L))

Check for
updates

Sequent Calculi and Abstract Machines

ZENA M. ARIOLA
University of Oregon
AARON BOHANNON
University of Pennsylvania
and

AMR SABRY

Indiana University

We propose a sequent calculus derived from the Auji-calculus of Curien and Herbelin that is ex-
pressive enough to directly represent the fine details of program evaluation using typical abstract
machines. Not only does the calculus easily encode the usual components of abstract machines such
as environments and stacks, but it can also simulate the transition steps of the abstract machine
with just a constant overhead. Technically this is achieved by ensuring that reduction in the cal-
culus always happens at a bounded depth from the root of the term. We illustrate these properties
by providing shallow encodings of the Krivine (call-by-name) and the CEK (call-by-value) abstract
machines in the calculus.

Categories and Subject Descriptors: F.3.3 [Logics and Meanings of Programs]: Studies of Pro-
gram Constructs—Control primitives; F.3.2 [Logics and Meanings of Programs]: Semantics
of Programming Languages—Operational semantics; F.4.1 [Mathematical Logic and Formal
Languages]: Mathematical Logic—Lambda calculus and related systems; D.1.1 [Programming
Techniques]: Applicative (Functional) Programming

General Terms: Languages,Theory

Additional Key Words and Phrases: Curry-Howard isomorphism, duality, explicit substitutions,
Krivine machine, natural deduction

ACM Reference Format:
Ariola, Z. M., Bohannon, A., and Sabry, A. 2009. Sequent calculi and abstract machines. ACM

Trans. Program. Lang. Syst. 31, 4, Article 13 (April 2009), 48 pages.
DOI = 10.1145/1516507.1516508 http://doi.acm.org/10.1145/1516507.1516508

This work was supported by National Science Foundation grant number CCR-0204389.

Authors’ addresses: Z. M. Ariola, Department of Computer and Information Science, 305
Deschutes Hall, 1202 University of Oregon, Eugene, OR 97403-1202; email: ariola@cs.uoregon.edu;
A. Bohannon, University of Pennsylvania, 3451 Walnut Street, Philadelphia, PA 19104; A. Sabry,
Indiana University, 107 S. Indiana Ave., Bloomington, IN 47405-7000.

Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2009 ACM 0164-0925/2009/05-ART13 $10.00

DOI 10.1145/1516507.1516508 http://doi.acm.org/10.1145/1516507.1516508

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1516507.1516508&domain=pdf&date_stamp=2009-05-26

13:2 o Z. M. Ariola et al.

1. INTRODUCTION

The study of computation is connected to the field of logic on many different
levels. One of the most striking examples of this connection is the relationship
known as the Curry-Howard isomorphism [Howard 1980]. The core of this rela-
tionship is a correspondence between formal proofs in a logical inference system
and terms of a programming language. The most basic instance of this connec-
tion is the one between minimal natural deduction and the A-calculus. According
to this paradigm, propositions correspond to types and proofs to programs: A
program ¢ of type 7 is also seen as a proof of proposition 7. The reduction rules
of the A-calculus correspond to proof normalization steps. Griffin [1990] ex-
tended this isomorphism to classical natural deduction and an extension of the
A-calculus with control operators. Curien and Herbelin [Curien and Herbelin
2000] further extended the correspondence to sequent calculi. They show that
different ways of executing a program can be observed at the level of the logic.

Based on the pioneering work of Plotkin [1975], programming calculi are
now routinely used to model the semantics of programming languages. The
fundamental theorem that makes a calculus suitable to describe a program-
ming language is the standardization theorem. The semantics of a programming
language is ultimately described with an evaluator, which is a partial function
mapping programs to answers. The standardization theorem mediates between
the axioms of the calculus and the evaluator by giving a deterministic way to
apply the axioms that leads to an answer, if one exists.

When modeled in the calculus, the deterministic strategy of the evaluator
typically consists of a loop which repeatedly searches for the next redex and then
applies one of the axioms. In most known cases (e.g., the leftmost-outermost
strategy), the search phase might go arbitrarily deep in the syntax tree looking
for a redex. This, however, is not satisfactory if one wants to capture the execu-
tion of an abstract machine, which always executes a redex at a fixed position.
This implies the need to introduce a new criterion to characterize a calculus
as a “good calculus” for reasoning about machines. In other words, we need an
analog to the standardization theorem to mediate the relationship between a
calculus and a machine. The criterion we present in this article consists of the
following:

The reductions corresponding to the abstract machine transitions
must occur at a bounded depth from the root of the syntax tree.

Although languages based on lambda-calculi have been successful in sup-
porting reasoning about high-level programs, in this article we focus on sequent
calculi. We show that sequent calculi are more suitable for reasoning about
abstract machines since they allow one to define an evaluator for terms in a
tail-recursive fashion, thus satisfying the aforesaid criterion. A tail-recursive
evaluator captures the dispatch function carried out by a machine. In contrast,
an evaluator for terms corresponding to natural deduction proofs is not tail
recursive, requiring an unbounded search for the next redex.

We present a sequent calculus which naturally embeds runtime data struc-
tures, such as control stacks and environments. We show how such a calculus

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines J 13:3

allows one to simulate the executions of two abstract machines: the Krivine
machine and the CEK machine. The Krivine machine corresponds to a deter-
ministic call-by-name reduction strategy, whereas the CEK corresponds to a
call-by-value reduction strategy. Both strategies are defined in a nonrecursive,
that is, without using recursion, manner. Moreover, they are obtained by choos-
ing a different orientation of a critical pair of the reduction semantics.

Our approach of capturing the operational semantics of the machine directly
through the normalization of the calculus is in contrast to specifying the oper-
ational semantics on top of the calculus. More precisely, our approach entails
the following.

—The state of the abstract machine is captured as a term.
—The transitions of the abstract machine are captured as term reductions.

Our approach provides a shallow embedding of an abstract machine in a cal-
culus/logic, as opposed to a deep embedding. This allows reasoning about the
machine inside the logic itself instead of on top of it. It also allows an elegant
and simple formulation of safety, based on the subject reduction theorem of the
calculus.

1.1 Outline of the Article

Section 2 discusses related work. Sections 3 and 4 are background material.
Section 3 introduces minimal and classical natural deduction and their compu-
tational interpretation. A-calculus and the App-calculus are presented as term
assignments for minimal natural deduction proofs. A-calculus corresponds to
the system with the collection of assumptions organized as a set. The Apg-
calculus, instead of variables to name assumptions, has de Bruijn indices,
and it corresponds to the system with the assumptions maintained in a se-
quence. The extension of A-calculus with control operators is presented as a
term assignment for classical logic. Section 4 introduces Gentzen’s sequent
calculus (minimal LJ and classical LK) and a variant called LK, ;. Curien
and Herbelin A pfi-calculus [2000] is introduced as a term assignment for this
variant.

Section 5 compares A-calculus and the A ji-calculus. One key and distinctive
feature of the Apuji-calculus is that application occurs between a term and an
argument list, rather than a single argument as it would in the A-calculus in
natural deduction style. The use of argument lists in the Auji-calculus grants
a greater range of expressiveness in structuring terms than is available in the
A-calculus, and this more refined level of expressiveness is an essential tool for
capturing the low-level details of f-reduction. The Auji-calculus however is still
not sufficient for simulating abstract machines, as it lacks a notion of environ-
ment or simultaneous substitution. Instead of extending the A fi-calculus with
this notion, mirroring the Ao, -calculus [Hardin et al. 1996], we work within the
Auji-calculus with unary substitution and show how to simulate the notion of
an environment. The resulting calculus is called the Aujirt-calculus.

Section 6 presents the A firt-calculus, which extends the Apji-calculus with
de Bruijn indices, weakening, and explicit substitution. We define the notion

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:4 o Z. M. Ariola et al.

of well-formed term and well-typed term, properties which are preserved dur-
ing reduction. We present call-by-name and call-by-value reduction strategies,
which as for the Aufi-calculus are obtained by resolving a critical pair. Unlike
the case for the A-calculus, in the Aujirt-calculus these semantics are specified
in a nonrecursive fashion. Section 7 defines over the Aufirt an instruction set
which is typical of abstract machines. Using these instructions, the compila-
tion of App terms in Aujirt is presented. The compilation produces well-formed
commands. Section 8 is devoted to showing how the Aujirt calculus faithfully
simulates the execution of the Krivine [2007] and CEK [Felleisen and Friedman
1986] abstract machines. It shows the correspondence between the Krivine
machine and the call-by-name reduction strategy of Aujirt-calculus, and the
correspondence between the right-to-left CEK machine and the call-by-value
reduction strategy of Aufirt. Section 9 defines a type system for the Krivine ma-
chine and the right-to-left CEK machine, shows how the types are preserved
by the translation in the Auji-calculus, and how to use types to reason about
the correctness of different compilation schemes and optimizations. Section 10
concludes.

2. RELATED WORK

There has been previous work directed at modifying the A-calculus so that
B-reduction can be simulated with smaller reduction steps. An important con-
tribution was the investigation of explicit substitutions [Abadi et al. 1990].
Lescanne [1994] offers a comparison of several versions of calculi with explicit
substitutions. Curien et al. [1996] achieved an important goal by proving that
the Aoy -calculus is confluent on both closed and open terms. Furthermore, they
introduce the notion of weak and strong calculi of explicit substitutions. Hardin
et al. [1996] propose a weak calculus of explicit substitution (the Lo,,) as a useful
“calculus of closures” for bridging the gap between abstract machines and the
A-calculus. They use it to prove the correctness of several abstract machines by
developing translations from machine states to terms in the calculus. However,
they fail to capture one important aspect of an abstract machine: Dispatching
the next instruction should not depend on the program to be executed. This in
turn means that the calculus does not model important structures present in
the machine.

This previously mentioned work on calculi with explicit substitutions was,
generally speaking, motivated by the goal of deconstructing g-reduction into
smaller steps. However, another calculus containing explicit substitutions was
designed with an entirely different motivation. This was the i-calculus of
Herbelin [1994], which was conceived as a term assignment for sequent cal-
culus proofs. The explicit substitutions in this calculus are present precisely
for the purpose of encoding a particular proof structure. The subsequent work
of Curien and Herbelin [2000] and of Wadler [2003] in the area of proof terms
for sequent calculus has elucidated some of the symmetries inherent in compu-
tation, including the duality of the call-by-name and call-by-value semantics.
The two strategies are obtained by choosing a different orientation of a critical
pair. Computation is described as an interaction between a consumer and a

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines J 13:5

producer; by giving priority to the consumer one obtains call-by-name, whereas
by giving priority to the producer one obtains call-by-value.

With the recent interest in security, formalization of abstract machines has
attracted a lot of attention: encoding of the Java Virtual Machine (JVM) into
Haskell [Jones 1998; Yelland 1999], ACL2 [Liu and Moore 2004], Coq [Barthe
et al. 2001], and HOL/Isabelle [Klein and Strecker 2004] have been proposed.
These approaches are all based on a deep embedding, whereas we propose an
approach based on a shallow embedding into a foundational sequent calcu-
lus/logic, in which the machine specification becomes executable. Our foun-
dational approach does not immediately scale to the entire JVM. Although the
latter machine is a stack-based abstract machine like the machines we consider
in this article, it also includes some “large” instructions that are intrinsically
tied to the semantics of the Java or bytecode languages: One such instruction
might, for example, load and verify entire classes using a complicated data-flow
analysis. Thus, to formalize the entire JVM using our approach would seem to
require some additional ad hoc axioms and/or reasoning principles.

Our work is close in spirit to Foundational Proof-Carrying Code (FPCC)
[Appel 2001] consisting of working with a minimal logic, the sequent logic in
our case, instead of higher-order logic. In FPCC, the machine’s operational se-
mantics and the typing rules are proved as additional lemmas on top of the
logic. In our approach they are expressed inside the logic itself. Higuchi and
Ohori already have stressed the importance of a Curry-Howard isomorphism
for low-level code [Higuchi and Ohori 2002; Ohori 2005]. They propose typing
Java bytecode with an extension of intuitionistic propositional calculus. How-
ever, they do not provide a formalization of the operational semantics of the
machine inside the logic itself. Also, it does not seem natural to relate bytecode
to an intuitionistic logic since bytecode comes with instructions that modify
the flow of control. These operators are more naturally embedded in a classical
logic, since, as shown by Griffin [1990], they correspond to the double negation
elimination inference rule.

3. NATURAL DEDUCTION AND A-CALCULI

Natural deduction [Prawitz 1965] has become popular, especially in the area of
computer science, for several reasons. One reason is that it has an important
connection with the A-calculus, which is addressed shortly. Its proof system
is also popular because its proofs can be read and constructed in a manner
often considered more “natural” for humans than using Hilbert-style systems
or sequent calculi.

We start with the implicational fragment of minimal propositional logic. Al-
though simple, this logic still has an important relationship with computation.
The syntax of the implicational fragment of minimal propositional logic is given
in Figure 1. A formula is built from a set of atomic types (X), which we leave un-
specified, and a single logical connective (—), which joins two logical formulae.
We use A, B, C, ... as meta-variables that range over the set of formulae.

Natural deduction has several presentations. In Section 3.1 we present
Prawitz’s rules and in Section 3.2 we present natural deduction in sequent form.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:6 o Z. M. Ariola et al.

‘A:::X|A—>A ‘

Fig. 1. Syntax of the implicational fragment of minimal propositional logic.

[A]®
A—B A e B .
B A—B ¢

Fig. 2. Prawitz’ minimal natural deduction.

We also discuss different ways of managing the collection of assumptions, as
sets, multisets, or sequences. In Section 3.3 we discuss the impact of these differ-
ent views on the structural rules. The computational interpretation of minimal
natural deduction is presented in Section 3.4. If the assumptions are collected
in a set then proofs of minimal natural deduction correspond to A-calculus. If
the assumptions are maintained as a sequence, then proofs correspond to the i-
calculus with de Bruijn’s indices. Section 3.5 presents the extension to classical
natural deduction with a brief introduction to continuations.

3.1 Prawitz’ Natural Deduction

The inference rules for Prawitz’ version of minimal natural deduction are given
in Figure 2. There is one rule for the introduction of the implication connective
and one for the elimination of the connective. Proofs correspond to trees where
leaves represent the assumptions. A leaf can be open or closed. An open leaf
means that the assumption is active. A closed leaf corresponds to an assumption
that could have potentially been used in the proof but has been discharged by
the end of it.

Whereas the elimination rule is fairly clear, since it corresponds to the tradi-
tional modus ponens, the notation of the implication introduction rule is fairly
complex. In the introduction rule, the dots from the formula A to the formula B
indicate a proof of B, which can refer to the assumption A zero or more times;
the brackets indicate that, after the introduction of the connective, the assump-
tion A may be discharged; and the variable x associates the use of this rule with
the corresponding discharged assumption.

To know the active assumptions at any point in the proof, one needs to travel
up the tree to the leaves. To remedy this, we present natural deduction in
sequent form. This also provides a more elegant way to clarify some details
about using the implication introduction rule that have been left unspecified.

3.2 Natural Deduction in Sequent Form

A sequent is a syntactic construct for asserting a relation between propositions
(in our case between a collection of formulae and a single formula) which is
written

r - A

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines J 13:7

ILAF B
Awiom LEA=B DA rArB

LA A I - B TFA_-B

Fig. 3. Minimal natural deduction in sequent style with assumptions as sets.

In this example, I" is the antecedent and A is the succedent. Using sequents
to formulate the rules of natural deduction allows clearer distinctions between
the possible methods of managing assumptions. No longer must we work with
open (or closed) assumptions at the leaves of the proof tree; instead, the leaves
contain an instance of an axiom in the inference system, and assumptions are
internalized into the antecedents of the sequents. Therefore, to know the cur-
rent collection of active assumptions, one simply looks at the left-hand side of
the sequent.

When using sequents, it is necessary to specify what sort of “collection” the
antecedent is. There are several possibilities: sets, multisets, sets of named for-
mulae, and sequences are the primary candidates. We first present in Figure 3
a system where the antecedents should be interpreted as a set of formulae. We
use the comma to indicate the union of a collection and a single formula (as in
T, A).

The correspondence with the previous form of natural deduction should be
fairly clear. This system corresponds to a version of Prawitz’ natural deduction
in which the following observations hold.

(1) A prooftree may have associated “leaves” that are not directly connected to
its branches. This arises from the fact that the axiom allows an arbitrary
set of extra assumptions as in A, B - A.

(2) Implication introduction may not occur if there are no open assumptions
of the formula associated to the tree, as for example one cannot derive
B+ A — Bfrom B+ B.

(3) No discharge need actually take place. This arises from the fact that I' may
actually contain A, in which case ', A=T,asin A~ A — Afrom A+ A.

(4) All equivalent (i.e., corresponding to the same formula) open assumptions
in the tree must be simultaneously discharged (and hence marked with the
same name) if any of them is discharged. For example, in the proof

(A"
[AF B> A |,
S NG
A—-(B—-A '
both occurrences of formula A will be deleted by the second implication
introduction. This is inherent in the use of sets to maintain assumptions.

Here is a simple proof in the system.
AF A Axiom
A ASA L
FA-A-A !

In the first implication introduction step, the assumption A is not deleted. If it
were deleted, the second implication introduction step would not be possible.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:8 o Z. M. Ariola et al.

A - B
Asiom L HA=B D EA LrArB

TLA T F A T - B T - A>B

Fig. 4. Minimal natural deduction in sequent style with assumptions as sequences.

L F B eakeni IA,AFE B .
TAF B eakening T.AF B Contraction
AT ,BT" + C
r,B,I", AT + C

FExchange

Fig. 5. Structural rules.

Had we decided to manage assumptions with multisets, we would only have
to reinterpret the rules in Figure 3; the comma becomes the sum of multisets.
In this new interpretation, the third and fourth previous statements would be
replaced with the following.

(3) Exactly one open assumption in the tree must be discharged.

The proof of A—~A— A in this system is

A,A - A Axiom
A ASA
FASASA

Although these two versions of natural deduction in sequent form provide some
clarification on the use of implication introduction, they both lack some expres-
sive power with respect to Prawitz’ version. Each of the preceding proofs could
correspond to either of the two that follow.

[A]* . [A]* y
AsA Tl ASA T,
A->A—-A i A-A—-A T

Using sets of named assumptions solves half of the problem. We could then tell
which open assumption was discharged during an implication introduction, but
would still not know which assumption corresponds to the succedent in the ax-
iom rule. One solution to this problem is to attach names to the succedent in the
axiom rules. Another solution is simply to use sequences to manage assump-
tions. This requires a modification to the axiom, and the resulting system is
presented in Figure 4. We return to this system in Section 3.4, where de Bruijn
indices are discussed.

3.3 Structural Rules

When working with multisets or sequences, it is sometimes necessary to add
structural rules. The three structural rules typically considered are weakening,
contraction, and exchange (Figure 5). Clearly, in a system that uses sets of
assumptions, only weakening is relevant, and in a system that uses multisets,
only weakening and contraction are relevant.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines J 13:9

t o=z | (Axt)| (tt)

Fig. 6. Syntax of A-calculus terms.

Nez:AF xz:A Aziom
'+t:A— B l—‘Fu:A_>E 'z:AF t:B _,
' (tuw): B ' - (\zt): A— B

Fig. 7. Assignment of A-terms to proofs in minimal natural deduction.

Adding these structural rules to a system may not alter the set of sequents
that is provable in the system; in that case, the structural rules are admissible
(but not derivable). This is the case for the three systems of natural deduction
presented. It is worth noting that the precise formulation of the inference rules,
especially the axiom, can influence the admissibility of various structural rules.
For instance, if we had used the axiom

A A Axiom

in any of the previous inference systems, then weakening would have been
necessary to make the inference system complete and would no longer be an
admissible rule.

3.4 The A-Calculus and Minimal Natural Deduction

There is a natural bijection between the terms of the basic A-calculus and proofs
in minimal natural deduction. The syntax of the A-calculus is presented in Fig-
ure 6. The method for matching proofs to A-terms is described by the inference
rules in Figure 7. In particular, whereas A-terms correspond to proofs, formu-
lae correspond to types. In this case, we are encoding proofs from a system
that manages assumptions with sets of named formulae with a provision in the
axiom to assign a name to the formula in the succedent of the sequent.

Once we can encode proofs as terms, it becomes much easier to work with
transformations on proofs. The Curry-Howard isomorphism is properly an iso-
morphism because the reduction rules of the A-calculus correspond to correct
proof normalization steps. Reduction in the A-calculus is done by means of the
B-rule.

xt)u — t{x :==u)

Here we use the notation ¢{x := u} as meta-syntax to describe the term ¢, with
all free occurrences of x replaced with the term u. A term with no occurrences
of a B-redex is said to be in normal form.

To assign terms that can represent proofs in the system with the collection of
the assumptions interpreted as a sequence, one needs to slightly modify the A-
calculus. Instead of working with variables, one works with de Bruijn’s indices
representing the assumption’s position in the sequence I'. We call the new terms

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:10 o Z. M. Ariola et al.

t n=n || (tt)

Fig. 8. Syntax of App-terms.

(Al =n) P Ft:A-B T Fu:A Ak t:B _
Axziom —e o i
NLAAFn+1:A '+ (tuw): B ' - X:A—B

Fig. 9. Assignment of App-terms to proofs in minimal natural deduction.

Lpp-terms; their syntax is given in Figure 8. The assignment of terms to proofs
and the typing rules of Ay g-terms are in Figure 9. (We use the notation |I'| here
to represent the number of assumptions in the sequence I'.)

As mentioned by several authors [Curien et al. 1996; Lescanne 1994], we do
not actually need to depend upon an externally defined set of natural numbers;
instead, we can integrate them into our calculus if we add a unary operator %,
as described in Figure 10. There are no natural numbers here. Instead we may
define them as follows.

li=et 2:=(eP)1 3:=(ePNMND1t 4:=leD) DM

The new terms correspond to a logic with an explicit weakening rule. These
typing rules are given in Figure 11.

Intermezzo 3.1. In Section 7 the App terms are translated into a lower
language which corresponds to a variant of natural deduction with multiple
conclusions given in Figure 12.

3.5 Control Operators and Classical Natural Deduction

Classical logic is obtained by extending the set of formulae with the absurd
formula 1, which stands for the false proposition. The formula | has no intro-
duction rule and one elimination rule.

r,—A F 1
“TEA Reductio Ad Absurdum

where —A stands for the formula A — L. A single application of the rule leads
to the Ex Falso Quodlibet rule which says that from a contradiction any formula
can be derived.

=1
r-A

Ex Falso Quodlibet

Griffin [1990] showed that the Curry-Howard isomorphism extends to an
isomorphism between classical proofs and A-terms with operators for manipu-
lating first-class continuations. An example of such an operator is the operator
C which was introduced for reasoning about Scheme programs [Felleisen et al.
1987; 1986; Felleisen and Friedman 1986]. Intuitively, an application of the C
operator marks the current context with a label that can be later used to “jump
back” and resume from that point. For example, in the term 1+ C (Ak.2 + & 3)
variable % gets bound to the context surrounding the C application which is
represented as 1 + (0. When this context is invoked, the execution aborts the

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines o 13:11

tou= e | X)) (D) ‘

Fig. 10. Syntax of »pp-terms with explicit weakening.

' t: A)
A - TR gk
TAF oA A%0Mm TpE (). A ey
I' Ht:A— B Fl—u:A_,e I''A+t:B)
I+ (tu):B - M:A—B '

Fig. 11. ipp-terms and minimal natural deduction with weakening.

pending addition to 2 and instead reinstates the captured context with O re-
placed with 3. The final answer is 4. Given this intuitive semantics, it is clear
that one can represent the context (1 + 0J) as a function which takes an integer
to be added and never returns, that is, it is safe to give the function the type

int — L. Griffin adds C to the A-calculus and shows that the resulting sys-
tem corresponds to classical natural deduction as shown in Figure 13. As the
last rule shows, the construct C(A%.t) corresponds to the proof by contradiction
inference rule.

4. SEQUENT CALCULI AND THE xuji-CALCULUS

Having considered natural deduction, we now turn to the sequent calculus,
which has been appreciated, since its introduction by Gentzen [1969], for its
symmetry and its applicability to automated proof search. Instead of having
introduction and elimination rules as natural deduction does, the sequent cal-
culus has right introduction rules and left introduction rules. Additionally, it
has the significant cut rule.

In Section 4.1 the minimal sequent calculus LJ is presented. As for nat-
ural deduction, the issue of how to organize the collection of assumptions
is discussed. In Section 4.2 we present the classical sequent calculus LK. In
Section 4.3 we present the sequent calculus LK, ; which solves the issue of LK
of having different normal (i.e., without cuts) proofs of the same formula. In
Section 4.4 we present Curien and Herbelin Auji-calculus as a term assignment
for LK.

4.1 The Minimal Subset

The inference rules of the minimal subset, called minimal LJ, are given in
Figure 14, where I' stands for a set of assumptions. This system is complete;
all of the sequents that are derivable in the systems of natural deduction that
we previously considered are also derivable in this system. Furthermore, it is
complete without the cut rule; that is to say, the cut rule is admissible. (Demon-
strating this fact is not trivial, as it would be to demonstrate the admissibility
of weakening in one of our previous systems.)

Even though the cut rule is admissible, its presence gives the sequent
calculus a certain expressiveness that is quite valuable. For instance, it is

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:12 o Z. M. Ariola et al.

I F AA T,AF A
TAF AA T F A
I - A-BA A F BA
A F B,A T F A-B,A

Fig. 12. Alternative deduction system with multiple conclusions.

tu=ax| .t |ttt | C(Ak.t)

'z:AF ac:AA‘m.Om
' -¢t:A—B Fl-u:A_,e Nz:AF t:B ‘
I'F (tu):B - Xxet:A—B '

I'k:-AF t: L
I'F C(Akt): A

Fig. 13. AC and (classical) natural deduction.

relatively trivial to give a translation of natural deduction into sequent cal-
culus when the cut rule is present. This expressiveness is one of the primary
factors that makes the sequent calculus so useful as a basis for computational
structures.

Remark 2. Innatural deduction, the presentation of the systems using sets
and multisets required no typographical changes to the inference rules. Thus,
we may be inclined to believe the same holds true with the sequent calculus.
However, if we wish to maintain the property of cut admissibility, this is not
the case. Consider the following proof.

ASB - Ao B Aviom Zopa 4 Axiom ,
-1 Axiom
(A-B)-A,A>B + A (A—-B)—»A,A—B,B - B N

(A>B)—A,A>B - B !

This is a valid proofin the system of Figure 14 where assumptions are managed
as sets. Note that in the left introduction step just before the conclusion, there
is an implicit contraction step. In the application of the rule, we have

=(A—B)—>A,A—B.

However, the newly formed formula on the leftis A— B, which is already present
as an assumption. So we get I', A— B = I'. This contraction would not be auto-
matic if assumptions were kept as a multiset. There is no way to remedy the
situation without changing the inference rules. We may either alter the left
introduction rule or add a contraction rule to the system. We take the latter
choice: The resulting system is presented in Figure 15.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines o 13:13

mAwiom
TFATBFC A+ B
TLA=BF C Y Tra=B |

I'-A IAF B
T F B

Cut

Fig. 14. Sequent calculus with assumptions as sets (Minimal LdJ).

TAF A Aziom

A IDBFC A+ B
TA-BF C ' TFaoB

T

A A - B A IAF B

r.arp o T - B ut

Fig. 15. Minimal sequent calculus with assumptions as multisets.

4.2 The Classical Extension

Whereas classical natural deduction (with the exception of Parigot’s classical
natural deduction [1993]) is obtained by adding rules that break the symmetry
of introduction and elimination rules, the classical sequent calculus is rendered
by simply allowing multiple conclusions, as expressed in the judgment

rt=A

where A is a set of formulae. The judgment has a simple reading: The conjunc-
tion of the assumptions implies the disjunction of the conclusions. The system
called LK is shown in Figure 16.

It may not be immediately clear why having a set of conclusions in the judg-
ments makes the system classical. The intuition will be clear after we introduce
the term assignments relating the logic to A-calculi with control operations. In
that term assignment, each formula in the set of conclusions will represent
a “continuation.” A system with one conclusion like LJ from the last section
corresponds to a language with exactly one current continuation, that is, a lan-
guage with no global control effects. A system like LK with several conclusions
corresponds to a language with several live continuation variables, that is, a
language with first-class continuations.

4.3 The Logic LK,

An issue with LJ or LK is that although the cut rule is admissible, there are
often multiple cut-free proofs of the same sequent. For example, the following
two proofs of the same formula are distinct and neither contains any detour,
that is, they are both in normal form. The problem, however, is that they are
both associated to the same A-term [Herbelin 1994].

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:14 o Z. M. Ariola et al.

LA F AA Amem
- AA I'BFA | I'A + B,A
TA-BF A Y TFa=BAa

I'FAA TLAF A
T F A

Cut

Fig. 16. The LK sequent calculus.

Example 3.

A C - Advom 3¢ g BAxiom
A->B,ACF B _ !
A-B,A+- C—B '

, ACBG- B Afj"m
Ar Addiom LB CoB
A>B,AF C>B !

A solution to this permutability of the left and right implication rules is offered

by Danos et al. [1993] and more recently by Curien and Herbelin [2000]. In the

more recent solution, Curien and Herbelin define a restriction of LJ (LK) called

Ld,; (LK,z), which restores the bijection between cut-free proofs and A-terms

in normal form. The restriction forces the application of the left introduction

rule as soon as it becomes applicable. Thus, only the first proof is a legal proof.
The logic LK, ; uses three distinct judgments

F''-A|lA T|AFA TFA

where I' and A are sets of formulae. There is a difference between the formulae
in I and A and the formula A explicitly mentioned in the first two judgments.
The formulae in I" or A are formulae that are passive or unfocused. Formula A
is an active formula also called a distinguished formula. The symbol | is used
to separate the distinguished formula from the rest of the passive conclusions
and passive assumptions, as shown in the first and second judgment, respec-
tively. The presence of this extra symbol does not change the meaning of the
judgments; the conjunctions of the assumptions still implies the disjunction of
the conclusions.

The inference rules are shown in Figure 17. In the Axiom, axiom, formula A
is separated from the rest of the formulae in A which means that A is an
active conclusion. Analogously, the dual axiom Axiom; allows one to single out
a specific assumption, which again becomes the active assumption, and thus is
separated from the rest of the formulae in I' with the | symbol. The presence
of active formulae is what distinguishes the implication rules and the cut rule
from the corresponding LK rules. For example, notice how in the premises of
the right implication rule formula B must be an active assumption. Thus, given

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines o 13:15

- -
TIAFAA 7™ T AF aja 200

P FA[A T[BFA I A+ B|A
T[A=BF A " Tra=B[A

—

0LA - A , L+ AA
m Actwatel m ActwateT
' A|A T|AF A
' - A

Cut

Fig. 17. The LK, ; logic.

the judgment A = A | B, A, one cannot infer - A — B | A since formula B is
not active.

To focus on a specific assumption or conclusion one needs to use the Activate
rules. These rules, however, only apply to judgments with no distinguished
formulae and hence it should be possible to also “passivate” or unfocus the
distinguished formula. This is accomplished by the cut rule.

For example, given the judgment A = A | B, A, to focus on B one first needs
to unfocus A.

Axiom,
A+ B A

AF A|BA

ATA - B, A Axiom
Cu

Now that the judgment has no active formulae, we focus on B using the Activate,
rule.
AF B A

m Activate,

At this point one can apply the right introduction rule to obtain = A — B | A.
Analogously, given a judgment with no active formulae either on the left- or
right-hand side, the Activate; allows one to select an assumption. For example,

A,A— B,C - B AA— B,C - B
A—- B C|A+ B AL CIA> B+ B’

Example 4. The lefthand side proof of Example 3 is expressed in LK, ; as
follows:

A>BACFA|B A->BAC|BFB

AA>BCFA-B|B A->BAC A>BF B
AA>BCF B
ASB,ACHK B
A BAFC > B

Cut
Activate,

r

As remarked in Curien and Herbelin [2000], the lack of special rules to un-
focus the distinguished formula destroys the cut elimination property. For ex-
ample, the cut in the previous proof cannot be eliminated.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:16 o Z. M. Ariola et al.

Terms v = x| Az | pac
Contexts e == a|v-e|fix.c
Commands ¢ == (v | e)

Fig. 18. Syntax of the Auji-calculus.

4.4 The xuji-Calculus and the Logic LK ,;

Curien and Herbelin’s Apfi-calculus [2000] is a term assignment for the LK, ;
variant of Gentzen’s sequent calculus. The syntax is given in Figure 18. There
are two “dual” syntactic categories: terms which are producers of values and
contexts which are consumers of values. The interaction between a producer and
a consumer is rendered by a command, which can also be seen as a hole filling
operation. The duality of terms and contexts is also reflected at the variable
level. One has two distinct sets of variables. The usual term variables range
over by x, and the context variables range over by «. The context variables
correspond to continuation variables.

To gain some intuition about the constructs of the calculus, we explain how
to express in Auji, the A-term (Ax.Ay.x + y +2) 1 z. The producer corresponds
to the function part of the application, that is, the function Ax.Ay.x + y +z. The
consumer corresponds to the arguments which are packaged up in a list made
from the constructors “nil” (o) and “cons” (-) as follows: 1 - z - «. Intuitively, the
first argument 1 is waiting to consume a function; then the second argument
z consumes the next function; and finally variable « indicates what to do next.
Putting the producer and consumer together gives us the command (Ax.Ay.x +
y+2z|1-z-a). The context 1 -z - « intuitively corresponds to the context
a ((O1) z), and the command can be seen as filling the hole of the context with
the lambda term. With the u construct, one can give a name to a context so to
invoke it later. For example, to execute the preceding command and return its
result to the top level one writes uo.lx Ay x+y +z|1-z-a).

As the u construct gives a name to a context, it is equivalent to Felleisen’s C
control operator. More precisely, ua.c can be written as C(La.c).

Whereas 1 names a context, the dual construct i gives a name to a term.
For example, one can read jix.c as the let expression ‘letx =0in ¢’

The type system uses the following three judgments

Fr'Cv:AlA Fle:AF A c:(C'EA)

where I' and A are sets of named formulae or types. I contains the types of the
free term variables, and A contains the types of the free continuation variables.
Whereas continuation variables in Prawitz’ classical logic are kept in the left-
hand side of the sequent and typed with formulae of the form A — 1, in here
the continuation variables are kept in the righthand side of the sequent and
typed simply with A. The reading of the first judgment is as usual: Term v has
type A. The second judgment reads as: Context e is waiting for something of
type A. In other words, A is the type of the hole in the context. Commands are
typed using the third judgment, which indicates that we have an active formula
neither on the lefthand side nor on the right-hand side of the judgment.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent

Calculi and Abstract Machines o

13:17

.
Ta:AF a:A4,A 7M™

F'Fv:A|A I'le:B F

.
To:AF a:A[A 0

A Nz:AFv:B|A
—

fv-e:A—B F A

c: Tx:AF A)

: ' Ad@xv:A—B|A

c: T F a:AA)

I'pzre: A A Activate, '+ pac: A A Activater
Fwv:A|A I‘|e:AI—AC
wle : (T F A) ut

r

Fig. 19. Type system for the Apji-calculus.

The type system is given in Figure 19. Analogously to the Axiom,, its dual
axiom reads as: Given that continuation variable « has type A one can safely
assume that the context « is waiting for something of type A. For the —; rule one
has: Given that v has type A and the list of arguments is waiting for something of
type B, the newly applicative context v-e is waiting for a function of type A — B.
The reading of the cut rule is: Given a producer of type A and a context e waiting
for something of type A, the type of the command is a judgment containing the
types of the free term variables and of the free continuation variables occurring
in the command. The Activate, rule turns a command into a producer. Notice
that since A can contain multiple conclusions, one has freedom in choosing a
potential output. For example, given

c: TkrFa:AB:B)

by selecting «, one obtains the producer ua.c of type A and by selecting 8, one
obtains the producer uj.c of type B. Whereas the Activate, permits the selection
of a conclusion, the Activate; (or equivalently the i) permits the selection of
an assumption. As before, one has a choice in selecting the assumption. Thus,
given

c:x:B,y:AF A)

one can select x to obtain the consumer jix.c of type B or select y to obtain the
consumer jiy.c of type A.

4.5 Reduction Semantics for the A i-Calculus

The calculus has three basic reduction rules which can simulate either a call-
by-value or a call-by-name semantics.

(B) (Axv|v'-e) — (V'] fax.(v]|e))

(W) (pecle) — cla:=e}

() (] pxe) — clx:=v}
In the first reduction, a procedure is paired with a context that has an argu-
ment v’ on the stack. The argument v’ becomes the new producer, and the new

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:18 o Z. M. Ariola et al.

context receives the value of v/, binds it to x, and continues with the body of
the procedure and the stack e. This reduction seems to model a call-by-value
semantics but the issue is more subtle; it all depends on what a value is, which
in turn depends on how a command (ua.cy | fix.ce) evaluates. In the call-by-
name semantics, the ji-rule has higher priority, the argument v’ is immediately
absorbed (without evaluation). In the call-by-value semantics, the u-rule has
higher priority, thus forcing the evaluation of v'.

Remark 5. The Aufi calculus is not confluent. For example, the term

up.-(Ax.z | pa(y | B) - B)

will reduce to uB.(z | B) according to call-by-name.

uB.(Ax.z | nafy | B)-B) —p
uBAualy | B) | ix.(z | B)) —x
uB.(z | B)

The same term will reduce to u8.(y | B) according to call-by-value.

puB.-(Axz | pa(y [B)-B) —p
uB(na(y | B) | ix(z [B)) —u
uBy 1 B)

5. APPLICATIVE TERMS, ENVIRONMENTS, AND CONTEXTS

Our central claim is that sequent calculi are more appropriate for the simu-
lation of abstract machines. The essence of this claim is that a reduction of
terms corresponding to sequent calculus proofs is naturally tail recursive. In
contrast, reduction of terms corresponding to natural deduction proofs is not
tail recursive, requiring an unbounded search for the next redex which may be
located deep inside the term. We explain this point in Section 5.1 by compar-
ing the structure of proofs in natural deduction and sequent calculus. There is,
however, a problem with substitution, as discussed in Section 5.2.

5.1 The Structure of Applicative Terms in A- and A fi-Calculi

Consider the following two proofs of the same formula from the same assump-
tions.

I''+-A—- B—-C—D FI—A_>€

r-B—-C—D =B _,
r-C—>D “rec o,
r-D
and
r-C|D r|\D+D
r-B|D F|C—>DI—D_>Z
rA|D F|B—>C—>D|—D_)
r'-A-B—-C—D|D rA-B—-C—D+FD
D , . Cut
TFD| ctivate,

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines o 13:19

U (31

us «

Fig. 20. The structure of applicative terms in the A-calculus and the Auji-calculus.

The first proof is in the usual natural deduction style and corresponds to the
typing judgment of the A-term (¢ w1 ug ug3) as given next.

'-r¢t:A—-B—-C—D T'lFui:A
''-tu;:B—C— D '~ug:B
'tuius:C— D '~us:C
I'tuiusus:D

The second proof is in the LK ,; sequent calculus and corresponds to the Aufi-
command (t | u; - ug - ug - @) as given next (we sometimes omit the passive
conclusion D).

Fu3:C T'la:DF+a:D
I'us: B Nus-a:C—-DFa:D
F~ui:A MNug-us-a:B—-C—-DFa:D
r-t:A—-B—-C—D 'wi-us-ugs-a:A—-B—-C—-DrFa:D
(t|lui-us-uz-a) : (' - a:D)
' pot |uy-us-ug-a): D

While the expressions look somewhat similar, their abstract syntax trees are
quite distinct, as revealed by Figure 20. If ¢ is the term Ax.1y.Az.z, in the case
of the A-term, the redex is at the bottom of the syntax tree but in the case of
the Apfi-term, it is at the top. This means that g-reduction would, in general,
require a search at an arbitrary depth into the A-term but not in the iuji-
term. This is shown in the following two reduction sequences, where the redex
performed at each step is underlined.

(Ax.Ay.Az.2)uy ug ug —

Ay .Az.2)ug usg —
(\z.2)us —
us

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:20 o Z. M. Ariola et al.

no(Ax.Ay.Az.z |uy-ug-us-a) —
poe{uy | flx (Ay.Az.z | ug -us - a)) —
no(Ay.rz.z |ug-us - o) —>
ua.(Az.z | us - a) —>
us

Notice how in the Auji-calculus there is always a redex within a bounded dis-
tance from the top of the syntax tree.

As described by Ager et al. [2003], one can obtain a tail recursive evaluation
by translating A-terms into Continuation-Passing Style (CPS). Our approach
instead is to translate A-terms into the Apjfi-calculus which uses continuations
but avoids the explicit conversion to CPS.

Consider the A-term ¢ uq us us which can be directly embedded in the Auji-
calculus as (ua.(ua.{t | ui-a) | ug-a) | us-a). The embedding actually represents
a translation from a proof in natural deduction to one in the sequent calculus.
The resulting Ajufi-term reduces as

(o (po(t | uy - o) [ug - o) |ug-a) —
(ot |ur - o) | ug-ug - @) —
(tlur-ug-us-a)

where each reduction occurs at the top of the term. The final term has the
structure shown on the right of Figure 20.

Indeed, the connection between CPS and abstract machines is quite deep. In
particular, Reus and Streicher [1998] present a rational reconstruction of the
Krivine abstract machine from the “natural” denotational continuation seman-
tics of the A-calculus.

5.2 The Problem with Substitution

The version of the Auji-calculus presented before uses symbols to refer
to variable names and includes substitution as a metaoperation. In typi-
cal abstract machines names are replaced by indices and substitution is
typically expressed at a lower level using calculi with explicit substitu-
tions [Abadi et al. 1990]. Consider such an extension for Auft with terms such
as

tlx < uilly < wollz < usl.

The problem with such an addition is that one loses the capability of always
reducing at a bounded distance. In fact, the preceding potential redex (the one
underlined) is now buried within the syntax tree instead of being at the top.
Since there is no limit on the number of substitutions, we may have sequences
such as

tlxr < willeg < uol - -+ [, < uyl,

where the depth of the redex cannot be determined statically.
In other words, a direct extension of A i with explicit substitutions requires
unbounded search for redexes. To avoid this unbounded search, the calculus

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines o 13:21

Terms v ou=r|Arw | pke|vr |vw
Contexts e n=tp|k|v-e|frcler|ew
Commands c = (v|e)|er|cw
Continuations Vars k == «a|~

Substitutions T u=[r—v] | k¢
Weakenings w o= 1" | 1*

Fig. 21. Syntax of the Aujirt-calculus.

should be extended with a notion of simultaneous substitution, which directly
encodes the environment used by an abstract machine. This is, for example,
the approach followed in the Ao, -calculus [Hardin et al. 1996], in which the
previous term becomes

t [u1.ug.usz.id]

where we have assumed the variables x, y, and z correspond to the de Bruijn
numbers 1, 2, and 3, respectively.

Thus, in order to get closer to the level of abstract machines, we modify the
Auji-calculus by moving to de Bruijn indices and by including environments.
However, unlike the various calculi for explicit simultaneous substitutions, en-
vironments need not be modeled as a new primitive notion in the A fi-calculus:
Just as lists of arguments are modeled using contexts, environments too can
be modeled using contexts. In practice, this idea corresponds to the usual tech-
nique of maintaining both the arguments and the environment on the runtime
stack [Douence and Fradet 1998].

6. THE rpirt-CALCULUS

We present the Aujirt-calculus: its syntax, types, and reductions. We then il-
lustrate how both the call-by-name and call-by-value semantics can be defined
using reduction sequences which always apply reductions within a bounded
distance from the root.

6.1 Well-formed Terms and Types

The Aujirt-calculus builds on the Auji-calculus with explicit substitution by
adding explicit weakening. Its syntax is given in Figure 21. As in the Aujfi-
calculus, the syntactic categories v, e, and ¢ correspond to terms, contexts, and
commands, respectively. There is, however, only one term variable r, which
corresponds to a fixed register (the accumulator). There are also only two con-
tinuation variables, « and y, which allow one to simulate the environment and
the working stack of arguments, respectively. We also admit a continuation con-
stant called tp which denotes the top level. One does not have an unbounded
number of consecutive weakenings or substitutions. There are at most three
consecutive weakenings or substitutions. To express these syntactic restric-
tions we define in Figure 22 the notions of well-formed terms, contexts, and

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:22 . Z. M. Ariola et al.
—— Aui — Auxiom, —— Awi
T ziomy p— ziom, o TIOMy
oA F|el—A_) rkEolA
F'fv-ek A F Aro | A "
C:(T}—A)At. . c:(]."}—k:,A)At_t
| gr.c B A chvate I' - pkel| A chvater
F''ov|A T]lebk A
ut

(v]ey : (T A)

Substitution rules:

rEov|A FJ A Fr'ov|Ak Tlebk A
Fofr—o] | A T F ofk—el|A ur
rle A FolA F'lek Ak Tle B A
Sel 7 Se,'
|e[r—v] F A I'ek—¢€] F A
c: (rkF A }—v|AS c: (''F AJk) TlekF A
drev : (Fa) 79 k—e : (T F A) o
Weakening rules:
oA r-o|A y
r ol A L -olk|Ak
le H A 'letk A .
rlel” F A Lleth - Ak
c: (' A) c: (' H A .
T FA) Y etk AR

Fig. 22. Well-formed Aufirt terms, contexts, and commands.

commands using the following three distinct judgments.

F-v|A Cle - A c: (T F A

I' contains at most one term variable. The set A is restricted to at most two
distinct continuation variables. The sets I' and A correspond to the set of free
term and continuation variables, respectively, occurring in either v, e, or c. The
function fv" which determines if 7 occurs free in a term can be defined as the

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines o 13:23

following.
£v'(r) = {r}
v (Ar.v) = {}
v (uk.c) = £v'(c)

v (vlr < v']) = {}
v (vlk <e]) = £V (v)
v (v 1) = {r}
v (v) = fv'(v)

The £v" on commands and contexts, and the function which determines the free
continuation variables, are defined in a similar way. For example, the following
judgments are not derivable

r = Arr| | tp F «

since r does not occur free in Ar.r and o does not occur free in tp. When we write
A,k : Awe assume k& does not occur in A.

The reading of the axioms is as follows: term variable r (continuation variable
k)is well formed if it occurs in the set of free term (continuation) variables. Also,
the constant tp is well formed. Notice that the axioms do not have redundant
assumptions. For example, none of the following judgments is derivable.

rtErl|a ria - a rioa b oy

They can, however, be obtained by applying weakening steps.

m Axioml
r g A larFa
Wo, We,

rEr1Ya rliatt F o,y

As shown next, (Ar.r) is a well-formed term.
Axiom,

rk+=r| =
r

= arr |

Notice that in the conclusion the set of assumptions is empty. To derive judg-
ments with additional assumptions, explicit weakening steps must be used. For
example, we can derive the following three judgments.

r = Qrr)t| F Qrr) 1Y | a r = Qrr)t"Y la, y
The term Ar.Air.r is not well formed, as one cannot infer » ~ Ar.r | . However,
ar.((ar.r) A7) is well formed.

= Arr |
r = Qarr) 4|
E ar.(rr) |

Wy,

r

Notice that r occurs free in (Ar.r) 1".

On the surface, the left implication rule does not seem to impose any re-
strictions. However, even a simple context such as r - « is not well formed. The
reason is that both the argument and the rest of the context (« in this case)

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:24 o Z. M. Ariola et al.

need to have the same set of free term and continuation variables. To that
end, weakenings are added to the parameter and the rest of the list as shown
next.

mAle;mr m“‘ﬁ;ﬁml
rEr1Ya Ur riat Fa el
—1

rirtat Fa

For the same reason, the context (Ar.r) - « is not well formed. One would need
to write (Ar.r) 1¢ -«a. Like for the lambda rule, in the & rule, variable r needs
to occur free in the body. This explains the presence of the weakening in the
term gr.((Ar.r | tp) 1"). The same holds for the dual x construct; thus, one
writes po.((Ar.r | tp) 1%). In the command rule, both the term and the context
share the same set of assumptions. Thus, for example, a command of the form
(r | «) is not well formed. The command becomes well formed after adding the
appropriate weakenings: (r 1* |« 17).

The substitution removes an assumption either on the left-hand side or the
right-hand side of the sequent. Thus r[r < v] has an empty I'. According
to the inference rule for v[r < v'], v’ is checked in an empty I'. This means
that v’ cannot refer to r. For example, the term r[r < r] is not well formed.
The number of consecutive substitutions is at most three. If we were to al-
low circular substitutions, then this property would not hold since we could
have an unbounded number of substitutions: r[r < r][r < r]---. In applying
a substitution to a term, the sets I' and A have to be the same as the ones
needed to check the term itself. The same holds for a context or a command.
Thus, the term r[r < py.((Arr) 1% | «)] is not well formed. One has to write
r 1Y [r < uy (Qrr) 11 | o 1)), Also, the term (Ar.r)[r <« v] is not well
formed. One would need to write (Ar.r) 1" [r < v] as shown next (assume v is
closed with respect to term and continuation variables).

m Axwmr

= Arr |
A N /4
rEorm] Y ko

Sy,

E rr) " [r < vl |

A weakening step introduces one more assumption, either on the left-hand side
or on the right-hand side of the sequent. Since I' and A are restricted to at
most one and two variables, respectively, one has at most three consecutive
weakening steps. Moreover, the weakenings have to be distinct. For example,
(Ar.r) A"4" is not well formed as ~ (Ar.r) 1" is not derivable. Analogously, the
context y 1“1* is not well formed. In a term v 1¢, the weakening indicates that
« does not occur free in v. The same holds for a weakening on a context or a
command.

ProposiTioN 1. Given
vl A F'le - A c: (T F A)
then:

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines o 13:25

[g L aem ——————— A
|k:AF Ek:A wom r:AF r:A| Aziom [tp: A + wot

FkFov:AlA l“|e:BFA_> r:AFv:B|A _
T|ve:AsBF A " TFaw:A-B|A

r

C:(T:AFA)At' . c: (T'F k:AA)
| prec: A F A crvater b pke:A|A

Activate,

'v:A|A T|e:AF A
(wle)y : (T F A)

Cut
Substitution rule:

r:BFov:A|A Fv:B|A ' v:A|Ak:B I‘|e:B|—AS
v T
Fofr—d]:AA ! PEowk—el: Al A v

r:Ble:AF A }—v:B|AS I'le:AF Ak:B F|e’:BI—AS
lelr—v]:A F A “ Tlefk—¢]:AF A °r

c: (r:BF A) }—v:B|AS c: (''+F Ak:B) F|e:B}—AS
or—v] : (F A) “ k—e : T F A) e

Weakening rules:

Fov:AlA PFov:A|lA
r W’U[k
r:BF ol AlA kvl A|Ak:B

Ur

le:AF A - Fle:AF A
r:Blel™AF A @ I'let™ A+ Ak:B

We,

c: T+ A) c: (T'+ A)
s BEN Y LT F Ak B)

We,

Fig. 23. Type system for the Aujirt-calculus.

(1) T is nonempty iff r occurs free in v, e or c;
(2) A corresponds to the set of free continuation variables occurring in v, e, or c.

The type system is in Figure 23. It reflects the well-formedness conditions
explained in the previous section (well-typed terms are well formed), but is
otherwise straightforward.

6.2 Reduction Semantics

The reduction semantics is given in Figures 24, 25, and 26. We first explain the
computational rules. The -rule needs a weakening of the context. Otherwise,
the rule would produce a term which is not well formed since r does not occur
free in e. The rules 1 and i do not need any additional weakenings. Taking

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:26 o Z. M. Ariola et al.

(B) Arv|v'-e) — (" | fr(v]el”)
(n) (uk.cle) — clk —e]
(B) (lpre — cr—ul

Fig. 24. Computational rules for Apujirt.

(sv) pk.(v 1% | kw’) — v
(se) pgr{rwc|el™ — e

Fig. 25. Simplification rules for Auirt.

Rules on terms

(r7) rlr—v] —

(A1) (Arw)[k — €] — /\7" (v[k e 1))

(url) (uk)[7‘ =] = pk.(clr —v1%])

(ur2) (pk. C)[—e] — uk (c[k —e 1))

(w1"1) (v TT)[T =] =

(w11 (1F)[k e —

(w1"2) (w1")k—ef"] — (v[k<—€ﬂ]) I

(v 172) (WIF)[K —et*] — (VK —e]) 1"

(173) (1F)[r =o'] — (vlr <" 1)) 1*
Rules on contexts

(k1) klk —e€] — e

(-1) (v-e)t — (vr) - (er)

(fiT) (ir.c)k —e] — fir(clk —e1"])

(e1"1) (eM)[r—v] — e

(et™1) (etMk—e] — e

(e172) (e1M)[k—e "] — (e[k ¢ TT]) I

(e1%2) (e 1M)[E — e "] — (e[k/ — € q]) 1*

(e1%3) (e ™r —vn*] — (efr —v]) 1"
Rules on commands

(c7) (v]|eyr — (vt |er)

(1" 1) ()] — ¢

(c1®1) (eMk—e — c

(c172) (eMk—et"] — (cfk—ef])1"
(c172) (MK —en] = (k' —eq]) 1"
(c1%3) (M) —v] — (clr —v]) 1"

Fig. 26. Substitution rules for Aufirt.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines o 13:27

the u rule, for example, for the lefthand side to be well formed, continuation
variable £ has to occur free in ¢ and cannot occur free in e. This makes the
right-hand side well formed.

The simplification rules of Figure 25 make use of the notation w’ and w?®,
which denotes a sequence of weakenings corresponding to the free variables in
v and e, respectively. For example, if e is « then w® would be 1%. The weakening
applied to term v occurring in the lefthand side of the sv-rule captures the fact
that %2 does not occur free in v. Usually this is expressed using a proviso. For
example, in AC the rule becomes

CkkM)— M k not free in M,

where & M corresponds to (M | k). The weakenings on £ are necessary to deal
with the case that v has free variables. Otherwise, the following reduction would
not be possible.

pk(r A% 1R A7) > r

Analogously, rule se contains the weakening on r to indicate that r cannot
occur free in e. It needs the weakenings on r to cover the case that e has free
continuation variables. For example, one has

] ar(r 1 Jat?)) > (] a).

Instead of binding r to v and then invoking o with r, one invokes « directly
with v.

The rules of Figure 26 move substitutions to the leaves and then use them
to look up the values of variables. We explain the rules on terms. The rz-rule
applies the substitution [r < v] to variable r. One might also be inclined to
introduce the rule r[k < e] — r. This, however, is not correct since r[k <« e]
is not well formed. To make it well formed one should write (r 1%)[k < e 17],
which by application of (v 1* 1) reduces to r. The following three rules move a
substitution across a A and a . Since we do not have ¢-renaming in our calculus,
these rules might seem suspicious. For example, moving a substitution inside a
A might cause a free occurrence of the accumulator to get bound. This, however,
does not occur in our setting. For the term (Ar.v)[k <« e] to be well formed,
variable r cannot occur free in e. Analogously, in the utl and ut2 rules, &
cannot occur free in v and e, respectively. Therefore, no variable capture can
occur. However, to move a substitution inside a binder one still needs to apply
some weakening to the term or context to be substituted. Otherwise, a reduction
might produce a term that is not well formed.

rr 1)a < tpl — Ar.(r 1 [a < tp])
With the appropriate weakening, the reduction produces a well-formed term.
ar(r 1Y [a < tp D)

This explains the weakenings applied to the right-hand sides of the Az, utl,
and 12 rules. There is no reduction for a term of the form (uk.c)[k < e] or
(Ar.v)[r < v] as they are not well formed. Rules (v 4" 1) and (v 1* 1) illustrate
how weakening corresponds to explicit memory deallocation. Since r and % do

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:28 o Z. M. Ariola et al.

not occur free in v one can get rid of the substitution. The remaining three rules
move a substitution across a weakening. This requires some care. For example,
one might consider the following rule.

v [k «e]l — vk <elt

For the lefthand side to be well formed, has to occur free in e, but this produces
a term on the righthand side which is not well formed. The solution is to express
the previous reduction as follows.

v [k <—e] > vk el

The notation 1" (1*) stands for a sequence of weakenings containing a weaken-
ing for r (B). If " (%) occurs in the lefthand side of a rule, then the occurrence
of {1 in the righthand side stands for the same sequence of weakening minus
the weakening on r (k). For example,

0" Iy < e 1] > vly <e 11

The rules on contexts and commands follow the same pattern. For example, as
discussed earlier it is possible to move a substitution inside a fi-construct by
applying the appropriate weakening on r. There is no rule for a term of the
form (fir.c)[r < v] since it is not well formed.

Example 6. We show the reduction of
ua (Ar.(r 24) v 1Y)

where v is a closed term.

uaAr.(r 14 v %) —8
po(v 1 | prr ¢ o 17) g
pa.((r A% |a) r < v 1Y) —er
pe(r 24 [r <—v 1] a1 [r < v 1°]) —>ypes
wo(rlr < vl 1 |a " [r < v 1)) >t
po (v 1 Ja M [r <v 1) etk
o (v 1 | o) —sv
v

ProrosiTiON 2.

(1) The Aujirt satisfies subject reduction. Let [be a command, term, or context:
— Ifl is well formed and |l — 1’ thenl’ is well formed;
— if l is well typed and | — 1’ then 1’ is well typed.

(i1) The ruprt satisfies strong normalization.

Proor. The proof strategy for strong normalization has been suggested to
us by Emmanuel Polonovski, who developed a general framework for prov-
ing strong normalization for calculi with explicit substitutions. It consists of
first showing strong normalization for the Auirt without explicit substitution
(but with weakening) by applying a variant of the reducibility technique. Next,
the PSN (Preservation of Strong Normalization) property is shown: If a term
strongly normalizes in the calculus without explicit substitution, it also does

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines o 13:29

V =y U

/

V=<2 U

v —, ¥ vT not a —,-redex v —, v vr T and vT; not —,-redexes
/ !
VT —e<2r U'T1 VT1T2 <27 VU T1T2

!

U y<ar U
-y

Fig. 27. The strategy r>,.

e —. e
!
€r—e<lor €
! /
e —. € et not a —.-redex e —. € erm and er; not —.-redexes
! /
€T] Fre<2r €T1 ETIT2 F7e<2r €T1T2
!
€ Fe<or €
e, €
/ A
T e —e<ar € and vge not a —,-redex
veer, v e Vge * € ¢ Vge - €

Fig. 28. The strategy .

in the one with explicit substitution. Finally, an embedding of a Aufirt term
into a term without explicit substitutions is shown. The explicit substitutions
are turned into redexes. The strong normalization of the whole calculus follows
then from the PSN property. The proofs mirror the ones given by Polonovski
[2004]. O

6.3 Call-by-Name and Call-by-Value Evaluation

Before formalizing the call-by-name and call-by-value evaluation of the A fir?t,
we present in Figures 27, 28, and 29 three reduction strategies: +,, ., and
.. They make use of the following notation: —, denotes the substitution rules
on terms together with the sv simplification rule; —, denotes the substitution
rules on contexts together with the se simplification rule; and finally —. denotes
the substitution rules on commands.

The three strategies make use of the auxiliary reductions > ,<9;, H>.<2., and
<2, whose goal is to apply —,, —., or —, under at most two substitutions.
Moreover, they go under a substitution only if the outermost term, context, or
command is not a redex. For example, a term of the form

rir < vl 1% [a < el

contains two —,-redexes: The outer redex is a v 1* 1-redex and the inner redex

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:30 o Z. M. Ariola et al.

c—.C
/
Crre<or €
c—.c ¢ not a —.-redex c—.c crm and e not —.-redexes
/ /
CT] Fe<27 CT1 CT1T2 Fe<2r CT1T2
/
Crre<or €
cr.c
e, € v, v and ege not a . -redex
! /
(v]e)—ec(v]e) (v] ege) e (V' | ege)

Fig. 29. The strategy .

is a rr-redex. The strategy r>,<9, Will reduce the outermost redex. The same
happens in the following context and command.

ala < s] 1 [r < v] (v]e)t 1Y [a < s]

The strategies —>.<9, and +>.<g, Will reduce the (e 1" 1)-redex and the (c 1k 1)-
redex, respectively.

The strategy +—, simply invokes +>,<9,. In addition to invoking +>.-9,, the
. strategy reduces a context of the form v - e in a left-to-right fashion. First,
the strategy +, is applied to v. Next, the strategy r.<o, is applied to e. This
means that a deallocation step is carried out before any other reduction. For
example,

rlr <vl-e—,v-e and (ar.r) - ala < sl —, (Ar.r)-s.
However,
v-rlr < vl-etbov-v-e

since the strategy —.<2, only goes under substitutions and not a context v - e.
The strategy +. in addition to the invocation of +>.<9., it first applies the
strategy . to the consumer, next the strategy >, is applied to the producer.
Finally, the call-by-name and call-by-value strategies are given in Figures 30
and 31, respectively.! As described by Curien and Herbelin [2000], they resolve
the critical pair in a command of the form (uk.c | fir.c’) in favor of the producer,
for call-by-value, and in favor of the consumer for call-by-name.

ProrosiTioN 3. The call-by-name and call-by-value reduction strategies for
the well-formed ,ufirt-calculus are such that the reduction steps are confined
to a bounded distance from the top of the syntax tree.

Proor. There are no inference rules that create a recursive definition of
a relation. For both strategies, all the paths of the dependency graph are as
IThe description follows closely the implementation that can be found at http://www.cs.indiana.
edu/"sabry/papers/sequent_code.tar.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines o 13:31

crs.

cbn
c——c

Reduce by focusing on the consumer:

(vge | fir.c) < c[r — vge) Vge NOt a F,-redex
(pk.c | ege) < clk — ege) ege # fir.c’ and not a —.-redex

(Ar.v | vge - €ge) A (Vge | ir(v | ege T7)) Vge - €gc MOt & —c-redex

Fig. 30. The call-by-name strategy : o

crs.

Reduce by focusing on the producer:

(pk.c | ege) i clk — egc] €gc NOt & —c-redex
(vge | fir.c) i cr — vgc] Vge # pk.c and not a +,-redex

(Ar.v | vge - ege) K, (Vge | fir(v | ege 17)) ge - €ge DOt & —-redex

cby

Fig. 31. The call-by-value strategy : —.

follows.
ey ey oy PP u<2e, o
ey ey Fre<2r, e
ey, o, PP u<2r, o
e, Fe<2r, ¢

Hence, all reductions specified by the reduction sequences are confined to a
bounded distance from the top of the syntax tree. O

A program and an answer are well-formed closed commands. Moreover, an
answer is of the form (Ar.v | tp).

LemMmA 1. Let p be a program, and a,a’ be answers. We have:

(i) p reduces to an answer a in the call-by-name Auprt if and only if there

exists an answer a’ such that p KOs o/ —a;

(i1) p reduces to an answer a in the call-by-value rujrt if and only if there

exists an answer a’ such that p K% o/ —>a.

Proor. We follow the proof technique of Huet and Lévy [1991]. Let cbn be
the call-by-name reduction p—>a. This reduction needs to contract the descen-
dant of the standard redex, say u, occurring in p. One then constructs the
projection of the cbn-reduction with respect to the u;-reduction. We denote this
reduction as cbn/u;. Since the reduction cbn/u; also leads to an answer, one

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:32 o Z. M. Ariola et al.

can proceed by performing the projection (cbn/u1)/us, where us is the standard
redex contracted by the reduction cbn/u;. As before, also (cbn/u1)/us leads to
an answer. The termination of such a process is guaranteed by showing that at
each step the weight associated to each reduction decreases. Pictorially, this is
next given.

cbn
p -

Ui

conjuy

Uz

(cbn/uy)/us

P2

Un

oy oo (ebn/uy)/us) - fun)

- a

The reduction p —* p; —% pg--- —¥ a’is the desired standard reduction. O

7. AN ABSTRACT INSTRUCTION SET FOR THE Apfirt-CALCULUS

The Aujirt-calculus imposes a useful structure on terms that is closer to the
level of an abstract machine. In this section we introduce a few “macros” over
the Auirt-calculus which define an “abstract instruction set” similar to that of
typical abstract machines. We illustrate how the Ay g terms can be translated to
this abstract instruction set. In the next section we show that the call-by-name
evaluation of the abstract instruction set corresponds to the Krivine machine,
and that its call-by-value evaluation corresponds to the CEK machine.

7.1 Instruction Set

The instructions and their definitions in terms of Aufirt, terms are given in
Figure 32. The definition of the instructions is complicated by the weakening
steps which, although essential for capturing the proper semantics, obscure
some of the basic ideas. The instructions correspond to commands containing
context variables « and y free. Moreover, the first four instructions have also r
free. Tounderstand the instructions, it is useful to think of the three special vari-
ablesr, y, and « as three registers of an abstract machine corresponding to the
accumulator, the current environment (frame pointer), and the current stack
pointer.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines o 13:33

Instructions ins ::= Exec |Clear | PushArg | Extend-env |
bind Closure c in ¢’ | PopArg | Lookup-env
Code ¢ = ins;c|ins
Exec =T 17 | al™1)
(Clear; c¢) =c1"
(Pusharg; c) = ((p)) 1T | (7 1°17) - (a 1717))
(Extendenv; o) = {(u3.0) 1717 | (r 1°17)- (7 1°17))
(bind Closure cin ¢’) = ((pa.c) 1 | fpr.c’)
(Pophrg;) — ((r(poc) 1* [a 1)
(Lookup-env; c) = ((Ar(py.0) 17 |7 1%)

Fig. 32. Instructions and their definitions.

—The Exec instruction executes the code in the accumulator r using the current
stack «. This could be expressed with the command (r | «), which, however,
is not well formed. To make it well formed one has to add the appropriate
weakenings, obtaining (r 1% |« 1"). The weakening on y is added to maintain
the invariant of having o and y free.

—The Clear instruction corresponds to clearing the accumulator.

—The PushArg and Extend-env instructions correspond to rebinding either « to
a new stack with r on top of it (i.e., the stack r - @) or rebinding y to a new
environment with r on top of it (i.e., the environment r - y).

—The bind Closure c in ¢’ instruction sequence corresponds to (ua.c | ir.c’). The
static nature of the environment is captured by the static scope of variable
y. The dynamic nature of the working stack instead is captured by the fact
that variable « is redefined in ¢, and is thus bounded at activation time.

—The PopArg and Lookup-env correspond to rebinding r and « or rebinding r
and y.

7.2 Translating App-Terms

The compilation in Figure 33 maps Apyp terms to the abstract instruction set
defined in the previous section. Variable lookups are compiled to a sequence
of instructions that traverse the environment the specified number of times in
the de Bruijn index. For example, the compilation of (e 1) 1 is

Lookup-env; Clear; Lookup-env; Clear; Lookup-env; Exec.

The first two elements in the environment get thrown away. The third element
gets executed.

A)-abstraction is compiled to a sequence of instructions which once executed
grabs the argument from the stack, pushes it on the environment, and then
executes the body. For example, the compilation of Ale is

PopArg; Extend-env; PopArg; Extend-env; Lookup-env; Exec.

An application is compiled to instructions for building a closure of the argument,
saving it on the stack, and then evaluating the term in the function position.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:34 o Z. M. Ariola et al.

[e] = Lookup-env; Exec

[t 1] = Lookup-env; Clear; [t]

[M] = PopArg; Extend-env; [t]

[t1 t2] = bind Closure [t2] in PushArg; [t1]

Fig. 33. Compilation of App into Aujir?.

At this point, it is unspecified if the closure corresponding to the argument
is evaluated before the call or not. This depends on whether we choose the
call-by-name or the call-by-value semantics.

ProposiTiON 4. Given a App term t, [t] is a well-formed iufirt command
closed with respect to r.

[l : (F a,yp)

7.3 Translating A-Terms

Had we started with the regular A-calculus instead of the Ay p-terms, the com-
pilation of terms would have been slightly more complicated. In particular,
the translation would have needed to be parameterized with respect to the se-
quence I'. This is necessary since the compilationof y : B,x : A x : A should
be different from the compilation of x : A, y : B F x : A. This is already taken
care when using de Bruijn indices, since the two preceding distinct judgments
correspondto B,A + 1: Aand A, B + 2: A, respectively.

8. THE Aufirt-CALCULUS AND ABSTRACT MACHINES

As stated in Proposition 4, the compilation of a App term is not a program since
it contains o and y free. To make it a program one will have to initialize those
variables. That is indeed what happens in the translation of an abstract ma-
chine. In this section we consider the (call-by-name) Krivine machine [Krivine
2007] and the (call-by-value) CEK machine [Felleisen and Friedman 1986].
Both machines are translated to well-formed Auirt programs. The call-by-
name evaluation of these programs corresponds to the execution of the Krivine
machine (see Section 8.1), whereas the call-by-value evaluation corresponds
to the right-to-left CEK machine (see Section 8.2). Both results are shown by
making use of an intermediate machine.

8.1 Correspondence with the Krivine Machine

We establish the correspondence between the Aujirt and the Krivine machine
in two steps: We first give in Section 8.1.1 a call-by-name interpretation to the
instruction set given before, and this results in a call-by-name intermediate
abstract machine. We relate this intermediate machine to the call-by-name
strategy of the Aufirt calculus. Next, in Section 8.1.2 we relate the Krivine
machine to the call-by-name intermediate abstract machine. We thus obtain

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines o 13:35

Syntax:

state st == (c,e,8) | (c,e,8,v)
environment e = v-e|tp

stack s n=wv-s|tp

closure v u= cle]

Well-formed states:

c: (rkF a7y |ekbk | s F F ool

(c,e,s,v): F
c: (F a7 etk | s F
(c,e,8): F
[tp F
Fol|l Jekbk Fol|l |shE
|v-e |v-s F

(Exec,e, s, cle']) — (c,€,8)
(Clear;c, e, s,v) — (c,e,9)
(bind Closure cin c,e,s) — (c,e,s,cle])
(PushArg;c, e, s,v) — (¢c,e,v-5)
(PopArg;c,e,v - 8) — (c,e,8,0)
(Extend-env;c, e, s, v) — (c,v-e,8)
(Lookup-env;c,v - €, 8) — (c,e,8,0)

Fig. 34. The call-by-name Apujirt abstract machine.

that the Krivine machine corresponds to the call-by-name reduction strategy
of the Aujirt-calculus.

8.1.1 Call-by-Name Abstract Machine. As shown in Figure 34, the call-by-
name intermediate machine has two kinds of states:
(c,e,s) and (c,e,s,v)

where ¢ stands for the code or sequence of instructions as introduced in
Figure 32; e and s stand for the environment and stack, respectively, and v
is the accumulator. The basic value manipulated by the machine is a closure
which, as usual, consists of code and an environment. The accumulator holds a

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:36 o Z. M. Ariola et al.

(c,e,8)°" = c[y « e 19][a « s°"]

(c,e,8,0)°" = cly «— e T7"][a « s°* 17][r «— v°"]
(v-e)™ = % . eon

(v-5)™" = p°n . g°n

(cle])™ = pacly « e 1]

tp°n = tp

Fig. 35. Translation of the call-by-name Aujirt abstract machine in Apjirt.

closure. Both the environment and the stack are sequences of closures ending
with the top-level continuation.

(c, e, s,v)is awell formed configuration (written (c, e, s, v) :) if ¢ is expecting
something in the accumulator, in other words, r occurs free in c¢. Likewise,
(c, e, s)is well formed (written (c, e, s) :) if r does not occur free in c. The well-
formedness of the code is directly derived from the definition of the instructions.
For example, the states

(Extend-env;c,e, s) and (Lookup-env;c,e, s, V)
are not well formed, since one has
(Extend-env;c) : (r F «,y) and (Lookup-env;c) : (F a,yp).

Also, the closure (PushArg;c)le] is not well formed since r occurs free in
PushArg;c.

The machine starts with the empty environment and empty stack which are
both represented with the top-level continuation. Its execution leads to well-
formed configurations.

ProposiTiON 5. If st is well formed and st — st’ then st’ is well formed.

Machine states are translated in the Aufirt-calculus as shown in Figure 35.
Starting from well-formed states the translation produces well-formed
programs.

ProrosiTion 6. If st is a well-formed state of the call-by-name \ujrt ab-
stract machine then st° is a well-formed Aujirt program.

The machine transitions correspond to the call-by-name evaluation strategy
of the Apfirt-calculus under the given translation.

ProrosiTiON 7. Let st and sty be well-formed states of the call-by-name

auirt abstract machine. If sty — sto then (st1°") pebr, st,, such that (stx*") and

st, are equal up to permutation of substitutions.

Proor. By cases on the transition. We only show three cases.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines o 13:37

(Exec) (Exec,e, s, cle’])

= (Exec)ly < e 1M 1la < s t1lr < pa.cly < e 1¢]]
= (1 Ja M)y < e 1t la < s 1lr < pacly < e 1411
ct K% r 1Y [y < e 1Y 1la < s M1lr < pacly < e 111 |
a1 Iy < e t"ta < s lr < pacly < e 140
etF1 5 1 Iy < e 191 e < s 2 1Ir < pacly < e 1211 |
at loa < sAlr < pacly < e 140
et 2 k= (1 Iy < et lle < s 1 < pacly < e 17|
(ala < s) 1 [r < pacly < e 111

et 1 ¥ 4 [y < e 14 Nl < s 171l < pocly < e 411 | (ala < s])
kr &5 417 Iy < e 19 lla < s V1lr < pacly < e 1911 | 5)
o1 4 o s V1 < pacly <€ 171]s)
vt 1 S ol < pacly < e 1910 | s)
cbn /
rt — {(ua.cly <e' 1%l |s)
w o cly < e 11a < s]

Notice how after moving the substitutions inside the command, we start sim-
plifying the consumer. After the consumer does not have any more +>,-redexes
the producer is reduced. At the end, since s is not a i term, the u reduction is
possible.

(Closure)
(bind Closure cinc’,e,s)
(bind Closure c in ¢')[y < e 1*]la < s]
= ((una.c) t* | gar.c)y < e 1lla < sl
cbn,

F2 ((ua.e) 24 [y < e 1]la < sl | (arc)ly < e 1%l < s])
F5 ((nae) 1 [y <—e 1¥la < s] | gr.c'ly < e 1“1 1o < s D)
— ((na.o)ly <=eD) 1 [a <= sl | ar.(c'ly <—e 11 1o < s 17])
— ((nac)ly < el | (arc'ly < e 11]la < s17])
— (ualely < e 1D | (arc'ly < e 11 1a < s 17])
— c'ly < e 1"t la < s 1llr < (uacly < e D]
Notice how we resolve the critical pair in favor of the ji-rule.
(PopArg)
(PopArg; c,e,v - s)
= (PopArg; o)y < e t%lla < v - s]

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:38 o Z. M. Ariola et al.

st = (t,e,s)

t =°|At||(tt’)|(tT)

e = wv:iel|ni

s u= wv:s|nil

v o= [t e]

(0.t €] e,8) — (t,¢),8)
(tT,U::e,s) — (t,e,s)
(tue,s) - <t,6[el s)
(M,e,v:s) — (t,vu:ie,s)

Fig. 36. The Krivine abstract machine.

= ((r.pa.c) t |a)y < e 1o < v -s]
pebn, (Orpae) 1 [y < e1la «<v-sl a1 [y < e 19a < v -s])
pebn, ((r.pac) 1% [y < e t¥lla < v-sl|v-s)
L (Ar.poe)ly < el 1t [a <@ -s)] |v-s)
< (r.pa.c)ly <el|v-s)

o (ar(ua.c)ly <et1|v-s)

L wli r{(poc)ly <etls1"))

L ((paodly < e 171 1s A7)l < o]

KO (nae)ly < e A1l < vl |s 4" [r < vl)

o (na.o)ly < e tllr < vl |s)

s (uacly < e "1l < v 191 |s)
cbn

— cly < et 14lr < v 1%]la < s]

The preceding is equivalent to c[y < e 1" 1*][la < s 1"][r < v].
For multiple reduction steps the result follows, since the order of the substi-
tutions does not mask any potential redex. O

8.1.2 The Krivine Machine. The Krivine machine [Krivine 2007] is a sim-
ple machine for implementing normal weak-head reduction of A-terms. It has
been shown correct by Wand [2007]. Its description is given in Figure 36. Our
presentation of the machine is slightly different from the original presentation
[Krivine 2007]: We restrict all As to have one argument and we implement the
environment lookup step-by-step. The state of the machine is represented by
three components: the current Ap)p-term, the current environment, and the
current argument stack. In contrast to the Aujirt abstract machine, there is
no accumulator. The evaluation of e causes the evaluation of the closure on
top of the stack. The code and environment saved in the closure become the
current instructions and environment. The evaluation of ¢ 1+ removes the top

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines o 13:39

(t,e,s)*" = ([t],e*,s°)
nil®" = tp

(v:e)® = v - eon
(v:8)* = v®n . g%
()™ = [Hle]

Fig. 37. Translating the Krivine machine into the call-by-name Aufirt abstract machine.

element of the environment. To evaluate an application, the machine saves on
the stack a closure made of the argument and the current environment, and
proceeds with the term in function position. To evaluate a lambda-abstraction,
the value (if any) on top of the stack is moved in the environment.

We translate the Krivine into the Aujirt abstract machine, as shown in
Figure 37. The translation faithfully represents the machine transitions.

ProrosiTioN 8. Let st be a Krivine machine state.

(1) st*r is a well-formed state of the call-by-name Aujirt abstract machine.
(i1) If st — sty then st®r—»>st1*.

We conclude that the Krivine machine transitions can be simulated by Apjirt
call-by-name standard reduction.

Lemma 2. The call-by-name semantics of the Aujirt-calculus is such that: If

st — sty in the Krivine machine, then st*°r Pebrs gponcn,

Final states of the Krivine machine are of the form (A, e, nil). As shown
in the following example they correspond to answers in the calculus modulo
substitution.

Example 7. Let v be pa.Extend-env; [£]l. We have the following.

(At, e, nil)* "

(Arv) 1Y | a t)y < e*n 19][a < tp]

(rv) 1 [y < e*° 1]la < tpl | a 1Y [y < e*°" 1*][a < tpl)
(

(

i&ill

(Ar.v)ly < e* 1| tp)
ar.(uly < e 17)] | tp)

8.2 Correspondence with the CEK Machine

The previous development applies with minor changes to the call-by-value case.
We only present the main points. As before, we make use of an intermediate
abstract machine. The call-by-value version of this intermediate machine is
given in Figure 38. The environment is a sequence of closures. The stack does
not only hold closures but also delayed contexts. Both closures and contexts
are sequences of instructions paired with an environment. What distinguishes
them is the tag: arg in case of a closure and fun in case of a context. We do
not present the full definition of well-formed state which is similar to the one
for the call-by-name machine. Note that the accumulator is free in a delayed
context, since it is waiting for a value. The transition rules are similar to the

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:40 o Z. M. Ariola et al.

Syntax:

state st == (c,e,8) | (c,e,8,v)
environment e = v-e|tp

stack s u= fr-s|tp

frame fr == fun(v) | arg(v)
closure v u= cle]

Well-formed states:

c: (rkay) Jek c: (Fay) Jek
F fun(cle]) - arg(cle])

Transition rules:

c, e, s)
¢, e, 8)
¢, e, fun(c'[e]) - s)

(

(

(

(C, €, arg(v) : S)
(o

(

(

(

(Exec, e, s, cle’])
(Clear;c, e, s,v)
(bind Closure cin ¢/, e, s)
(PushArg; ¢, e, s,v)

(¢,¢' 5, (Pophre)[e])
(¢y e, 8,0)

(c,v-e,Ss)

(¢y e, 8,0)

PopArg; ¢, e, fun(c’[e']) - s)
PopArg;c, e, arg(v) - s)
Extend-env;c,e, s,v)
Lookup-env;c,v - e, S)

Ll

Fig. 38. The call-by-value Aufirt abstract machine.

call-by-name ones, with the exception of the bind Closure ¢ in ¢/, PushArg, and
PopArg instructions. The bind Closure c in ¢’ instruction executes ¢ and delays
the execution of ¢’ by making a delayed context and saving it on the stack. The
PushArg instruction tags the accumulator’s value and moves it on top of the
stack. The PopArg instruction behaves differently depending on the top of the
stack: If it is a closure, it removes the tag and moves the value in the accumula-
tor, since it does not need any further evaluation; if it is a delayed context, then
that context gets executed in the saved environment. The execution preserves
well-formed states.

The translation of the call-by-value Aujirt abstract machine (written as -) is
given in Figure 39; given a well-formed state it returns a well-formed program.
A result similar to Proposition 7 shows the correspondence of the call-by-value
abstract machine and the call-by-value strategy of Auirt.

ProrosiTiON 9. Let st; and ste be well-formed states of the call-by-value
auirt abstract machine. If sty — sty then (st1°) pebu, sty such that (sta*) and
sty are equal up to permutation of substitutions.

Proor. In the proof of Proposition 7, notice how all the steps in the simu-
lation of the Exec instruction are also valid for the call-by-value strategy. The
same is true for the PopArg instruction when the stack contains a closure, and

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines o 13:41

pe.cly «— e® 1%]

(c,e,s)™ = [y <« €° 1][a — s°7]

(c.e,8,0)™ = c[y « € 1°7"][a « s° 1"][r < v°*]
(v-e)” = % - e

(fun(cle]) -)™ = fircly < e® 121"][a 5% 17]
(arg(v) - 5)°" = 0% . g%

(Fopbrg)™ = r(pacly = 17

¢

t

Fig. 39. Translation of the call-by-value Aujirt abstract machine in Auir?.

for the Extend-env and Lookup-env instructions. Instead, the bind Closure cin¢’
instruction depends on the strategy.

(bind Closurecinc, e, s)™
(bind Closure c in ¢y < e 1%][a < s]
= ((uae) 1 | prc)ly < e 1%la < s]

cby,

F22 (na.lely < e 1D | ar.c'ly < e 1“1t 1o < s 1'])

L cly < etlla < arc'ly < e 1“1 1la < s 1711

Notice how in the last step the f is given priority.
The simulation of the other case of the PopArg instruction is as follows.
(PopArg; c,e, fun(c'[e’]) - s)™
= (PopArg; c)ly < e 1¥]la < ar.c'ly < e 11 1la < s 171l
= (Or.poac) Y |a)y < e t¥lla < arc'ly < e 191711
P ((rpae) 1% [y < e 19[a < arc'ly < e 194711 |
at Iy < eta < arc'ly < e 1“1t la < s 11

K% r(uao)ly < e 71| frcly < e 14 1o < s 171)
K% Iy < e 1941l < s Y 1Ir < Ar(pa.c)ly < e 171l O

The call-by-value Aufirt abstract machine corresponds to the right-to-left
CEK machine given in Figure 40. The state of the machine is described by
two kinds of states: (¢,e,s) and (v, s). As before, the environment is a list of
closures, and the stack is a list of two types of delayed contexts: (¢ O)[e] indicates
a computation waiting for the argument to be computed, and (O v) indicates a
computation waiting for the function to be applied.

The embedding (written as -*) of a CEK machine state is given in Figure 41.
As for the Krivine machine, final states are of the form (A¢, e, nil). As shown in
Example 7, they correspond to answers modulo substitution.

ProposiTioNn 10. Let st and sty be states of the right-to-left CEK machine. If
st — stq then st® —>st1*.

LemMma 3. The call-by-value semantics of the Aujirt-calculus is such that: If
st — st' in the right-to-left CEK machine, then st®® r%%» st'**.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:42 o Z. M. Ariola et al.

st - <t,€,$> | <U,$>
v o= tle]
e == wv:e|nil
foa= (@ 0)el | (Ov)
s u= fus|mnil
(o,v:¢,5) — (v,5)
(t1,v:es) — (t.e,s)
(At e, s) — ((At)[e],)
(t1 ta,e,s) — (to,e, (t1 O)le] :: s)
((At)e], (tr D)[€] 2 5) — (t1,€’, (O (At)[e]) =2 s)
(OO (O v)58) = (o es)
Fig. 40. Right-to-left CEK abstract machine.
(t,e,s)* = ([t],e®,s*)
<t[e]’3>.v = ([[t]]ae.vvs.v)
nil® = tp
(vie) = p® . %
tle]*” = [t][e*"]

(fis) = st
(¢ D)Je)™ = fun((Pusharg; [[e™)
(@) = arg™)

Fig. 41. Translation of the right-to-left CEK abstract machine into the call-by-value Aujirt ab-
stract machine.

9. TYPE PRESERVATION

Compilation is essentially a proof transformation [Ohori 2005]. It embeds
the proof system of Figure 11 into the one of Figure 42, as shown next.

ProrosiTioNn 11. Given a well-typed App term t, [t]l is well typed. Moreover,
if A1, -, A, Ht: Band T is an atomic type then

It :(Fra:B,y: A, —> ---—> Ay —> T).
Proor. The proof'is by rule induction and proceeds by cases.

(Axiom) Let us assume Ay, ---,A,, B I o: B. We have the following.

Exec: r:BFra:B,y:A,—> - > A —>T)
Lookup-env; Exec : (F a:B,y:B—> A, —> ---—> A1 > T)
(Weakening) Let us assume Ay,---,A,,B + ¢1:C.
el : (Fa:C,y:A,— - —> A1 —>T)
Clear; t]l : r:B F a:C,y:A,— ---—> A1 —>T)
Lookup-env; Clear; It] : (- a:C,y:B—> A, —> ---—> A1 —>T)
(=) Letus assume Ay, ---,A, - t1t: B. Welet C stands for A,, —

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines o 13:43

Exec : (r:A F a:A,v:B)

¢c:(F a:B,y:0)
(Clear; ¢) : (r: A F a:B,v:(C)

c: (kF a:A—-B,y:0)
(PushArg; ¢) : (r: A+ a:B,y:0)

c: (F~v:A->Ba:0)
(Extend-env; ¢) : (r: A F v:B,a:C)

c:(kFa:Ay:D) ¢ : (r:AF a:Cv:D)
(bind Closurecinc) : (F a:C,v:D)

c:(r:AF a:B,v:0)
(PopArg; ¢) : (F a:A— B,y:C)

c: (r:AF y:Ba:C)
(Lookup-env; ¢) : (F y:A— B,a:C)

Fig. 42. Typing the instructions.

.-+ —> A; — T’. We have the following.
[t : (Fa:A— B,y:C)
[zoll : (- ¢:A,y:C) PushArg; [t1] : r:A F o: B,y :C)
bind Closure [t2] in PushArg; [t : (- a: B,y : C)
(—;) Let us assume A1,---,A, + At : A — B. We let C stands for
A, — = A>T
[t : (Fa:B,y:A— C)
Extend-env; [[t] : *:A F+ a: B,y :C)
PopArg; Extend-env; [¢] : (F «:A— B,y :C) O

A compiler error can be captured as a type error. For example, if one erro-
neously compiles the term)Le as

PopArg; Extend-env; PopArg; Extend-env; Lookup-env; Exec
an error is raised since it is not possible to derive the following judgment.

PopArg; Extend-env; PopArg; Extend-env; Lookup-env; Exec :

(Fa:A—A,y:0)

One can define the notion of well-formed instruction by removing the type in-
formation from Figure 42. Even this notion can help in finding compiler errors.
For example, if one compiles the App term ((Le) #1) as

bind Closure [[#1]] in PopArg; Extend-env; Lookup-env; Exec

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:44 o Z. M. Ariola et al.

A177Anl_tc |SC|— |€An—>—)A1—>T|_
(te,s) : (k)

|nil: A
Fv:iA| |s:BF Fv:A| |e:BF
|vis:A— B F |vi:e:A— B F
Ay, A, B t:C| e Ay — o5 A>T F
F [te]: C |

Fig. 43. Type system for the Krivine machine.

one would not be able to derive the judgement
bind Closure [[#1] in PopArg; Extend-env; Lookup-env;Exec : (F «,y)
since the following is not derivable.
PopArg; Extend-env; Lookup-env; Exec : (r + «, y)

Also correctness of optimizations can be based on proofs transformations.
For example, the compilation of a known call

[(A#)¢']l = bind Closure [[#']l in PushArg; PopArg; Extend-env; [[£]
can be optimized as follows
bind Closure [¢'] in Extend-env; [£]

This optimization corresponds to an elimination of a detour. The proof

[t : (Fa:B,y:A—C)
Extend-env;[t]l : r: A+ a:B,y:C)
PopArg;Extend-env; (] : (- «:A— B,y :C)
PushArg; PopArg; Extend-env; [t] : r :A F a:B,y:C) [#'1 : (F a:A,y:0C)
bind Closure [¢'] in PushArg; PopArg;Extend-env; [t] : (- a: B,y : C)

is transformed to the following.
el : (- a:B,y:A—C)
Extend-env;[[t]l : A+ a:B,y:C) '] : (F a:A,y:C)
bind Closure [¢'] in Extend-env; [l : (+ o : B,y : C)

Next, we define a type system for the Krivine and the CEK machines and
show that well-typed states translate to well-typed commands. The typing of the
Krivine machine is given in Figure 43. It makes use of the following judgements.

r-t¢:A st : () |s: A+ le: A+ Fuv:A|

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines o 13:45

A, Ap Et:C | s:C + le: A, — -+ — A —»T F

(t,e,s) + (F)
FuiA|l |s:AF
(v,s) = (F)
il A F
Ay Ay i ASCL [s:CF feidp— oA 5T F

| (tO)[e]s:AF

Fv:A] |s:BF
|(Ov)::s:A— B F

Fv:A] |e:BF
|vi:e:A— B F

Ay, A, B t:C le: 4, —---— A =T F
F tle]: C |

Fig. 44. Type system for the CEK machine.

The first judgement is defined in Figure 11. A Krivine state (¢, e,s) is well
typed if the stack’s type corresponds to the type of ¢, the environment’s type
corresponds to the types of the assumptions used in typing ¢. T' stands for an
atomic type, and this guarantees that if n is the number of assumptions then e
must contain n elements. For example,

(o, nil, nil) ((@ 1) 1, v i nil,nil)
are not well typed. Also, if - Le: A — Aand + v: B then
(he,nil,v :: nil)
is not well typed. The Krivine machine satisfies subject reduction.

ProposiTioN 12. Given Krivine states s and s', if s : (=)and s — s then
s (k)

LemMmA 4. Given a Krivine state s. If s is well typed then s*°" is well typed.
Proor. It follows from the previous proposition and by rule induction. O

The typing for the CEK machine is given in Figure 44. The CEK machine
satisfies subject reduction.

ProposiTioNn 13. Given CEK states s and s, if s : (=)and s — s then
s (F).

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:46 o Z. M. Ariola et al.

c: (r:AF a:By:C) |e:CF | s: B + Fo:A]

(c,e,8,0): F

¢c:(Fa:B,y:C) |e:CF |s:B

(c,e,s): F

[tp: A F
Fv:A| Je:BF Fv:A| |s:BF
|v-e:A— B F |v-s:A— B F

¢c: (Fa:B,v:C) |e:CF
F cle]: B |

Fig. 45. Type system for the call-by-name Aufirt abstract machine.

LEmMA 5. Given a CEK state s. If s is well typed then s* is well typed.
Proor. It follows from Proposition 11 and by rule induction. O

The typing for the Aufirt abstract machines are easily derived from Figures
34 and 38. For example, the typing rules for the call-by-name Aujirt abstract
machine are given in Figure 45.

10. CONCLUSIONS AND FUTURE WORK

Natural deduction is usually taken as the logical foundation of A-calculus. We
have shown that the sequent calculus offers a better correspondence with ab-
stract machines. This translates into the ability to define a call-by-name and
a call-by-value semantics in a nonrecursive manner, unlike the corresponding
semantics defined in a natural deduction setting. This means that the next
redex to be executed always occurs at a bounded distance from the root of the
syntax tree. In other words, the semantics defines a tail-recursive evaluator. To
demonstrate that our semantics lead to an answer we have shown they corre-
spond to standard reductions of a call-by-name and call-by-value Aujirt calculi
which are defined by orienting a critical pair. Moreover, we have shown that
Krivine and the right-to-left CEK abstract machines are implementations of
these standard reductions.

This work constitutes our first step towards providing a Curry-Howard iso-
morphism for low-level code. Next, we plan to build on A /irt to create a suitable
logic for embedding “real” machines. We will consider the JVM, and the differ-
ent levels of the TAL abstract machines [Morrisett et al. 2002]. We would like
to explain the certifying compilation as a transformation among different proof
systems.

By interpreting the machine code as a term in a suitable logic, we also en-
vision an alternative approach of proof-carrying code based on program ex-
traction. Instead of sending a program and a proof of its safety, the program

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

Sequent Calculi and Abstract Machines o 13:47

and the proof are sent together in a single proof-term. In other words, the pro-
gram itself is a proof. This is all one needs for both type checking the proof
and recovering the underlying program. The safety of execution is guaranteed
by the subject reduction property. The correctness of the entire approach is
guaranteed by the embedding of the nonstandard logics into well-established
logics.

We also plan to make use of these kinds of logics, which naturally embed run-
time data structures such as the notions of control stack and environment, in the
formalization of analysis such as stack inspection [Fournet and Gordon 2002]
and access control [Pottier et al. 2001]. These formalizations will be inside the
logicitselfrather than on top of it, thus permitting a better understanding of the
interaction between these analysis, optimizations, and alternative reduction
strategies.

REFERENCES

Agrapi, M., Carperul, L., CurieN, P-L., anp LEvy, J.-J. 1990. Explicit substitutions. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press, New
York, 31-46.

AcEeRr, M. S., BiErNackl, D., Danvy, O., AND MIDTGAARD, J. 2003. A functional correspondence be-
tween evaluators and abstract machines. Research Series RS-03-13, BRICS. March. 26 pp.

ArpeL, A. 2001. Foundational proof-carrying code. In IEEE Symposium on Logic in Computer
Science. IEEE Computer Society Press, Los Alamitos, CA.
http://www.cs.princeton.edu/ appel/papers/fpcc.pdf.

BARrTHE, G., DUFaY, G., JAKUBIEC, L., SERPETTE, B. P., AND DE Sousa, S. M. 2001. A formal executable
semantics of the JavaCard platform. In Proceedings of the European Symposium on Programming
Languages and Systems. Springer-Verlag, Berlin, 302-319.

CurieN, P.-L., Harpin, T., aND LEvy, J.-J. 1996. Confluence properties of weak and strong calculi
of explicit substitutions. J. ACM 43, 2, 362-397.

CurieN, P.-L. anp HerBeniN, H. 2000. The duality of computation. In Proceedings of the ACM
SIGPLAN International Conference on Functional Programming. ACM Press, New York, 233—
243.

Danos, V., JoNgT, J.-B., AND ScHELLINX, H. 1993. A new deconstructive logic: Linear logic. In
Proceedings of the Workshop on Linear Logic, J.-Y. Girard, et al., Eds.

DougNck, R. anD Frapet, P. 1998. A systematic study of functional language implementations.
ACM Trans. Program. Lang. Syst. 20, 2, 344-387.

FELLEISEN, M., FrRIEDMAN, D., AND KOHLBECKER, E. 1987. A syntactic theory of sequential control.
Theor. Comput. Sci. 52, 3, 205-237.

FELLEISEN, M., FRIEDMAN, D., KOHLBECKER, E., AND DuBa, B. 1986. Reasoning with continuations.
In Ist Symposium on Logic and Computer Science. IEEE Computer Society Press, Los Alamitos,
CA, 131-141.

FerreisEN, M. anp Friepman, D. P. 1986. Control operators, the SECD-machine and the -
calculus. In Formal Description of Programming Language Concepts III. Elsevier, Amsterdam,
The Netherlands, 193-217.

Fournet, C. AND GorDON, A. D. 2002. Stack inspection: Theory and variants. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM Press, New York, 307-318.
http://research.microsoft.com/ " fournet/papers/stack-inspection-theory-and-variants-
popl-02.pdf.

GENTZEN, G. 1969. Investigations into logical deduction. In Collected Papers of Gerhard Gentzen,
M. Szabo, Ed. Elsevier, Amsterdam, The Netherlands, 68-131.

GrirFIN, T. G. 1990. The formulae-as-types notion of control. In ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages. ACM Press, New York, 47-57.

HarDpIN, T., MARANGET, L., AND Pacano, B. 1996. Functional back-ends within the lambda-sigma
calculus. In International Conference on Functional Programming. ACM Press, New York, 25—-33.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

13:48 o Z. M. Ariola et al.

HereeLiN, H. 1994. A lambda-calculus structure isomorphic to Gentzen-style sequent calculus
structure. In Proceedings of the Annual Conference of the European Association for Computer
Science Logic. Lecture Notes in Computer Science, vol. 933. Springer-Verlag, Berlin.

Hicuchi, T. anp Onori, A. 2002. Java bytecode as a typed term calculus. In ACM SIGPLAN
International Conference on Principles and Practice of Declarative Programming. ACM Press,
New York, 201-211. http://www. jaist.ac.jp/ ohori/research/jvmcalc.ps.

Howarp, W. 1980. The formulae-as-types notion of construction. In 7o H. B. Curry: Essays in
Combinatory Logic, Lambda Calculus and Formalism, J. R. Hindley and J. P. Seldin, Eds. Else-
vier, Amsterdam, The Netherlands, 479-490.

Hukr, G. anp LEvy, J.-J. 1991. Computations in orthogonal rewriting systems, i. In Computational
Logic: Essays in Honor of Alan Robinson, J.-L. Lassez and G. Plotkin, Eds. MIT Press, Cambridge,
MA, 395-414.

Jongs, M. P. 1998. The functions of Java bytecode. In Proceedings of the OOPSLA Wokshop on
the Formal Underpinnings of Java.

KiEN, G. AND STRECKER, M. 2004. Verified bytecode verification and type-certifying compilation.
J. Logic Program. 58, 1-2, 27-60. citeseer.ist.psu.edu/article/klein0O3verified.html.

KrivinNE, J.-L.. 2007. A call-by-name lambda calculus machine. Higher Order and Symbolic Com-
putation (to appear).

Lescanng, P. 1994. From Ao to Av a journey through calculi of explicit substitutions. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press, New
York, 60-69.

Ly, H. AND MoOORE, J. S. 2004. Java program verification via a JVM deep embedding in ACL2.
In 17th International Conference on Theorem Proving in Higher Order Logics (TPHOLs2004).
Lecture Notes in Computer Science, vol. 3223. Springer-Verlag, Berlin, 184-200.

MorriserT, J. G., CrARY, K., GLEW, N., AND WALKER, D. 2002. Stack-Based typed assembly language.
In J. Functional Program. Cambridge University Press, Cambridge, MA.
http://www.cs.cornell.edu/talc/papers/stal-tic-abstract.html.

Onori, A. 2005. A proof theory for machine code.
http://wuw.pllab.riec.tohoku.ac.jp/ ohori/research/LogicalMachineRev0ct2005.pdf.

Paricor, M. 1993. Classical proofs as programs. Comput. Logic Theory 713, 263-276.

ProtiN, G. D. 1975. Call-by-Name, call-by-value, and the lambda-calculus. Theor. Comput.
Seci. 1, 2, 125-159.

PoLoNovskl, E. 2004. Strong normalization of Auji-calculus. In Foundations of Software Science
and Computation Structures (FOSSACS 2004). Lecture Notes in Computer Science, vol. 2987.
Springer-Verlag, Berlin, 423—437.

PoTTIER, F., SKALKA, C., AND SMmITH, S. F. 2001. A systematic approach to static access control. In
Proceedings of the European Symposium on Programming Languages and Systems. Springer-
Verlag, Berlin, 30—45.
http://www.cs.uvm.edu/"skalka/skalka-pubs/fpottier-skalka-smith-toplas03.pdf.

Prawitz, D. 1965. Natural Deduction, a Proof-Theoretical Study. Almquist and Wiksell,
Stockholm.

REus, B. anD StrEICHER, T. 1998. Classical logic, continuation semantics and abstract machines.
J. Funct. Prog. 8, 6, 543-572.

WabDLER, P. 2003. Call-by-value is dual to call-by-name. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming. ACM Press, New York.

Wanp, M. 2007. On the correctness of the Krivine machine. Higher Order and Symbolic Compu-
tation Special Issue on the Krivine Machine (to appear).

YeLranD, P. M. 1999. A compositional account of the Java virtual machine. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM Press, New York, 57-69.

Received February 2005; revised August 2006; accepted January 2007

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 4, Article 13, Pub. date: May 2009.

