
Confining Windows Inter-Process Communications for
OS-Level Virtual Machine

Zhiyong Shan

Stony Brook University, Renmin University of China
zyshan@hotmail.com

Yang Yu Tzi-cker Chiueh

Stony Brook University
{yyu, chiueh}@cs.sunysb.edu

ABSTRACT
As OS-level virtualization technology usually imposes little
overhead on virtual machine start-up and running, it provides an
excellent choice for building intrusion/fault tolerant applications
that require redundancy and frequent invocation. When
developing Windows OS-level virtual machine, however, people
will inevitably face the challenge of confining Windows Inter-
Process Communications (IPC). As IPC on Windows platform is
more complex than UNIX style OS and most of the programs on
Windows are not open-source, it is difficult to discover all of the
performed IPCs and confine them. In this paper, we propose three
general principles to confine IPC on Windows OS and a novel
IPC confinement mechanism based on the principles. With the
mechanism, for the first time from the literature, we successfully
virtualized RPC System Service (RPCSS) and Internet
Information Server (IIS) on Feather-weight Virtual Machine
(FVM). Experimental results demonstrate that multiple IIS web
server instances can simultaneously run on single Windows OS
with much less performance overhead than other popular VM
technology, offering a good basis for constructing dependable
system.

Categories and Subject Descriptors D.4.5 [Operating
Systems]:Reliability; D.4.6 [Operating Systems]: Security and
Protection

General Terms Reliability, Security

Keywords virtual machine, IPC confinement, dependable
system

1. Introduction
OS-level virtualization technology usually imposes little or no
overhead on virtual machine (VM) start-up, running and shut-
down. Therefore, OS-level VM provides an excellent platform for
intrusion/fault tolerant applications that require redundancy and
frequent invocation. An OS-level VM is able to share as many
resources as they can with other VMs and host environment.
Meanwhile, programs in VM run as normal applications which
directly use the normal system call interface of the host operating
system and do not need to be subject to an intermediate virtual
machine, as is the case with whole-system virtualizers (e.g.,
VMware[1]) or paravirtualizers (e.g, Xen[2]).

When developing OS-level virtual machine on the popular
Windows OS, in order to achieve strong isolation, the inter-
process communications often need to be constrained among
processes in the same VM. However, simply confining all IPCs
will obviously disturb most processes’ running as processes in a
VM usually need to cooperate with other processes in the host,
especially some system service processes, e.g. Service Control
Manager (SCM). These service processes must run in the host
environment rather than initiate another instance in VM, because
they have too tight relationship with Windows OS itself.

Therefore, a proper IPC confinement mechanism is desired to
confine IPC within a VM’s scope while not disturbing a process’
running.

Building such an IPC confinement mechanism is, however, a
challenging task. IPC on Windows platform is more complicated
than that of UNIX style OS, including mutex, event, timer,
semaphore, shared memory, mailslot, pipe, socket, RPC, LPC,
DDE, COM, Windows message, data copy, clipboard, etc.
Furthermore, as most of the programs on Windows are not open
source, it is difficult to discover all of the performed IPCs of a
running process. In other words, it is difficult to figure out which
IPC should be confined within VM and which IPC should not.
Consequently, building IPC confinement mechanism would
involve tedious program activities tracing, comparing and
analyzing to uncover all of the used IPCs of programs.

As far as we know, there is no proper IPC confinement
mechanism for Windows OS in the literature. There are only two
projects similar to our work. One is Feather-weight Virtual
Machine (FVM) [3] that enables multiple isolated execution
environments to run on a single Windows kernel. It can correctly
confine IPC for some processes, however, it fails to confine IPC
for other processes that have to communicate with system service
in host (e.g. RPCSS service process and IIS service processes)
and therefore fails to virtualize these important services. The
other project is Virtuozzo [5] that provides isolated environments
called Virtual Dedicated Server or Virtual Private Server on
Windows platform, but we could not find any descriptions about
Windows IPC confinement from their public documents.

In this paper, we propose three general principles to confine
IPCs on Windows OS and a novel Windows IPC confinement
mechanism based on the principles. The proposed confinement
mechanism not only can confine IPCs within a VM’s scope, but
also can correctly facilitate all IPCs between processes in a VM
and in host so that executions of the processes in a VM are not
disturbed. It employs two tables to help automatically and
efficiently identify these IPCs. One table records IPC objects
created by system services in host, through which a process in the
VM is able to talk with the system services. The other table
records the global IPC objects created inside a VM, which should
only be accessed by processes in the same VM instead of
processes in other VMs or the host. Based on the mechanism, we
further successfully virtualized the critical system service RPCSS
and popular web server IIS. From literature studies, this is the first
time that multiple RPCSS and IIS instances can be successfully
run on a single Windows OS, which is usually prevented by
Windows OS.

In the rest of the paper, we firstly describe the background of
this work in Section 2, then present the IPC confinement
principles and enforcement issues, as well as integrated
mechanism in Section 3. Application and test are presented at

Section 4, where we successfully virtualize several important
Windows services based on the enforcement of IPC confinement
mechanism, and three performance experiments show that it only
incurs small additional performance overhead. We provide related
work in Section 5 and conclude our work in Section 6.

2. Background and Challenge
In order to achieve IPC confinement and build a basis for
constructing dependable system, we choose FVM [3], a typical
Windows OS level virtualization technology, as the fundamental
framework. The key design goal of FVM is efficient resource
sharing among VMs so as to minimize VM start-up/shut-down
cost and scale to a larger number of concurrent VM instances. As
a result, FVM can be a good platform supporting intrusion-
tolerant applications, for instance, “scalable web site testing” [4]
that can isolate the potential malicious side effects of browser
attacks from untrusted web sites from the underlying host
machine.

The key idea behind FVM is namespace virtualization,
which renames system resources through a virtualization layer,
called FVM layer, at the OS system call interface. Windows
supports numerous types of namespaces for various system
resources, such as files, registries, kernel objects, network address,
Windows services, window classes, etc. The FVM layer
manipulates the names of all these resources when a process
makes system calls to access them. Through resource renaming,
the namespaces visible to processes in one VM are guaranteed to
be disjoint from those visible to processes in another VM. As a
result, two VMs never share any resources and therefore cannot
interact with each other directly. For example, suppose an
application in one VM (say vm1) tries to access a file /a/b, then
the FVM layer will redirect it to access /vm1/a/b. When a process
in another VM (say vm2) accesses /a/b, it will try a different file,
i.e., /vm2/a/b, which is different from the file /a/b in vm1.

However, completely separating namespaces of different
VMs may require unnecessary duplication of common system
resources and may lead to the same performance overhead as
many heavyweight virtual machine technologies. Being feather-
weight, the FVM architecture enables VMs to share most
resources with the host environment while isolating state changes
of each VM through a special copy-on-write scheme. A newly
created VM initially can share all the resources of the host
machine. Later on, if processes in the VM make only read
requests to system resources, they can simply access the shared
resources on the host machine. The VM does not occupy any
private resources until processes in the VM try to modify the host
machine’s resources. Therefore, the resource requirement of each
VM is significantly reduced under the FVM architecture.

In the previous version of FVM, however, there were several
unresolved issues, such as RPCSS could not run inside VM, IIS
web server could not run inside VM, Microsoft office assistant
and some installation programs could not work inside VM, etc.
The root reason of these issues is that FVM did not have a proper
IPC confinement mechanism to not only confine IPC within a
VM but also correctly facilitate communications between
processes in VMs and in host. As Windows programs’ internal
details and complex Windows IPC mechanism are generally not
documented, building a proper IPC confinement mechanism
becomes a challenge in FVM development group.

3. Windows IPC Confinement

The Windows operating system provides mechanisms for
facilitating communications and data sharing between
applications. Collectively, the activities enabled by these
mechanisms are called inter-process communications (IPC). Some
forms of IPC facilitate the division of labor among several
specialized processes. Other forms of IPC facilitate the division of
labor among computers on a network.

There are miscellaneous IPC objects in Windows OS. About
18 types of methods can be used for inter-process communication,
excluding communications through ordinary file and registry. To
facilitate the research, we categorize them into following seven
groups according to their internal mechanisms: I. Port related IPC:
LPC, RPC, COM/DCOM/COM+; II. Pseudo file related IPC:
Mail slot, Pipes; III. Shared memory: File mapping; IV.
Synchronization IPC: Semaphore, Mutex, Event, Timer; V.
Message related IPC: Windows message, Data Copy, Clipboard,
DDE; VI. Windows Sockets: Socket; VII. Dangerous functions:
Find Window, Create remote thread, Set window hook.

3.1 IPC Confinement Principles
Before designing the IPC confinement mechanism, we provide
three general principles to confine Windows OS IPC, based on
our work of tracing and analyzing a group of Windows processes’
activities.

(1) Isolation-Principle: allowing inter-process
communications within a VM’s scope while blocking the ones
across VM borders as much as possible.

To achieve strong isolation, IPC confinement requires that a
process running in one VM does not communicate with processes
running in other VMs or in the host machine through IPC. This is
the basic requirement of IPC confinement. However, only
enforcing this principle would result in a failure when a process in
VM needs to talk with a process in host. So we need other
principles to facilitate necessary process communications across
VM border.

(2) Global-Object-Principle: allowing processes in a VM to
access any global-object except that the global-object is created
by a process in different VM.

Global-object refers to the IPC object that can be shared by
all processes on the single OS. Conventionally, the global-objects
have to be created by users with a special right. In most cases,
system services create the global-objects, through which system
services provide functionality to all applications on the OS. So,
applications in all VMs should also be able to access the global-
object by default.

However, once a system service itself is virtualized, i.e. a
new instance of the system service is running in VM, or a process
running in VM with the special right to create global-object, the
global-objects created by these processes should not be accessed
by processes in other VMs or host, in order to achieve strong
isolation. This is because a virtualized system service running
inside a VM should only serve for applications within the same
VM, and a process with the special right also should only
communicates with other processes within the same VM.

(3) Host-Object-Principle: allowing processes in VM to
access IPC objects created by a system service in host.

Many applications running in VM need to co-operate with
system services in host so that they can proceed with their
executions. In most cases, system services utilize non-global IPC

Intercepted
System
Functions

Renaming
Decision

Global-Object Table

Short
Host
Object
List

…

Processes
In
Host

Long
Host
Object
List

(1)

(2) (3)
(4)

(5)

(6)

(7)

(8)(9)

(10)

(11)

VM1

Host-Object Flag

Access Decision

Kernel Mode
Application Mode

Renaming
Decision

Global-Object Table (2) (3)
(4)

(5)

(8)(9)

(10)

(11)

VMN
Access Decision

Kernel Mode
Application Mode

Figure1. IPC Confinement Mechanism
objects to provide functionalities to applications rather than
global-objects mentioned above. For these non-global IPC objects,
called host-objects, we should allow processes in VM to access
them.

3.2 Issues to Enforce the Principles
How to enforce Isolation-Principle? The difficulty of

enforcing the Isolation-Principle lies in the fact that there are
miscellaneous IPC objects with distinct internal mechanisms. For
the IPC types I to IV, we intercept related system call functions in
kernel level and employ the “rename” method presented in
section 2 to enforce Isolation-Principle. Through IPC object
renaming, the IPC object visible to processes in one VM are
guaranteed to be disjoint from those visible to processes in
another VM. As a result, two VMs never share any IPC objects
and therefore cannot interact with each other directly.

However, for other IPC types, we intercept related API
functions at application level and employ different methods to
enforce Isolation-Principle since their mechanisms are different.
For IPC type V, i.e. message related IPC, we directly block the
message when the sender and the receiver are in different VMs.
For IPC type VI, i.e. Windows Socket, we assign an exclusive IP
address to a VM by employing the method of IP aliasing and
associate the VM’s IP address with a socket. For IPC type VII, i.e.
dangerous functions, we directly prohibit a process from creating
remote thread, modifying other process’ address space, setting
system wide hooks across VM scope, and enumerating windows
in other VMs or host.

How to enforce Global-Object-Principle? The difficulty of
enforcing the Global-Object-Principle is to correctly and
thoroughly identify the global-objects created by virtualized
system services or processes with the special right. To address the
issue, we construct a table, named Global-Object Table, in each
VM to record all global-objects created within the VM. Every
time a process in a VM tries to access a global-object, we check if
it is in the table. If this is true, we direct the access to the global-
object created within the VM. Otherwise, direct the access to the
global-object in host.

How to enforce Host-Object-Principle? The difficulty of
enforcing Host-Object-Principle is how to correctly and
thoroughly identify all of the host-objects created by system
services in host. After manually tracing and analyzing the
activities of processes which have to communicate with system

services in host, we successfully identified the host-objects and
hard-coded them into FVM source codes. As a result, these
processes were able to run inside a VM. But, this method has two
limitations. One is that not all of the host-objects can be manually
found out, thus the method can not handle all kinds of
applications. The other is that the method is platform dependent.
Once moving FVM to a new Windows version, we have to look
for the host-objects again.

In order to address the issue automatically and efficiently,
we design a table, named Host-Object Table, to record all host-
objects of the whole system. It consists of two lists. One is a long
list to store all the IPC objects of system services in host.
However, the long list is usually too long to find out an object in a
short time thus impacting system performance significantly. So
we further design a short list to store most recently used host-
objects in order to reduce the time for finding a host-object. When
FVM is booted up, the host-objects are read from system services’
process space to the long list. Every time a process in VM
requests access to an IPC object, it searches the short list first,
trying to find the object. Once it fails, it then searches the long list.
If successfully obtaining the object from the long list, it records
the object in the short list.

However, when accessing an IPC object that is not a host-
object, we have to always search in both the short and long lists to
make sure it is not a host-object, which is a time consuming
procedure. To avoid searching the long list, we performed a serial
of experiments showing that the short list will not be updated any
more after finishing startup of all virtualized Windows services.
This means that all of the host-objects on the OS are selected
from the long list to the short list at this time. Hence we set up a
flag, named Host-Object Flag, to stop searching the long list after
finishing startup of all virtualized Windows services.

Therefore, with the two host-object lists and the Host-Object
Flag, all of the host-objects can be automatically identified and
efficiently retrieved by the processes requiring to access them.

3.3 IPC Confinement Mechanism
With the IPC confinement principles and their enforcement
methods discussed above, the IPC confinement mechanism is
carefully designed, as shown in Figure 1.

The IPC confinement mechanism comprises of a set of
modules, including Renaming Decision, Access Decision, Global-
Object Table, Short Host-Object List, Long Host-Object List and

Figure 2. Three IIS Web Servers Run on Single OS

Host-Object Flag. According to the Isolation-Principle and its
enforcement method, the Renaming Decision module is
responsible for determining whether renaming IPC objects
involving types I to IV. The Access Decision module is
responsible for determining whether to allow accessing IPC
objects that involves types V to VII. According to the Global-
Object-Principle and its enforcement method, the Global-Object
Table stores global-object names to help the Renaming Decision
module to make renaming decision about global-object.
According to the Host-Object-Principle and its enforcement
method, the Short Host-Object List, Long Host-Object List and
Host-Object Flag help the Renaming Decision module to make
renaming decision about host-object.

The bracketed numbers in Figure 1 represent the working
steps of the mechanism. In step (1), when FVM is started, all
names of the IPC objects except global-objects created by the
system service processes in host are read and stored into the Long
Host-Object List. In steps (2) and (9), when in kernel mode, a
process in VM tries to access an IPC object whose type is one of I
to IV. It sends a request to Renaming Decision module and waits
for the decision result. In steps (3) and (4), the Renaming
Decision module checks whether the object is in the Global-
Object Table which stores names of the global-objects created by
processes in VM. If this is true, the Renaming decision module
returns the renamed global-object name. In steps (5) and (8),
Renaming Decision module checks whether the object is in the
Short Host-Object List which stores the names of the host-objects
recently used and returns the original host-object name if it is true.
If the object is not in the Short Host-Object List and the Host-
Object Flag is on, the Renaming Decision Module does not search
the Long Host-Object List any more and returns the renamed
object name. In steps (6) and (7), if it failed to find the object
from the Short Host-Object List while the Host-Object Flag is off,
Renaming Decision module then searches the Long Host-Object
List which stores the names of all IPC objects created by the
system services in host. If the object is found, it stores the object
name into the short list and returns the original object name;
otherwise, it returns renamed object name. In steps (10) and (11),
in application mode, a process in VM tries to access an IPC object
whose type is one of V to VII. It sends a request to Access
Decision module and waits for the decision result. The Access
Decision module makes decision on whether to allow the request
directly based on the result of analyzing two process’ VM ID.

In summary, the mechanism is able to confine all kinds of
IPC while efficiently facilitating necessary IPC between processes
in VMs and in host. The Renaming Decision module handles the
IPCs of types I to IV in kernel mode and the Access Decision
module handles the IPCs of types V to VII in application mode.
Meanwhile, the Global-Object Table and Host-Object Table
facilitate the IPCs between processes in VM and in host. With the
help of these two tables, the mechanism is able to automatically
detect all IPCs between processes in VM and in host. Furthermore,
with the help of the Short Host-Object List and the Host-Object
Flag, the mechanism is able to efficiently retrieve host-objects
while avoiding time-consuming searching in the Long Host-
Object List.

4. Application and Test
4.1 Application
In the previous version of FVM, there were several unresolved
issues, such as RPCSS could not run inside VM, IIS web server
could not run inside VM, office assistant and some installation

programs could not work inside VM, etc. The root reason of these
issues is that FVM did not have a proper IPC confinement
mechanism, which can prevent processes in VM from failing
caused by abnormal IPC access.

With our IPC confinement mechanism enforced, the FVM
now can virtualize services including RPCSS on both Windows
2k and XP, IIS web server that contains services IISADMIN and
W3SVC on Windows 2k, as well as service Dcomlaunch on
Windows XP. Furthermore, a bunch of applications that need
these services’ support can also run in VM, which proves that
these virtualized services act correctly.

Figure 2 shows a snapshot of running three IIS web server
instances simultaneously on a single Windows OS. On the left,
there is a ProcessExplorer GUI displaying a process list that
contains three groups of virtualized IIS services’ processes,
running in three VMs respectively. In each VM, there is a
virtualized RPCSS process svchost.exe, a virtualized IIS web
server process inetinfo.exe, and two virtualized DCOM server
surrogate processes named DLLHOST.exe that handle ASP web
page requests. On the right, there are three IE windows showing
both HTML and ASP pages gotten from the three virtualized IIS
web servers. As each VM has its own IP address, there is a
different IP address displayed in each IE’s web address window,
which means the IE is accessing an IIS web server running in
different VM. In short, this snapshot verifies that IIS web server
and RPCSS are successfully virtualized and they work correctly.

To demonstrate the working results of the three IPC confinement
principles, Table 1 shows what RPCSS service created IPC objects are
confined by the three IPC confinement principles respectively.

Table 1. IPC objects of RPCSS service

Principle Type Object

Port
\RPC Control\epmapper
\RPC Control\OLE30778CF8A8F24282B5F73ADC0B14

Isolation
Named
pipe

\Device\NamedPipe\epmapper
\Device\NamedPipe\Winsock2\CatalogChangeListener-30c-0

Global-
Object

Section \BaseNamedObjects\Global\RotHintTable

Port
\RPC Control\DNSResolver
\RPC Control\ntsvcs

Host-
Object

Named
Pipe

\Device\NamedPipe\net\NtControlPipe* (* represents an
arbitrary number)
\Device\NamedPipe\svcctl
\Device\NamedPipe\ntsvcs
\Device\NamedPipe\EVENTLOG

0

2000

4000

6000

8000

Host, 1-VMW, 2-VMW, 3-VMW, 1-FVM, 2-FVM, 3-FVM

m
ill

is
ec

o
n

d

RPCSS on 2k IISADMIN on 2k W3SVC on 2k RPCSS on XP DcomLaunch on XP

Figure 3. Services Startup Time

Figure 4. Performance of Three Running IIS Web Servers

0

100

200

300

400

1 3 5 7 9 11 13 15 17 19

Number of Concurrent Clients
R

eq
ue

st
s/

S
ec

on
d

FVM VMW

Mutex
\BaseNamedObjects\DBWinMutex
\BaseNamedObjects\RasPbFile

Section
\BaseNamedObjects__R_ 0000000000da_SMem__
\BaseNamedObjects\DBWIN_BUFFER

Event
\BaseNamedObjects\ScmCreatedEvent
\SECURITY\LSA_AUTHENTICATION_INITIALIZED

Table 2, IPC Confinement Overhead

4.2 Performance Test
In the following three experiments, we evaluate the overhead of
IPC confinement, and the startup overhead of the virtualized
services, as well as the performance of redundant IIS web servers.
The objective of the last two experiments is to make clear whether
the FVM enforced with the IPC confinement mechanism suits for
building intrusion/fault tolerant systems which require frequent
invocation and redundancy. The test-bed consists of two machines.
Machine A is Pentium-4 2.8GHz with 512MB memory running
both Windows 2k and XP; machine B is Intel Core 2 Duo CPU
2GHz with 2GB memory running both Windows 2k and XP. Both
machines are installed FVM and VMWare Workstation 5.0.

Since the performance overhead of IPC confinement comes

from the overhead of executing additional instructions associated
with every intercepted IPC system calls, we carry out an
experiment to measure the overhead of IPC system call
interception. We first disable the FVM virtualization layer, run a
group of services and applications natively on host environment,
and count the average CPU cycles spent in each system call
through rtdsc instruction. Second, we enable the former version of
FVM layer and run the same services and applications in a VM to
do the test again. Third, we enable FVM layer which is enforced
with the IPC confinement mechanism to perform the test one
more time. For the third test, we further take the three IPC
confinement principles into account, which is to test three
situations corresponding to the three principles for each system
call. In both tests, the average CPU cycles of each system call or
principle is calculated from 100 invokes. Results are shown in
Table 2.

From table 2, we can see that the FVM which is enforced
with IPC confinement mechanism takes 32% ~113% more CPU
cycles than native. Although the overhead is not small, the impact
to the whole system performance is much limited, because the
intercepted IPC system calls are merely less than 0.2% of all the
invoked system calls according to our program activities tracing
and analyzing work. Moreover, compared to the former FVM, the
IPC confinement mechanism only adds less than 0.3% extra CPU
cycles. Therefore, the general performance impact is small.

The second experiment aims to measure the startup overhead
of the virtualized services. Figure 3 shows the startup time of five

types of services on machine B, including RPCSS, IISADMIN
and W3SVC on 2k, as well as RPCSS and Dcomlaunch on XP.
The tests were performed under seven different situations: starting
original service in host; starting one, two and three service
instances respectively on VMWare; starting one, two and three
service instances respectively on FVM. We use a testing program
to launch the tested services and record their startup time. The
startup time for each service is obtained by measuring the elapsed
time from the moment just before calling API OpenSCManager()
to the moment when API QueryServiceStatusEx() returns result
SERVICE_RUNNING.

From Figure 3, the service startup time under the situations
of starting one, two and three service instances on FVM are
almost equal to that of the original service on host. This indicates
that the startup overhead of the virtualized services on FVM is
almost zero, and remains very small even when starting multiple
virtualized service instances. On the other hand, the service
startup time under the situations of starting two and three service
instances on VMWare are almost twice or triple that on FVM.
This means the overhead of starting two or three service instances
on VMWare can be almost twice or triple that on FVM.

The third experiment aims to measure the performance of IIS
web servers redundantly running on single OS. Figure 4 shows
the performance of IIS web servers under the condition
redundantly running three IIS web servers on FVM and VMWare
respectively. The test data were collected by Webbench, a
licensed PC Magazine benchmark program, from three runs. The
IIS web servers and workloads were deployed on machine A, and
the configurations of all IIS servers on both FVM and VMWare
were the same despite that they may need optimization. On the
other side, the Webbench controllers and clients were deployed
on machine B. In each testing session, each web server had one to

System calls Native FVM IPC confined FVM Difference

Isolation-Principle 64493 113%, 0.3%

Global-Object-Principle 64388 113%, 0.2%
NtOpenSemaph
ore

30234 64286

Host-Object-Principle 64471 113%, 0.3%

Isolation-Principle 72545 95%, 0.3%

Global-Object-Principle 72410 94%, 0.1% NtCreatePort 37241 72309

Host-Object-Principle 72537 95%, 0.3%

Isolation-Principle 72849 91%, 0.1%

Global-Object-Principle 72793 91%, 0.1% NtOpenSection 38134 72742

Host-Object-Principle 72823 91% 0.1%

Isolation-Principle 269535 32%, 0.1%

Global-Object-Principle 269251 32%, 0.03%
NtCreateNamed
PipeFile

204711 269150

Host-Object-Principle 269323 32%, 0.1%

twenty clients concurrently sending requests to it, and each client
only had one engine. The testing data are the average of three web
servers. The results indicate that the performance of IIS web
servers on FVM is as fast as two to three times that of VMWare
under the condition running three IIS instances simultaneously on
single Windows OS.

In summary, enforcing IPC confinement mechanism imposes
small additional performance overhead on Windows OS, while
the startup of multiple virtualized services and the performance of
IIS web servers redundantly running on single Windows OS are
much faster than that of VMWare. Therefore, FVM enforced with
IPC confinement mechanism suits better for building
intrusion/fault tolerant systems.

5. Related work
The former version of FVM was able to confine IPC within VM,
but could not correctly handle the inter-process communication
between processes in host and in VM. As a result, it failed to run
some important services in VM, such as RPCSS and IIS. With our
IPC confinement mechanism, those services are successfully
virtualized.

There are also other Windows OS level virtualization
projects known from literature. SWsoft’s Virtuozzo [5] can
provide isolated environments called Virtual Dedicated Server or
Virtual Private Server on Windows platform, but we could not
find any IPC confinement description from their public
documents. Some commercial products on Windows with similar
virtualization techniques are Softricity Desktop [6] and
AppStream [7]. In particular, Softricity Desktop [6] is able to
preserve inter-application communications between applications
in different VM. Although this can facilitate the applications’
executions, it reduces the isolation level. In addition,
implementing all IPC confinement at the user-level system library
interface makes it easy to be bypassed.

6. Summary
This is the first paper to propose the principles and mechanism for
Windows IPC confinement which was an unsolved problem in
Windows OS-level virtual machine technology. It not only can
confine IPC within VM scope, but can also correctly facilitate all
necessary IPCs between processes in VM and in host so that
executions of the processes in VM are not impacted. It employs
two tables to help automatically and efficiently figure out these
IPCs. One table records IPC objects created by system services in
host, through which processes in VM is able to talk with the
system services. The other table records the global IPC objects
created inside a VM which should only be accessed by processes
in the VM instead of processes in other VMs or in host. Enforced
with the IPC confinement mechanism, we can successfully fix the
service virtualization problems that previous FVM version could
not.

As intrusion/fault tolerant systems require redundancy and
frequent invocation, we conducted two experiments on the FVM
enforced with IPC confinement mechanism to evaluate the
performance of redundant web servers and the overhead of
service invocation. Compared to VMWare, the redundant web
servers running on FVM are as fast as two to three times that of
VMWare. Meanwhile, the service startup overhead is almost zero,
and the overhead of starting two or three service instances on
FVM can be almost half or one-third of that on VMWare.

In addition, since VMs share most resources with host
environment, they can quickly recover from compromised state

by discarding the modified resources stored in VM and utilizing
resources in host again. Therefore, the properties of being able to
run multiple service instances with tiny startup and runtime
overhead, as well as being able to quickly recover from fault or
intrusion, make the FVM that is enforced with IPC confinement
mechanism an excellent building block for dependable systems.

7. ACKNOWLEDGMENTS
We thank Prof. Xin Wang at Stony Brook University for her

precious advices and the anonymous referees for their useful
comments. This research was supported in part by NSF grants
CCF-0621512/CNS-0627672, National Science Foundation of
China under grant number 60703103/60873213, and the High
Technology Foundation of China under grant number 06XNB053.

8. References
[1] VMware. Vmware products. http://www.vmware.com/products/home.html.
[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew

Warfield. Xen and the art of virtualization. In Proceedings of the 19th ACM Symposium on Operating Systems Principles,
pages 164–177. ACM Press, 2003.

[3] Yang Yu, Fanglu Guo, Susanta Nanda, Lap-chung Lam and Tzi-cker Chiueh, ̀ `A Feather-weight Virtual Machine for
Windows Applications'', in Proceedings of the 2nd ACM/USENIX Conference on Virtual Execution Environments (VEE'06),
June 2006.

[4] Yang Yu, Hariharan Kolam Govindarajan, Lap-chung Lam, Tzi-cker Chiueh "Applications of Feather-Weight Virtual
Machine" , Proceedings of the 2008 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE08), Seattle WA., March 2008.

[5] SWsoft, “Virtuozzo for windows & linux server virtualization,” http://www.virtuozzo.com/en/products/virtuozzo/.
[6] Softricity, “Application virtualization technology,” http://www.softricity.com/products/virtualization.asp.
[7] AppStream, “Appstream technology overview,” http://www.appstream.com/products-technology.html.
[8] Zhiyong Shan, Tanzirul Azim, Iulian Neamtiu. Finding Resume and Restart Errors in Android Applications. ACM Conference

on Object-Oriented Programming, Systems, Languages & Applications (OOPSLA’16), November 2016. Accepted.
[9] Zhiyong Shan, I. Neamtiu, Z. Qian and D. Torrieri, "Proactive restart as cyber maneuver for Android," Military

Communications Conference, MILCOM 2015 - 2015 IEEE, Tampa, FL, 2015, pp. 19-24.
[10] Jin, Xinxin, Soyeon Park, Tianwei Sheng, Rishan Chen, Zhiyong Shan, and Yuanyuan Zhou. "FTXen: Making hypervisor

resilient to hardware faults on relaxed cores." In 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA’15), pp. 451-462. IEEE, 2015.

[11] Zhiyong Shan, Xin Wang, Tzi-cker Chiueh: Shuttle: Facilitating Inter-Application Interactions for OS-Level Virtualization.
IEEE Trans. Computers 63(5): 1220-1233 (2014)

[12] Zhiyong Shan, Xin Wang: Growing Grapes in Your Computer to Defend Against Malware. IEEE Transactions on
Information Forensics and Security 9(2): 196-207 (2014)

[13] Zhiyong Shan, Xin Wang, Tzi-cker Chiueh: Malware Clearance for Secure Commitment of OS-Level Virtual Machines.
IEEE Transactions on Dependable and Secure Computing. 10(2): 70-83 (2013)

[14] Zhiyong Shan, Xin Wang, Tzi-cker Chiueh: Enforcing Mandatory Access Control in Commodity OS to Disable Malware.
IEEE Transactions on Dependable and Secure Computing 9(4): 541-555 (2012)

[15] Zhiyong Shan, Xin Wang, Tzi-cker Chiueh, Xiaofeng Meng: Facilitating inter-application interactions for OS-level
virtualization. In Proceedings of the 8th ACM Annual International Conference on Virtual Execution Environments (VEE’12),
75-86

[16] Zhiyong Shan, Xin Wang, Tzi-cker Chiueh, and Xiaofeng Meng. "Safe side effects commitment for OS-level virtualization."
In Proceedings of the 8th ACM international conference on Autonomic computing (ICAC’11), pp. 111-120. ACM, 2011.

[17] Zhiyong Shan, Xin Wang, and Tzi-cker Chiueh. 2011. Tracer: enforcing mandatory access control in commodity OS with the
support of light-weight intrusion detection and tracing. In Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security (ASIACCS '11). ACM, New York, NY, USA, 135-144. (full paper acceptance rate 16%)

[18] Shan, Zhiyong, Tzi-cker Chiueh, and Xin Wang. "Virtualizing system and ordinary services in Windows-based OS-level
virtual machines." In Proceedings of the 2011 ACM Symposium on Applied Computing, pp. 579-583. ACM, 2011.

[19] Shan, Zhiyong, Yang Yu, and Tzi-cker Chiueh. "Confining windows inter-process communications for OS-level virtual
machine." In Proceedings of the 1st EuroSys Workshop on Virtualization Technology for Dependable Systems, pp. 30-35.
ACM, 2009.

[20] Shan, Zhiyong. "Compatible and Usable Mandatory Access Control for Good-enough OS Security." In Electronic Commerce
and Security, 2009. ISECS'09. Second International Symposium on, vol. 1, pp. 246-250. IEEE, 2009.

[21] Xiao Li, Wenchang Shi, Zhaohui Liang, Bin Liang, Zhiyong Shan. Operating System Mechanisms for TPM-Based Lifetime
Measurement of Process Integrity. Proceedings of the IEEE 6th International Conference on Mobile Adhoc and Sensor
Systems (MASS 2009), Oct., 2009, Macau SAR, P.R.China, IEEE Computer Society. pp. 783--789.

[22] Xiao Li, Wenchang Shi, Zhaohui Liang, Bin Liang, Zhiyong Shan. Design of an Architecture for Process Runtime Integrity
Measurement. Microelectronics & Computer, Vol.26, No.9, Sep 2009:183~186. (in Chinese)

[23] Zhiyong Shan, Wenchang Shi. “STBAC: A New Access Control Model for Operating System”. Journal of Computer
Research and Development, Vol.45, No.5, 2008: 758~764.(in Chinese)

[24] Liang Wang, Yuepeng Li, Zhiyong Shan, Xiaoping Yang. Dependency Graph based Intrusion Detection. National Computer
Security Conference, 2008. (in Chinese)

[25] Zhiyong Shan, Wenchang Shi. “An Access Control Model for Enhancing Survivability”. Computer Engineering and
Applications, 2008.12. (in Chinese)

[26] Shi Wen Chang, Shan Zhi-Yong. “A Method for Studying Fine Grained Trust Chain on Operating System”, Computer
Science, Vol.35, No.9, 2008, 35(9):1-4. (in Chinese)

[27] Liang B, Liu H, Shi W, Shan Z. Automatic detection of integer sign vulnerabilities. In International Conference on Information
and Automation, ICIA 2008. (pp. 1204-1209). IEEE.

[28] Zhiyong Shan, Qiuyue Wang, Xiaofeng Meng. “An OS Security Protection Model for Defeating Attacks from Network”, the
Third International Conference on Information Systems Security (ICISS 2007), 25-36.

[29] Zhiyong Shan, “A Security Administration Framework for Security OS Following CC”, Computer Engineering, 2007.5,
33(09):151-163. (in Chinese)

[30] Shan Zhiyong, “Research on Framework for Multi-policy”, Computer Engineering, 2007.5, 33(09):148-160. (in Chinese)
[31] Zhiyong Shan, Shi Wenchang, Liao Bin. “Research on the Hierarchical and Distributed Network Security Management

System”. Computer Engineering and Applications, 2007.3, 43(2):20-24. (in Chinese)
[32] Zhiyong Shan, “An Architecture for the Hierarchical and Distributed Network Security Management System”, Computer

Engineering and Designing, 2007.7, 28(14):3316-3320. (in Chinese)
[33] Shan Zhi Yong, Sun Yu Fang, “Study and Implementation of Double-Levels-Cache GFAC”, Chinese Journal of Computers,

Nov, 2004, 27(11):1576-1584. (in Chinese)
[34] Zhiyong Shan, Yufang Sun, “An Operating System Oriented RBAC Model and Its Implementation”, Journal of Computer

Research and Development, Feb, 2004, 41(2):287-298. (in Chinese)
[35] Zhiyong Shan, Yufang Sun, “A Study of Extending Generalized Framework for Access Control”, Journal of Computer

Research and Development, Feb, 2003, 40(2):228-234. (in Chinese)
[36] Shan Zhi Yong, Sun Yu Fang, “A Study of Generalized Environment-Adaptable Multi-Policies Supporting Framework”,

Journal of Computer Research and Development, Feb, 2003, 40(2):235-244. (in Chinese)
[37] Shan Zhiyong, Research on the Framework for Multi-Policies and Practice in Secure Operation System. Phd Thesis, Institute

of Software, Chinese Academy of Science 2003. (in Chinese)
[38] Shan Zhi Yong, Sun Yu Fang, “A Study of Security Attributes Immediate Revocation in Secure OS”, Journal of Computer

Research and Development, Dec, 2002, 39(12):1681-1688. (in Chinese)
[39] Shi Wen Chang, Sun Yu Fang, Liang Hong Liang, Zhang Xiang Feng, Zhao Qing Song, Shan Zhi Yong. Design and

Implementation of Secure Linux Kernel Security Functions. Journal of Computer Research and Development, 2001, Vol.38,
No.10, 1255-1261.(in Chinese)

[40] Zhiyong Shan, Tzi-cker Chiueh, Xin Wang. Duplication of Windows Services. CoRR, 2016.
[41] Zhiyong Shan. Suspicious-Taint-Based Access Control for Protecting OS from Network Attacks. Technical Report, 2014.
[42] Zhiyong Shan, Bin Liao. Design and Implementation of A Network Security Management System. Technical Report, 2014.
[43] Zhiyong Shan. A Study on Altering PostgreSQL From Multi-Processes Structure to Multi-Threads Structure. Technical Report,

2014. (in Chinese)
[44] Zhiyong Shan. Implementing RBAC model in An Operating System Kernel. Technical Report, 2015. (in Chinese)
[45] Zhiyong Shan. A Hierarchical and Distributed System for Handling Urgent Security Events. Technical Report, 2014.
[46] Zhiyong Shan. An Review On Thirty Years of Study On Secure Database and It̀ s Architectures. Technical Report, 2014.
[47] Zhiyong Shan. An Review on Behavior-Based Malware Detection Technologies on Operating System. Technical Report,

2014. (in Chinese)

