PARTIAL-MEDIUM
for NEW -MEDIUM and still conclude that the result is observationally

equivalent to SERVICE; additional analysis of SENDER and RECEIVER is

unnecessary.

7.4 Model Checking

To illustrate the model-checking facility of the Workbench, we show how the

service specification of the protocol definition may be recast as formulas in

the temporal logic CTL in the Workbench, and then use the model checker to

establish that PROTOCOL (as defined in Section 7.2) satisfies these formulas.

The model-checking facility is also useful in establishing that systems enjoy

specific properties of interest, such as deadlock-freedom and freedom from

divergence.

ACM Transactmns on Programming Languages and Systems, Vol 15, No, 1, January 1993

Concurrency Workbench . 57

We first define some propositional macros using the Workbench command

bmi (bind macro identifier).

Command: bmi
Identlfler: AG
Enter parameters one at a time, terminahng with “end.”
Proposition parameters must begin with an uppercase letter,
action parameters otherwise.
Parameter: P
Parameter: end
Body: max(X. P & [.1X)

In a similar way, we can define the macros Can and Can’t; the results of

these definitions can then be displayed using the pm i (print macro environ-

ment) command as follows.

Command: pme
Name: Can’t
Parameters: a

Body: w (Can a)
Name: Can
Parameters:

Body: ;in(X. (a) Tl(t)X)
Name: AG
Parameters: P
Body: max(X. P & [.]X)

Intuitively, a state (process) satisfies AG P if every state reachable from the

argument state satisfies P, while a state satisfies Can a if a may occur as the

next visible action. Can’t is the negation of Can; a state satisfies Can’t a if, no

matter how much internal computation is performed, an a is impossible. Here

max is the maximum fixed point operator, while min is the minimum fixed

point operator. In formulas, I is the disjunction operator and & the conjunc-

tion operator, while T represents the proposition tt. The internal t- action is

represented by t in the Workbench. These macros may now be used to define

formulas in the Workbench.

The bpi (bind propositional identifier) command can now be used to enter

the four formulas that the service specification comprises. This results in the

following proposition environment, which can be viewed by means of the ppe

(print propositional environment) command.

SERVICE1 = AG ((Can send) l(Can ‘receive))
SERVICE2 = AG ([send] (Can ‘receive) & [’receive] (Can send))
SERVICE3 = AG ([send] (Can’t send) & [’recewe] (Can’t ‘receive))
SERVICE4 = Can send

The first formula states that the protocol is always in a state where either a

send or a ‘receive may happen. The second says that it is always the case that

after a send, the process can ‘receive, and vice versa, while the third prohibits

two consecutive send ‘S or ‘receive’s from happening without an intervening

visible action. The final formula stipulates that a send must initially be

possible. Taken together, these formulas specify a process that engages an

infinite alternating sequence of send’s and ‘ receive’s, beginning with a send.

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 1, January 1993.

58 . Cleaveland et al.

To verify the protocol against this specification, one invokes the command

csp (check strong proposition) for the conjunction of the four formulas. The

result is the following.

Command: CSP
Agent: PROTOCOL
Proposlhon: SERVICE1 & SERVICE2 & SERVICE3 & SERVICE4
true

This establishes the correctness of the protocol specification in the logical

framework.

7.5 Debugging a Protocol

In this section we develop a version of the well-known Alternating Bit

Protocol [1]; although apparently correct, the system is faulty, and we show

how to debug the system with the help of utilities supplied by the Workbench.

The following analysis highlights the dramatic effect that often-unstated

assumptions have on the correctness of concurrent systems; in this case the

correctness of the protocol hinges subtly on the communication medium

having a very specific property that is not mentioned in the informal descrip-

tion of the protocol. It is just such considerations that motivate the need for

automated verification tools.

The Alternating Bit Protocol [I] is designed to ensure the reliable transfer

of data over faulty communications lines; it is an example of a sliding window

protocol (with window size one). In the protocol, sending and receiving

processes alternate between two states in response to the receipt of messages

(in the case of the receiving process) and acknowledgments (in the case of the

sending process). Senders and receivers may also time out while waiting for

acknowledgments and messages, respectively. A full account of the protocol is

presented by Bartlett et al. [11.

Here we formalize a version of this protocol consisting of one sender and

one receiver, with the sender sending data values consisting of a single bit

over the given medium to the receiver. The general structure of our system

appears in Figure 8. The sender receives the bits it is to send via the sendO
and send 1 channels from the users of the protocol; intuitively, users wishing

to send a “O” will use sendO, while users wishing to send a “l” will use

send 1.1 Similarly, the receiver will deliver the values sent to it on ports recO
or reel, depending on whether the value is O or 1. The medium conveys

messages containing two bits—the data bit and a “sequence bit’’—from the

sender to the receiver and acknowledgments containing a sequence bit from
the receiver to the sender. The specification of the protocol is that every

message that is sent is correctly received; the formalization of this appears in

Figure 9.

We now turn to the formalizations of the medium, sender and receiver. In

each case, we give the corresponding finite-state machine as well as a listing

of the associated Workbench code (obtained using the pe command). As is

1This encoding of message values into port names is a standard technique for mimicking

message passing in pure CCS.

ACM Transactions on Programming Languages and Systems, Vol. 15, No, 1, January 1993,

Concurrency Workbench . 59

Soo l’al

Slo rlo
sendO) c)-

sol @l

Sll
Sender

rl 1
Medium Receiver

m&O sa&O
sendl((

Ill&l
) Iecl

SSIM

Fig.8. Thenetwork structure forthe Alternating Bit Protocol.

sendO. ‘rec O. SPEC + sendl.’recl.SPEC

Fig.9. Thespecifieation of the Alternating Bit Protocol.

usual in the development of communication protocols, we assume that the

medium to be used k given. In this case, the medium is unreliable; it may

internally decide either to deliver a message that has been given to it or to

lose it. This is modeled by the choice involving ~ actions that appears after

every s action; either the medium delivers the message (by allowing an r

action), or it returns to its initial state (meaning that the message was lost).

(Recall that t is Workbench notation for 7.) Figure 10 contains the formaliza-
tion of the medium.

The sender accepts bits to be sent (by responding to the appropriate send i

actions) and uses the medium to deliver them to the receiver. In order to

detect when the medium has lost a message, the sender also appends a

one-bit “sequence number” to each message it sends out. After giving a
message to the medium, the sender awaits an acknowledgment from the

receiver (via the medium) containing the same sequence number; if this

happens, then the sequence number is incremented (modulo 2), and the

sender is ready for the next value. However, if the sender receives an

acknowledgment with the wrong sequence number, then it resends the same
message (with the same sequence number) and awaits the appropriate ac-

knowledgment. The sender may also time out (by executing a t action) while

awaiting an acknowledgment, in which case it resends the last message it

ACM Transactions on Programmmg Languages and Systems, Vol. 15, No. 1, January 1993.

60 . Cleaveland et al

Jrlo

Medium . sOO.(t. ‘r OO.MedLum + t.Medium) +

s1O. (t. ’rlO. Medim + t.!.ledium) +
sO1. (t. ’r O1.Medium + t. Medium) +
s1l. (t. J.rll. Medium + t. Medium) +
sackO. (t.’ rackO .Medium + t .Medium)
se.ckl. (t. r rackl .Medium + t .!4edium)

Fig. 10. The medium.

4

,rll

sent and waits for the acknowledgment. In our implementation, the sender—
uses the medium to send data value i with sequence number j by executing

the action ‘sij and awaits an acknowledgment with sequence number j by

executing the action rackj. In states S _O (the start state), S00 and S1 O the

sequence number used is O; in S _l, S01 and S1 1 it is 1. The sender appears

in Figure 11.
The receiver awaits messages from the medium with a particular sequence

number. If the sequence number of the message matches the one it expects, it

makes the data value in the message available by executing the appropriate

‘rec i action and sends out an acknowledgment containing the sequence

number; it then increments the sequence number (modulo 2) that it expects of

the next message. If the sequence numbers do not match, then the receiver

sends out an acknowledgment of the sequence number that it received and

then waits for the sender to “resend.” The receiver may also time out while

waiting for a message, in which case it performs the same actions as when it

ACM Transactions on Programmmg Languages and Systems, Vol. 15, No. 1, January 1993

Concurrency Workbench . 61

I [’ Iwxl MO I ‘1 Ii-a

/+’sol

11

h’

Sll

—-,- / 1, 1,s01 ,s11 I 71 \ ,.,A.fl

J’
r.=”

\

Iackl

s_o -
Soo =
S1O -
s_l -
sol -
511 -

radfl \ /

sendO. SOO+ sendl. SIO
‘s00. (rack O.S_l + rackl. SOO+ t.soo)
,s10. (rack o.s_l + rackl. SOO+ t.soo)
sendO. SO1 + sendl. sll
‘s01. (rackl. S_O + rackO. SO1 + t. SOl)
‘s11. (rack l.S_O + rack O.Sll + t.sll)

Fig. 11. The sender.

receives a message with the wrong sequence number. In our implementation,

the medium receives data value i with sequence number j ‘by executing

action rij, and it sends an acknowledgment with sequence number j by

executing ‘sack j,, The receiver is given in Figure 12.

We now begin analyzing the protocol. The first thing we do is assemble the

sender, medium, and receiver into one unit, and restrict all actions involving

the medium to be local, by executing the following.

Command: bl
Identifier: ABP
Agent: (S -O IMediumlRO)

\{rOO, rlO, rOl, rl 1, sOO, sIO, sOI, S11,
rackO, rackl, sackO, sackl }

Even though none of the components contains more than 13 states, the

resulting system has 181.

To check the correctness of ABP we compare it with SPEC using the eq

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 1, January 1993.

62 . Cleaveland et al.

\

IiM

~Iwo

,Sackl

RO - rOO. ,rec O., sackO. Rl + rlO. rrecl. ,sack O.RI +
rO1. ,sackl. RO + rll. <sackl. RO + t., sackl. RO

RI = rO1. ‘recO.’sackl. RO + rll.’rec1.’sackRORO +
xOO.,sackO. Rl + rlO.’sackO. Rl + t. ’sackO. RO

Fig. 12. The receiver.

command; the time taken for this on a Sun

memory is about one minute, which includes

state machines from the CCS specifications.

Command: eq
Agent: ABP
Agent: SPEC
false

SparcStation with 16 MB of

the construction of the finite-

So ABP is incorrect! This might seem surprising, since the correctness of

Alternating Bit Protocol is well accepted; and, in fact, for slightly different

definitions of the faulty Medium the implementation just described is obser-

vationally equivalent to SPEC. As we shall see, the correctness of the protocol

in fact depends on a property of media that Medium does not have, and fixing

the system will entail changing our implementations of the sender and

receiver to circumvent this problem.
In order to repair ABP, our first task is to locate the source of the faults in

the system. z In general, the following strategy is useful in locating reasons

why two systems are observationally inequivalent.

(1) Check that the two processes have the same sorts (i.e., are capable of

zFuture versions of the Workbench will have error diagnostic facilities based on techniques

developed in [8], thus considerably easing the task of locating the faults m systems

ACM TransactIons on Programming Languages and Systems, Vol 15, No 1, January 1993

(2)

(3)

Concurrency Workbench . 63

exactly the same actions). Often, errors arise because of typos in action

names; these kinds of errors would be caught in this step.

Check whether the two processes are language equivalent. If they are not,

then one can use the various state space exploration commands to isolate

the source of the inconsistency.

Check for deadlocks in the implementation. Often, if two systems are

language equivalent but not observationally equivalent, then the reason

has to do with the potential for deadlock in one system.

To apply this strategy to debug ABP, we first compute the sorts of SPEC and

ABP using the command so.

Command: so
Agent; SPEC

~~%%n~:d% ‘reel, sendl }
Agent: ABP
{sendl, sendO, ‘reel, ‘recO}

In this case, the two processes are capable of exactly the same actions. We

now check for language (or may) equivalence; in this case, the result takes

approximately a minute to compute on the same workstation.

Command: mayeq
Agent: ABP
Agent: SPEC
true

So there are no problems here, either. We now check for deadlocks. First, we

use the model checker to determine if the system can deadlock, To do so, we

define the proposition Deadlock (with the bpi, or “bind propositional identi-

fier” command) and then examine whether the system is deadlock-free. In

this case, the answer is computed in approximately 10 seconds.

so

Command: bpi
Identifier: Deadlock
Proposition: - (.)T
Command: csp
Agent: ABP
Proposition: AG(N Deadlock)
false

the system is not deadlock-free! To locate specific deadlocked states in

ABP, we use the command fd, which outputs a list of all deadlocked states

together with a sequence of actions leading from the start state to the

deadlocked state. The (partial) result in this case is the following; it takes

approximately 90 seconds.

Command: fd
Agent: ABP

~-~sendOt t t t----> (sOOI’rOO.Medium l’sackl .RO)
\{rOO, rlO, rOl, rll, sOO, sIO, sOI, sl 1,

rackO, rackl, sackO, sackl }
. . .

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 1, January 1993.

64 . Cleaveland et al.

In fact, there are 17 deadlocked states altogether (where a deadlocked state

may engage in t actions but is never capable of performing any observable

actions). In the above case, and in fact in the other cases as well, the source of

the deadlock comes from collisions on the medium. In the given deadlocked

state, the medium wishes to deliver a message to the receiver (by executing

‘rOO), while the receiver wishes to send an acknowledgment (by executing

‘sackl). As the medium makes no provisions for handling these collisions,

deadlock results. Note that if the medium were to allow sends to “overwrite”

messages awaiting delivery, then ABP would be correct; it is this property on

which the correctness of the system, as it stands, relies.

Fixing the ABP can be done in one of two ways: either a new medium can be

designed (this is not always feasible), or the sender and receiver can be

altered so that they do not depend on the resolution of collisions by the

medium. We follow the latter approach by requiring the sender and receiver

to “flush” the medium (by receiving and discarding any messages from the

medium) before sending a message. The corrected agents appear in Figures

13 and 14. The new ABP system now contains 212 states, and it is observa-

tionally equivalent to SPEC.

7,6 Performance

The Concurrency Workbench was originally conceived as a prototype tool

designed to support the development and analysis of different verification

methods for distributed systems. Accordingly, a main emphasis during the

implementation of the system was on flexibility, which we achieved by using

a very high-level programming language (Standard ML) that permitted us to

develop parameterized versions of the various analyses using higher-order

functions. Of course this versatility has a performance penalty, as we indicate

in this section; the Workbench is slower than other, more specialized, tools

for certain analyses. On the other hand, the modular structure of the Work-

bench makes it easy to replace existing modules with new ones, and as the

interlanguage mechanisms for ML become more sophisticated, it will be

possible to include very efficient routines written in lower-level languages in

the system.

In order to provide a flavor of the performance of the automatic analyses in

the Workbench, we have chosen the task of minimizing transition graphs

with respect to observation equivalence. The agents are taken from Chapter 5

of Milner’s paper [43], and are as follows:

A = a.c(b.d. A + d. b. A),

D=d. A,

SCHEDn = (A[f111D[f211 ”.” lD[f.])\ {cl,...,,},}

where f, denotes the relabeling [a,/a, b,\b, c,/c, c, ~/d]. The idea is that

SCHEDn represents a scheduler for n customers: it will start each customer
in turn (through the actions a~), and each customer must signal termination

(through b,) before it can be started again. The scheduler is composed of n
“cyclers” (A and D); each cycler maintains communication with one customer

ACM TransactIons on Pro~amming Languages and Systems, Vol. 15, No. 1, January 1993

Concurrency Workbench . 65

Saldo
rackO,
raw

racko

s_o = sendO. SnO + sendl. SIO
sOO = ‘s00. (rackO. S.l + rackl. SOO+ t. SOO) + rackO. SOO+ rackl. SOO
S1O = ‘s1O. (rackO. S.l + rackl. SOO+ t. Soo) + rackO. SIO + rackl. slo
S_l = sendO. SO1 + sendl. Sll
sol = %01. (rack l.S. O + rack O.SOl + t. SOl) + rackO. SOl + rackl. sol
s1l E ‘s11. (rackl. S.O + rackO. Sll + t. S1l) + rackO. S1l + rackl. sll

Fig. 13. Corrected version of the sender.

on ports a and b, and all cyclers are linked into a ring through ports c and d.

For a further explanation of this example see Milner [43].

We will consider SCHEDn for n = 4,. ... 7. (For n <4 the scheduler is

fairly trivial, and for n >7 the state graph is too large for the Workbench.)

The size of these schedulers is indicated in Table I (this information, and the

running times of the Workbench, is collected from Ernberg and Fredlund

[21]). The column “States in SCHEDn” gives the number of distinct states

that the Workbench constructs in the transition graph. Note that agents such

as D and d. A are considered distinct here, even though they intuitively

represent the same state. The column “Transitions in SCHEDn” give the

number of transitions in the graph.

The Workbench computes the minimization by first transforming the corre-

sponding graph to an observation graph, and subsequently applying the

general minimization algorithm. In “Observation graph transitions” we list

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 1, January 1993.

66 . Cleveland et al.

\

RO =
RO, =
RO” -
R1 =
~1, -
Rl” -

‘“w
rOO. rxec O.RO, + rlO.*reel.ROr + rO1. RO” + rll. RO” + t.Ro”
‘sack O.Rl + rOO.RO’ + rlO. RO’ + rO1. RO’ + rll. RO,
,sackl. Ro + xOO,RO” + rlO. RO” + rO1. RO” + rll. RO”
xO1.’rec O.R1’ + rll. rxecl. Rl” + rOO.R1” + rlO. R1”+ t.Rl.
‘sackl. RO + rOO.Rl’ + rlO. R1r + rO1. R1, + rll. R1,
‘sack O.R1 + rOO.Rl” + rlO. R1m + rO1. R1” + rll. R1n

Fig. 14. Corrected version of the receiver.

Table I. Size of SCHEDn for some n Before, During and After Minimlzatlon.

n States Tran6iti0ns Observation graph Minimized
in SCHEDn in SCHEDn transitions states

4 117 283 2,009 64

5 285 831 7,346 160

6 669 2,287 25,949 384

7 1,533 9,307 89,534 896

the number of transitions in the observation graph for SCHED’ (the states

remain the same). In “Minimized states” we give the number of states in the

final minimized graph.

The execution time of the Concurrency Workbench on a Sun Sparcstation

with 8Mb memory is 10, 70, 400, and 2000 CPU seconds for 4, 5, 6 and 7

customers, respectively. Other, more specialized tools—e.g., the AUTO sys-

tem [48] or the system for deciding branching bisimulation reported by

Groote and Vaandrager [27] —have been reported to be up to several hundred

ACM Transactions on Programming Languages and Systems, Vol. 15, No 1, January 1993.

Concurrency Workbench . 67

times faster, if one compares the fig-ares given here with those of Groote and

Vaandrager [27]. It should be noted that this comparison can only yield a

gross estimate of the relative efficiencies of the tools, since the timing

information was collected on different machines; moreover, in the case of the

Workbench, the timing information takes into account the time to construct

the finite-state machine from the CCS expression, while the others do not.

The fact remains, however, that the other tools are significantly more effi-

cient at computing observation equivalence than the present version of the

Workbench. On the other hand, neither of the other tools includes a preorder

or model checker, and as we indicated above, there are a number of ways to

improve the speed of the Workbench while maintaining the modular and

flexible structure of the system.

8. OTHER FEATURES OF THE WORKBENCH

The Workbench includes other facilities for examining the behavior of agents.

In addition, as a result of its modular structure it is relatively easy to extend.

This section describes some of these facilities and extensions.

8.1 State Space Analysk

The Workbench includes a variety of ways of analyzing the state space of an

agent. In addition to the commands for finding deadlocked states in a system,

there are various procedures for computing transitions and derivatives. These

types of analyses are traditionally found in automatic verification tools and

will not be discussed further in this paper.

8.2 Equation Solving

The equation-solving feature of the Workbench [45] is used to solve equations

of type (Al X) \ L = B where A, B and L are given. The method is useful

within a top-down or stepwise-refinement strategy: if a specification, B, and

parts, A, of an implementation are known, solving such an equation amounts

to constructing a specification of the missing submodules. The method works

by successively transforming equations into simpler equations, in parallel

with the generation of a solution. These transformations can be performed

automatically by the system according to certain heuristics, or the user can

apply them interactively. The tool has been used for the generation of a

receiver in a communications protocol, where the overall service, the medium,

and the sender are known.

8.3 Experimental Extensions

Two extensions to the system have been implemented and are being investi-

gated. In the first, the model of computation has been extended to include a

restricted form of value passing. In its “pure” form, CCS does not provide for

the association of values to communication actions, although it is possible to

encode the passing of values by associating a unique name to an action/vaIue

pair (see Section 7.5). In the case of infinite value domains, however, this
leads to syntactically infinite agents. Jonsson and Parrow [36] propose an

alternative encoding in which the infinitely many data values are repre-

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 1, January 1993.

68 . Cleaveland et al.

sented schematically. Using the resulting transitional semantics, bisimula-

tion equivalences can be defined in such a way as to correspond exactly to the

bisimulation equivalences in full CCS. This result entails a decision proce-

dure for data-independent agents, i.e., agents which communicate data val-

ues but do not perform any computations or tests on the values. The decision

procedure has been implemented as an extension to the Workbench [41] and

is exponential in the size of the agent—in fact, the problem has been shown

to be NP-hard.

An interface has also been built between the Workbench and the Extended

Model Checker [6] (EMC), which is a tool for checking the satisfiability of

temporal logic (CTL) formulas. EMC views processes somewhat differently

than the other analysis procedures in the Workbench do; there are no

communication actions, and states are labeled by atomic propositions. EMC

has successfully been applied to verification of nontrivial pieces of hardware.

The integration with the Workbench was achieved by defining a translation

from labeled transition graphs to the type of structures analyzed by EMC

[35].

Another extension is the Lunsen system [23]. Lunsen is an imperative

language with primitives for communication between parallel processes. A

compiler translates Lunsen code into CCS in the format acceptable to the

Workbench, making it possible to use the Workbench for automatic analysis

of Lunsen programs. Our experience indicates that many applications, no-

tably distributed algorithms such as mutual exclusion algorithms, are more

naturally formulated in Lunsen than in CCS.

9. CONCLUSION

In this paper we have presented an overview of the Concurrency Workbench.

We have shown that it is possible to provide a number of tools for deducing

the correctness of processes based on a variety of different process semantics

while maintaining a conceptually simple core. This has been achieved by

maintaining a strict separation between the semantic models of processes

and the procedures used to analyze them. One benefit of this modularization

is that the system is relatively easy to extend.

There are a number of directions for future work on the Workbench.

Internally, the speed of a number of routines could be improved, in particular

since the implementation language of the system (Standard ML) now sup-

ports more constructs for efficient programming (e.g., bit arrays) than was

the case when the core of the system was implemented. In addition, more
efficient algorithms for preorder checking [16] and model checking [17] have

been discovered, and these should be implemented in the system. Another

area of investigation would involve developing techniques for reducing the

size of transition graphs that the system computes when verification routines

are invoked. One promising approach is to use equational reasoning as a
“rewriting mechanism” to minimize the number of new states created during

the generation of a graph. Another involves the use of compositional analysis.

The parallel composition of two agents usually entails a combinatorial explo-

ACM TransactIons on Programmmg Languages and Systems, Vol 15, No. 1, January 1993,

Concurrency Workbench . 69

sion in the size of the state space of the resulting agent as a function of the

state spaces of its components. One means of coping with this is to verify the

parallel components separately in a way that implies the correctness of the

composite process. The preorder has been investigated in this respect [14, 26,

54]. It is also conceivable that the model checker could be extended to check

formulas compositionally using methods developed by Clarke [5], Stirling

[521, and Winskel [56].
There are also several ways in which the functionality of the Workbench

could be extended and improved. As an example, other equivalences and

preorders, including GSOS equivalence and the 2/ ~-bisimulation preorder

(also called ready sirnzdcztiorz) [2, 401, turn out to be instances of the general
relations that we examine, and adding these relations to the Workbench is

one avenue we plan to pursue. Another involves the computation of distin-

guishing formulas [30, 8]. At present, when agents are found not to be

equivalent, no indication is given as to why. One way to convey such

information is to give a formula in the mu-calculus satisfied by one agent but

not by the other. A technique for generating such formulas for partition-

refinement-based bisimulation algorithms has been proposed by CleaveIand

[81; work is also underway on generating similar diagnostic information for
the testing equivalences. A graphical interface is also under development;

this tool will permit users to design systems graphically, with the tool then

generating the appropriate CCS descriptions.

Finally, it would be interesting to develop machinery for verifying systems

expressed in formalisms other than CCS. A joint project with INRIA-Sophia

Antipolis is being undertaken to develop a front-end generator for the Work-

bench (and other automated tools) that would make it possible to parametri-

ze the system with respect to the process algebra/programming language

used to build agents. Work is also underway on automated techniques for

reasoning about actions with priority, probabilistic processes and real-time

systems (see [4, 10, 18, 24, 34, 49]).

ACKNOWLEDGMENTS

We would like to thank Matthew Hennessy, Robin Milner, and Colin Stirling

for initiating and overseeing the Workbench project. We are also grateful to

Lennart Beckman, Jo Blishen, Patrik Ernberg, Lars-~ke Fredlund, Michael

Mendler, Kevin Mitchell, Fredrik Orava, Bjorn Pehrsson, and David Walker

for many helpful suggestions concerning the implementation of the Work-

bench and the development of this report.

REFERENCES

1. BARTLETT, K. A., SCANTLEBURY, R. A., AND WILKINSON, P. T. A note on reliable full-duplex

transmission over half-duplex links. Cornmun. ACM 12, 5 (May 1969), 260-261.

2. BLOOM, B., ISTRAIL, S., AND MEYER, A. Bisimulation can’t be traced. In Proceedings of the
ACM Symposium on Principles of Programming Languages (San Diego, Jan. 1988), pp.

229-239.

3. BOUDOL, G., DE SIMONE, R., AND VERGAMINI, D. Experiment with auto and autograph on a

simple case sliding window protocol. INRIA Rep. 870, July 1988.

ACM TransactIons on Programming Languages and Systems, Vol. 15, No, 1, January 1993.

70 . Cleaveland et al

4. CAMILLERI, J , AND WINSKEL, G. CCS wkh priority choice. In Proceeclings of the Szxth
Annual symposium on Logx! zn computer Sczence (Amsterdam, July 1991), Computer

Society Press, Los Alamitos, pp. 246-255.

5. CLARRE, E. M., LONG, D. E., AND MCMILLAN, K. L. Compositional model checking. In

Pz-oceedzngs of the Fourth Annual Symposium on Logk zn Computer Science. (Asllomar,

1989), Computer Society Press, Los Alamltos, 1991, pp. 353-362.

6. CLARKE. E. M., EMERSON, E., AND SISTLA, A. P. Automatic verification of finite state

concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8,

2 (Apr. 1986), 244–263.

7. CLEAVELAND, R. Tableau-based model checking in the propositional Mu-Calculus. Acts Inj!

27, 8 (Sept. 1990), 725-747.

8. CLEAVELAND, R. On automatically distinguishmg inequivalent processes. In Computer-Aided

Verzflcation ’90 (Pmcataway, July 1991), American Mathematical Society, pp. 463-477.

American Mathematical Society, Providence, 1991.

9. CLEAVELAND, R., AND HENNESSY, M. C. B. Testing equivalence as a bislmulation equiva-

lence, In Proceedings of the Workshop on Automatzc VerlfLcat~on Methods for Finite-State

Systems, (Grenoble, June 1989), pp. 11-23. Lecture Notes in Computer Science 407,

Springer-Verlag, Berlin, 1989.

10. CLE~VELAND, R., AND HENNESSY, M. C. B Priorities m process algebra. Znf Comput 87, 1/2

(July /Aug. 1990), 58-77.

11. CLEAVELAND, R., PARROW, J., AND STEFFEN, B. The Concurrency Workbench: Operating

Instruct~ons, Tech. Note 10, Laboratory for Foundations of Computer Science, Univ of

Edinburgh, Sept. 1988.

12. CLEAVELAND, R, PARROW, J., AND STEFFEN, B. A semantics-based tool for the verification of

finite-state systems. In proceedings of the Ninth IFIP Symposwm on Protocol Speclficatlon,

Testing and Vertficatzon (Enschede, June 1989), pp. 287–302, North-Holland, Amsterdam,

1990.

13. CLEAVELAN~, R., PARROW, J., AND STEFFEN, B. The concurrency workbench. In Proceedings

of the Workshop on Automatzc Verification Methods for Fmlte-State Systems (Grenoble, June

1989), pp. 24-37. Lecture Notes m Computer Science 407, Sprmger-Verlag, Berlin, 1989.

14. CLEAVELAND, R., AND STEFFEN, B. When is ‘partial’ adequate? A logic-based proof technique

using partial specifications. In Proceedz ngs of the Fifth Annual Symposz urn on Logzc m

Computer Sczence (Philadelphia, June 1990), pp. 440–449. Computer Society Press, Los

Alamitos, 1990,

15. CLEAVELAND, R., AND STEFFEN, B. A preorder for partial process specifications. In Proceed-

zrzgs of CONCUR ’90, (Amsterdam, Aug. 1990), pp. 141–151. Lecture Notes m Computer

Science 458, Springer-Verlag, Berlin, 1990,

16. CLEAVELAND, R., AND STEFFEN, B. Computing behavioral relatlons, logically, In Proceed-

ings of the 18th International Colloquium on Automata, Languages and Programming

(Madrid, July 199 1), pp. 127-138. Lecture Notes in Computer Science 510, Springer-Verlag,

Berlin, 1991.

17. CLEAVELAND, R, AND STEFFEN, B. A linear-time model-checking algorithm for the

alternation-free modal Mu-calculus. In Proceedings of Computer-Azded Verzfzcatzon ’91

(Aalborg, July 1991), pp. 48-58. Lecture Notes m Computer Science 575, Springer-Verlag,
Berlin, 1992.

18. CLEAVELAND, R., AND ZWARICO, A. A theory of testing for real time. In Proceedings of the

Sixth Annual Symposium on Logic in Computer Science (Amsterdam, July 1991), pp.

110–119. Computer Society Press, Los Alamitos, 1991.

19, DE!NICOLA, R., AND HENNESSY, M. C. B. Testing equivalence for processes Theor. Comput.

Sci. 34, (1983), 83-133.

20. EMERSON, E. A,, AND LEI, C -L. Efficient model checking ln fragments of the propositional

Mu-calculus. In Proceedings of the Fu-st Annual Symposium on Logzc in Computer Science

(Cambridge, June 1986), pp. 267-278. Computer Society Press, Washington, 1986.

21. ERNBERG, P., AND FREDLUND, L.-5, Identifying some bottlenecks of the concurrency work-

bench. Tech. Rep. T90002, Swedish Inst. of Computer Science, 1990,

22. FWUiANDEZ, J.-C. Ald6baran: Une s.vstime de u6rzficat10n par z+ductlon de processus com-

municants. Ph.D. Thesis, Universlt6 de Grenoble, 1988.

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 1, January 1993

Concurrency Workbench . 71

23. FREDLuml,L .-&, Jonsson,B .,andParrow,J. An implementation of a transitional semantics

foran imperative language. In Proceedings of CONCUR ’90 (Amsterdam, Aug. 1990), pp.

246-262. Lecture Notes in Computer Science 458, Springer-Verlag, Berlin, 1990.

24. GLARBEEK, R. VAN, SMOLKA, S. A., STEFFEN, B., AND TOFTS, C. M. N. Reactive, generative,

and stratified models of probabilistic processes. In Proceedings of the Fiflh Annual Sympo-
sium on Logic in Computer Science (Philadelphia, June 1990), pp. 130–141. Computer

Society Press, Los Alamitos, 1990.

25. GOYER, J. H. Communications protocols for the B-HIVE multicomputer. Master’s Thesis,

North Carolina State Univ., 1991.

26. GRAF, S.j AND STEFFEN, B. Compositional minimization of finite-state systems. In Comp-

uter-Aided Verification ’90 (Piscataway, July 1990), pp. 57–76. American Mathematical

Society, Providence, 1991.

27. GROOTE, J. F., AND VAANDRAGER, F. An efficient algorithm for branching bisimulation and

stuttering equivalence. In Proceedings of the 17th International Colloquium on Automata,

Languages and Programming (Univ. of Warwick, July 1990), pp. 626–638. Lecture Notesin

Computer Science 443, Springer-Verlag, Berlin, 1990.

28. HAR’EL, Z., AND KURSHAN, R. P. Software for analytical development of communications

protocols. A7’&Z’Tech. J. 69, l(Feb. 1990),45-59.

29. HENNESSY, M. C.B. Algebraic Theory of Processes. MIT Press, Boston, 1988.

30. HILLERSTROM, M. Verification of CCS-processes. M. SC. Thesis, Computer Science Dept.,

Aalborg, Univ., 1987.

31. HOARE, C. A.R. Communicating Sequential Processes. Prentice-Hall, London, 1985.

32. HOLZMANN, G. Design and Validation of Computer Protocols. Prentice-Hall, Englewood

Cliffs, 1991.

33. HOPCROFT, J., AND ULLMAN, J. Introduction to Automata Theory, Languages and Computa-

tion. Addison-Wesley, Reading, 1979.

34. JENSEN, C.-T. The concurrency workbench with priorities. In Proceedings of Computer-Azded

Verification ’91. (Aalborg, July 1991), pp. 147-157. Lecture Notes in Computer Science 575,

Springer-Verlag, Berlin, 1992.

35. JONSSON, B., KAHN, A., AND PARROW, J. Implementing a model checking algorithm by

adapting existing automated tools. In Proceedings of the Workshop on Automatic Verification

Methods for Finite-State Systems (Grenoble, June 1989), pp. 179–188. Lecture Notes in

Computer Science 407, Springer-Verlag, Berlin, 1989.

36. JONSSON, B., AND PARROW, J. Deciding bisimulation equivalences for a class of non-finite-

state programs. In Proceedings of the Sixth Annual Symposium on Theoretical Aspects of

Computer Science (Paderborn, Feb. 1989), pp. 421–433. Lecture Notes in Computer Science

349, Springer-Verlag, Berlin, 1989. To appear in Inf. Comput.

37. KANELLAKIS, P., AND SMOLKA, S. A. CCS expressions, finite state processes, and three

problems of equivalence. Inf Comput. 86, 1 (May 1990), 43-68.

38. LARSEN, K. G. Proof systems for Hennessy-Milner logic with recursion. In Proceedings of

CAAP, (Nancy, Mar. 1988), PP. 215–230. Lecture Notes in computer science 299, springer-

Verlag, Berlin, 1988.

39. LARSEN, K. G., AND THOMSEN, B. A modal process logic. In Proceedings of the Third Annual

Symposium on Logic in Computer Science (Edinburgh, July 1988), pp. 203–210. Computer

Society Press, Washington, 1988.

40. LARSEN, K. G., AND SKOU, A. Bisimulation through probabilistic testing. Znfi Comput. 94, 1

(Sept. 1991), 1-28.

41. LEE, C.-H. Implementering av CCS med vardeoverforing. SICS Tech. Rep. 1989(in
Swedish).

42. MALHOTRA, J., SMOLKA, S. A., GIACALONE, A., AND SHAPIRO, R. Winston: A tool for hierarchi-

cal design and simulation of concurrent systems. In Proceedings of the Workshop on

Specification and Verification of Concurrent Systems (Univ. of Stirling, Scotland, 1988), PP.

140-152, Springer-Verlag, Berlin, 1988.

43. MILNER, R. Communlcatton anct Concurrency. Prentice Hall, 1989.

44. PAIGE, R., AND TARJAN, R. E. Three partition refinement algorithms. SIAM J. Comput. 16, 6

(Dec. 1987), 973-989.

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 1, January 1993.

72 . Cleaveland et al.

45. PARROW, J. Submodule construction as equation solving in CCS. Theor. Cornput. Sci. 68

(1989), 175-202.

46. PARROW, J. Verifjing a CSMA\CD-Protocol with CCS. In Proceedings of the Eighth IFIP

Symposium on Protocol Specification, Testing, and Verifwation (Atlantic City, June 1988),

North Holland, Amsterdam, 1988. pp. 373-387.

47. RICHIER, J., RODRIGUEZ, C., SIFAKIS, J., AND VOIRON, J. Verification in XESAR of the sliding

window protocol. In Proceedings of the Seventh IFIP Symposium on Protocol Specification,

Testing, and Verification (Zurich, May 1987), North Hollandj Amsterdam, 1987, pp. 235-250.

48. ROY, V., AND DE SIMONE, R. Auto/autograph. In Computer-Aided Ver@cation ‘90(Piscata-

way, July 1990), American Mathematical Society, Providence, 1991. pp. 477–49 1.

49. SMOLKA, S. A., AND STEFFEN, B. Priority as extremal probability. In Proceedings of CON-

CUR ’90 (Amsterdam, Aug. 1990), pp. 456-466. Lecture Notes in Computer Science 458,

Springer-Verlag, Berlin, 1990.

50. STEFFEN, B. Characteristic formulae. In Proceedings of the 16th International Colloquium

on Automata, Languages and Programming (Stress a, July 1989), pp. 723–733. Lecture Notes

in Computer Science 372, Sprmger-Verlag, Berlin, 1989.

51. STEFFEN, B., AND ING6LFSD6TTIR, A. Characteristic formulae for CCS with divergence. To

appear in Theor. CornPut. Sci.

52. STIRLING, C. Modal 10Qcs for communicating systems. Theor. Compzd. Sci. 49, (1987),

311-347.

53. STJRLING, C., AND WALKRR, D. J. Local model checking in the modal Mu-calculus, In

Proceedings of TNSOFT (Barcelona, Mar, 1989), pp. 369–383. Lecture Notes in Computer

Science 352, Springer-Verlagj Berlin, 1989.

54. WMmR, D. J. Bisimulation equivalence and divergence in CCS. In Proceedings of the

Thzrd Annual Symposium on Logic in Computer Science (Edinburgh, 1988), pp. 186-192.

Computer Society Press, Washington, 1988.

55. WALKER, D. J. Analysing mutual exclusion algorithms using CCS. Formal Aspects Comput.

1 (1989)> 273-292.

56. WINSKRL, G, On the compositional checking of validity. In Proceedings CONCUR ’90

(Amsterdam, Aug. 1990), pp. 481-501. Lecture Notes m Computer Science 458, pp. 481-501,

1990.

Received February 1990; revised October 1991; accepted January 1992.

ACM Transactions on Programming Langaages and Systems, Vol. 15, No, 1, January 1993,

