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ABSTRACT 
As OS-level virtualization technology usually imposes little 
overhead on virtual machine start-up and running, it provides an 
excellent choice for building intrusion/fault tolerant applications 
that require redundancy and frequent invocation. When 
developing Windows OS-level virtual machine, however, people 
will inevitably face the challenge of confining Windows Inter-
Process Communications (IPC). As IPC on Windows platform is 
more complex than UNIX style OS and most of the programs on 
Windows are not open-source, it is difficult to discover all of the 
performed IPCs and confine them. In this paper, we propose three 
general principles to confine IPC on Windows OS and a novel 
IPC confinement mechanism based on the principles. With the 
mechanism, for the first time from the literature, we successfully 
virtualized RPC System Service (RPCSS) and Internet 
Information Server (IIS) on Feather-weight Virtual Machine 
(FVM). Experimental results demonstrate that multiple IIS web 
server instances can simultaneously run on single Windows OS 
with much less performance overhead than other popular VM 
technology, offering a good basis for constructing dependable 
system. 

Categories and Subject Descriptors D.4.5 [Operating 
Systems]:Reliability; D.4.6 [Operating Systems]: Security and 
Protection 

General Terms Reliability, Security 

Keywords virtual machine, IPC confinement, dependable 
system 

1. Introduction 
OS-level virtualization technology usually imposes little or no 
overhead on virtual machine (VM) start-up, running and shut-
down. Therefore, OS-level VM provides an excellent platform for 
intrusion/fault tolerant applications that require redundancy and 
frequent invocation. An OS-level VM is able to share as many 
resources as they can with other VMs and host environment. 
Meanwhile, programs in VM run as normal applications which 
directly use the normal system call interface of the host operating 
system and do not need to be subject to an intermediate virtual 
machine, as is the case with whole-system virtualizers (e.g., 
VMware[1]) or paravirtualizers (e.g, Xen[2]).  

When developing OS-level virtual machine on the popular 
Windows OS, in order to achieve strong isolation, the inter-
process communications often need to be constrained among 
processes in the same VM. However, simply confining all IPCs 
will obviously disturb most processes’ running as processes in a 
VM usually need to cooperate with other processes in the host, 
especially some system service processes, e.g. Service Control 
Manager (SCM). These service processes must run in the host 
environment rather than initiate another instance in VM, because 
they have too tight relationship with Windows OS itself. 

Therefore, a proper IPC confinement mechanism is desired to 
confine IPC within a VM’s scope while not disturbing a process’ 
running. 

Building such an IPC confinement mechanism is, however, a 
challenging task. IPC on Windows platform is more complicated 
than that of UNIX style OS, including mutex, event, timer, 
semaphore, shared memory, mailslot, pipe, socket, RPC, LPC, 
DDE, COM, Windows message, data copy, clipboard, etc. 
Furthermore, as most of the programs on Windows are not open 
source, it is difficult to discover all of the performed IPCs of a 
running process. In other words, it is difficult to figure out which 
IPC should be confined within VM and which IPC should not. 
Consequently, building IPC confinement mechanism would 
involve tedious program activities tracing, comparing and 
analyzing to uncover all of the used IPCs of programs.  

As far as we know, there is no proper IPC confinement 
mechanism for Windows OS in the literature. There are only two 
projects similar to our work. One is Feather-weight Virtual 
Machine (FVM) [3] that enables multiple isolated execution 
environments to run on a single Windows kernel. It can correctly 
confine IPC for some processes, however, it fails to confine IPC 
for other processes that have to communicate with system service 
in host (e.g. RPCSS service process and IIS service processes) 
and therefore fails to virtualize these important services. The 
other project is Virtuozzo [5] that provides isolated environments 
called Virtual Dedicated Server or Virtual Private Server on 
Windows platform, but we could not find any descriptions about 
Windows IPC confinement from their public documents. 

In this paper, we propose three general principles to confine 
IPCs on Windows OS and a novel Windows IPC confinement 
mechanism based on the principles. The proposed confinement 
mechanism not only can confine IPCs within a VM’s scope, but 
also can correctly facilitate all IPCs between processes in a VM 
and in host so that executions of the processes in a VM are not 
disturbed. It employs two tables to help automatically and 
efficiently identify these IPCs. One table records IPC objects 
created by system services in host, through which a process in the 
VM is able to talk with the system services. The other table 
records the global IPC objects created inside a VM, which should 
only be accessed by processes in the same VM instead of 
processes in other VMs or the host. Based on the mechanism, we 
further successfully virtualized the critical system service RPCSS 
and popular web server IIS. From literature studies, this is the first 
time that multiple RPCSS and IIS instances can be successfully 
run on a single Windows OS, which is usually prevented by 
Windows OS.  

In the rest of the paper, we firstly describe the background of 
this work in Section 2, then present the IPC confinement 
principles and enforcement issues, as well as integrated 
mechanism in Section 3. Application and test are presented at 



Section 4, where we successfully virtualize several important 
Windows services based on the enforcement of IPC confinement 
mechanism, and three performance experiments show that it only 
incurs small additional performance overhead. We provide related 
work in Section 5 and conclude our work in Section 6. 

2. Background and Challenge 
In order to achieve IPC confinement and build a basis for 
constructing dependable system, we choose FVM [3], a typical 
Windows OS level virtualization technology, as the fundamental 
framework. The key design goal of FVM is efficient resource 
sharing among VMs so as to minimize VM start-up/shut-down 
cost and scale to a larger number of concurrent VM instances. As 
a result, FVM can be a good platform supporting intrusion-
tolerant applications, for instance, “scalable web site testing” [4] 
that can isolate the potential malicious side effects of browser 
attacks from untrusted web sites from the underlying host 
machine.  

The key idea behind FVM is namespace virtualization, 
which renames system resources through a virtualization layer, 
called FVM layer, at the OS system call interface. Windows 
supports numerous types of namespaces for various system 
resources, such as files, registries, kernel objects, network address, 
Windows services, window classes, etc. The FVM layer 
manipulates the names of all these resources when a process 
makes system calls to access them. Through resource renaming, 
the namespaces visible to processes in one VM are guaranteed to 
be disjoint from those visible to processes in another VM. As a 
result, two VMs never share any resources and therefore cannot 
interact with each other directly. For example, suppose an 
application in one VM (say vm1) tries to access a file /a/b, then 
the FVM layer will redirect it to access /vm1/a/b. When a process 
in another VM (say vm2) accesses /a/b, it will try a different file, 
i.e., /vm2/a/b, which is different from the file /a/b in vm1. 

However, completely separating namespaces of different 
VMs may require unnecessary duplication of common system 
resources and may lead to the same performance overhead as 
many heavyweight virtual machine technologies. Being feather-
weight, the FVM architecture enables VMs to share most 
resources with the host environment while isolating state changes 
of each VM through a special copy-on-write scheme. A newly 
created VM initially can share all the resources of the host 
machine. Later on, if processes in the VM make only read 
requests to system resources, they can simply access the shared 
resources on the host machine. The VM does not occupy any 
private resources until processes in the VM try to modify the host 
machine’s resources. Therefore, the resource requirement of each 
VM is significantly reduced under the FVM architecture. 

In the previous version of FVM, however, there were several 
unresolved issues, such as RPCSS could not run inside VM, IIS 
web server could not run inside VM, Microsoft office assistant 
and some installation programs could not work inside VM, etc. 
The root reason of these issues is that FVM did not have a proper 
IPC confinement mechanism to not only confine IPC within a 
VM but also correctly facilitate communications between 
processes in VMs and in host. As Windows programs’ internal 
details and complex Windows IPC mechanism are generally not 
documented, building a proper IPC confinement mechanism 
becomes a challenge in FVM development group. 

3. Windows IPC Confinement 

The Windows operating system provides mechanisms for 
facilitating communications and data sharing between 
applications. Collectively, the activities enabled by these 
mechanisms are called inter-process communications (IPC). Some 
forms of IPC facilitate the division of labor among several 
specialized processes. Other forms of IPC facilitate the division of 
labor among computers on a network.  

There are miscellaneous IPC objects in Windows OS. About 
18 types of methods can be used for inter-process communication, 
excluding communications through ordinary file and registry. To 
facilitate the research, we categorize them into following seven 
groups according to their internal mechanisms: I. Port related IPC: 
LPC, RPC, COM/DCOM/COM+; II. Pseudo file related IPC: 
Mail slot, Pipes; III. Shared memory: File mapping; IV. 
Synchronization IPC: Semaphore, Mutex, Event, Timer; V. 
Message related IPC: Windows message, Data Copy, Clipboard, 
DDE; VI. Windows Sockets: Socket; VII. Dangerous functions: 
Find Window, Create remote thread, Set window hook. 

3.1 IPC Confinement Principles  
Before designing the IPC confinement mechanism, we provide 
three general principles to confine Windows OS IPC, based on 
our work of tracing and analyzing a group of Windows processes’ 
activities. 

(1) Isolation-Principle: allowing inter-process 
communications within a VM’s scope while blocking the ones 
across VM borders as much as possible. 

To achieve strong isolation, IPC confinement requires that a 
process running in one VM does not communicate with processes 
running in other VMs or in the host machine through IPC. This is 
the basic requirement of IPC confinement. However, only 
enforcing this principle would result in a failure when a process in 
VM needs to talk with a process in host. So we need other 
principles to facilitate necessary process communications across 
VM border. 

(2) Global-Object-Principle: allowing processes in a VM to 
access any global-object except that the global-object is created 
by a process in different VM. 

Global-object refers to the IPC object that can be shared by 
all processes on the single OS. Conventionally, the global-objects 
have to be created by users with a special right. In most cases, 
system services create the global-objects, through which system 
services provide functionality to all applications on the OS. So, 
applications in all VMs should also be able to access the global-
object by default.  

However, once a system service itself is virtualized, i.e. a 
new instance of the system service is running in VM, or a process 
running in VM with the special right to create global-object, the 
global-objects created by these processes should not be accessed 
by processes in other VMs or host, in order to achieve strong 
isolation. This is because a virtualized system service running 
inside a VM should only serve for applications within the same 
VM, and a process with the special right also should only 
communicates with other processes within the same VM. 

(3) Host-Object-Principle: allowing processes in VM to 
access IPC objects created by a system service in host. 

Many applications running in VM need to co-operate with 
system services in host so that they can proceed with their 
executions. In most cases, system services utilize non-global IPC 
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Figure1.  IPC Confinement Mechanism
objects to provide functionalities to applications rather than 
global-objects mentioned above. For these non-global IPC objects, 
called host-objects, we should allow processes in VM to access 
them. 

3.2 Issues to Enforce the Principles 
How to enforce Isolation-Principle? The difficulty of 

enforcing the Isolation-Principle lies in the fact that there are 
miscellaneous IPC objects with distinct internal mechanisms. For 
the IPC types I to IV, we intercept related system call functions in 
kernel level and employ the “rename” method presented in 
section 2 to enforce Isolation-Principle. Through IPC object 
renaming, the IPC object visible to processes in one VM are 
guaranteed to be disjoint from those visible to processes in 
another VM. As a result, two VMs never share any IPC objects 
and therefore cannot interact with each other directly. 

However, for other IPC types, we intercept related API 
functions at application level and employ different methods to 
enforce Isolation-Principle since their mechanisms are different. 
For IPC type V, i.e. message related IPC, we directly block the 
message when the sender and the receiver are in different VMs. 
For IPC type VI, i.e. Windows Socket, we assign an exclusive IP 
address to a VM by employing the method of IP aliasing and 
associate the VM’s IP address with a socket. For IPC type VII, i.e. 
dangerous functions, we directly prohibit a process from creating 
remote thread, modifying other process’ address space, setting 
system wide hooks across VM scope, and enumerating windows 
in other VMs or host. 

How to enforce Global-Object-Principle? The difficulty of 
enforcing the Global-Object-Principle is to correctly and 
thoroughly identify the global-objects created by virtualized 
system services or processes with the special right. To address the 
issue, we construct a table, named Global-Object Table, in each 
VM to record all global-objects created within the VM. Every 
time a process in a VM tries to access a global-object, we check if 
it is in the table. If this is true, we direct the access to the global-
object created within the VM. Otherwise, direct the access to the 
global-object in host. 

How to enforce Host-Object-Principle? The difficulty of 
enforcing Host-Object-Principle is how to correctly and 
thoroughly identify all of the host-objects created by system 
services in host. After manually tracing and analyzing the 
activities of processes which have to communicate with system 

services in host, we successfully identified the host-objects and 
hard-coded them into FVM source codes. As a result, these 
processes were able to run inside a VM. But, this method has two 
limitations. One is that not all of the host-objects can be manually 
found out, thus the method can not handle all kinds of 
applications. The other is that the method is platform dependent. 
Once moving FVM to a new Windows version, we have to look 
for the host-objects again. 

In order to address the issue automatically and efficiently, 
we design a table, named Host-Object Table, to record all host-
objects of the whole system. It consists of two lists. One is a long 
list to store all the IPC objects of system services in host. 
However, the long list is usually too long to find out an object in a 
short time thus impacting system performance significantly. So 
we further design a short list to store most recently used host-
objects in order to reduce the time for finding a host-object. When 
FVM is booted up, the host-objects are read from system services’ 
process space to the long list. Every time a process in VM 
requests access to an IPC object, it searches the short list first, 
trying to find the object. Once it fails, it then searches the long list. 
If successfully obtaining the object from the long list, it records 
the object in the short list.  

However, when accessing an IPC object that is not a host-
object, we have to always search in both the short and long lists to 
make sure it is not a host-object, which is a time consuming 
procedure. To avoid searching the long list, we performed a serial 
of experiments showing that the short list will not be updated any 
more after finishing startup of all virtualized Windows services. 
This means that all of the host-objects on the OS are selected 
from the long list to the short list at this time. Hence we set up a 
flag, named Host-Object Flag, to stop searching the long list after 
finishing startup of all virtualized Windows services. 

Therefore, with the two host-object lists and the Host-Object 
Flag, all of the host-objects can be automatically identified and 
efficiently retrieved by the processes requiring to access them. 

3.3 IPC Confinement Mechanism 
With the IPC confinement principles and their enforcement 
methods discussed above, the IPC confinement mechanism is 
carefully designed, as shown in Figure 1. 

The IPC confinement mechanism comprises of a set of 
modules, including Renaming Decision, Access Decision, Global-
Object Table, Short Host-Object List, Long Host-Object List and 



Figure 2. Three IIS Web Servers Run on Single OS

Host-Object Flag. According to the Isolation-Principle and its 
enforcement method, the Renaming Decision module is 
responsible for determining whether renaming IPC objects 
involving types I to IV. The Access Decision module is 
responsible for determining whether to allow accessing IPC 
objects that involves types V to VII. According to the Global-
Object-Principle and its enforcement method, the Global-Object 
Table stores global-object names to help the Renaming Decision 
module to make renaming decision about global-object. 
According to the Host-Object-Principle and its enforcement 
method, the Short Host-Object List, Long Host-Object List and 
Host-Object Flag help the Renaming Decision module to make 
renaming decision about host-object. 

The bracketed numbers in Figure 1 represent the working 
steps of the mechanism. In step (1), when FVM is started, all 
names of the IPC objects except global-objects created by the 
system service processes in host are read and stored into the Long 
Host-Object List. In steps (2) and (9), when in kernel mode, a 
process in VM tries to access an IPC object whose type is one of I 
to IV. It sends a request to Renaming Decision module and waits 
for the decision result. In steps (3) and (4), the Renaming 
Decision module checks whether the object is in the Global-
Object Table which stores names of the global-objects created by 
processes in VM. If this is true, the Renaming decision module 
returns the renamed global-object name. In steps (5) and (8), 
Renaming Decision module checks whether the object is in the 
Short Host-Object List which stores the names of the host-objects 
recently used and returns the original host-object name if it is true. 
If the object is not in the Short Host-Object List and the Host-
Object Flag is on, the Renaming Decision Module does not search 
the Long Host-Object List any more and returns the renamed 
object name. In steps (6) and (7), if it failed to find the object 
from the Short Host-Object List while the Host-Object Flag is off, 
Renaming Decision module then searches the Long Host-Object 
List which stores the names of all IPC objects created by the 
system services in host. If the object is found, it stores the object 
name into the short list and returns the original object name; 
otherwise, it returns renamed object name. In steps (10) and (11), 
in application mode, a process in VM tries to access an IPC object 
whose type is one of V to VII. It sends a request to Access 
Decision module and waits for the decision result. The Access 
Decision module makes decision on whether to allow the request 
directly based on the result of analyzing two process’ VM ID. 

In summary, the mechanism is able to confine all kinds of 
IPC while efficiently facilitating necessary IPC between processes 
in VMs and in host. The Renaming Decision module handles the 
IPCs of types I to IV in kernel mode and the Access Decision 
module handles the IPCs of types V to VII in application mode. 
Meanwhile, the Global-Object Table and Host-Object Table 
facilitate the IPCs between processes in VM and in host. With the 
help of these two tables, the mechanism is able to automatically 
detect all IPCs between processes in VM and in host. Furthermore, 
with the help of the Short Host-Object List and the Host-Object 
Flag, the mechanism is able to efficiently retrieve host-objects 
while avoiding time-consuming searching in the Long Host-
Object List. 

4. Application and Test 
4.1 Application 
In the previous version of FVM, there were several unresolved 
issues, such as RPCSS could not run inside VM, IIS web server 
could not run inside VM, office assistant and some installation 

programs could not work inside VM, etc. The root reason of these 
issues is that FVM did not have a proper IPC confinement 
mechanism, which can prevent processes in VM from failing 
caused by abnormal IPC access.  

With our IPC confinement mechanism enforced, the FVM 
now can virtualize services including RPCSS on both Windows 
2k and XP, IIS web server that contains services IISADMIN and 
W3SVC on Windows 2k, as well as service Dcomlaunch on 
Windows XP. Furthermore, a bunch of applications that need 
these services’ support can also run in VM, which proves that 
these virtualized services act correctly.  

Figure 2 shows a snapshot of running three IIS web server 
instances simultaneously on a single Windows OS. On the left, 
there is a ProcessExplorer GUI displaying a process list that 
contains three groups of virtualized IIS services’ processes, 
running in three VMs respectively. In each VM, there is a 
virtualized RPCSS process svchost.exe, a virtualized IIS web 
server process inetinfo.exe, and two virtualized DCOM server 
surrogate processes named DLLHOST.exe that handle ASP web 
page requests. On the right, there are three IE windows showing 
both HTML and ASP pages gotten from the three virtualized IIS 
web servers. As each VM has its own IP address, there is a 
different IP address displayed in each IE’s web address window, 
which means the IE is accessing an IIS web server running in 
different VM. In short, this snapshot verifies that IIS web server 
and RPCSS are successfully virtualized and they work correctly. 

To demonstrate the working results of the three IPC confinement 
principles, Table 1 shows what RPCSS service created IPC objects are 
confined by the three IPC confinement principles respectively. 

Table 1. IPC objects of RPCSS service 

Principle Type Object 

Port 
\RPC Control\epmapper 
\RPC Control\OLE30778CF8A8F24282B5F73ADC0B14 

Isolation
Named 
pipe 

\Device\NamedPipe\epmapper 
\Device\NamedPipe\Winsock2\CatalogChangeListener-30c-0 

Global-
Object 

Section \BaseNamedObjects\Global\RotHintTable 

Port 
\RPC Control\DNSResolver 
\RPC Control\ntsvcs 

Host-
Object 

Named 
Pipe 

\Device\NamedPipe\net\NtControlPipe* (* represents an 
arbitrary number) 
\Device\NamedPipe\svcctl 
\Device\NamedPipe\ntsvcs 
\Device\NamedPipe\EVENTLOG 
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Mutex 
\BaseNamedObjects\DBWinMutex 
\BaseNamedObjects\RasPbFile 

Section 
\BaseNamedObjects\__R_ 0000000000da_SMem__ 
\BaseNamedObjects\DBWIN_BUFFER 

Event 
\BaseNamedObjects\ScmCreatedEvent 
\SECURITY\LSA_AUTHENTICATION_INITIALIZED 

Table 2, IPC Confinement Overhead 

4.2 Performance Test 
In the following three experiments, we evaluate the overhead of 
IPC confinement, and the startup overhead of the virtualized 
services, as well as the performance of redundant IIS web servers. 
The objective of the last two experiments is to make clear whether 
the FVM enforced with the IPC confinement mechanism suits for 
building intrusion/fault tolerant systems which require frequent 
invocation and redundancy. The test-bed consists of two machines. 
Machine A is Pentium-4 2.8GHz with 512MB memory running 
both Windows 2k and XP; machine B is Intel Core 2 Duo CPU 
2GHz with 2GB memory running both Windows 2k and XP. Both 
machines are installed FVM and VMWare Workstation 5.0. 

Since the performance overhead of IPC confinement comes 

from the overhead of executing additional instructions associated 
with every intercepted IPC system calls, we carry out an 
experiment to measure the overhead of IPC system call 
interception. We first disable the FVM virtualization layer, run a 
group of services and applications natively on host environment, 
and count the average CPU cycles spent in each system call 
through rtdsc instruction. Second, we enable the former version of 
FVM layer and run the same services and applications in a VM to 
do the test again. Third, we enable FVM layer which is enforced 
with the IPC confinement mechanism to perform the test one 
more time. For the third test, we further take the three IPC 
confinement principles into account, which is to test three 
situations corresponding to the three principles for each system 
call. In both tests, the average CPU cycles of each system call or 
principle is calculated from 100 invokes. Results are shown in 
Table 2.  

From table 2, we can see that the FVM which is enforced 
with IPC confinement mechanism takes 32% ~113% more CPU 
cycles than native. Although the overhead is not small, the impact 
to the whole system performance is much limited, because the 
intercepted IPC system calls are merely less than 0.2% of all the 
invoked system calls according to our program activities tracing 
and analyzing work. Moreover, compared to the former FVM, the 
IPC confinement mechanism only adds less than 0.3% extra CPU 
cycles. Therefore, the general performance impact is small.  

The second experiment aims to measure the startup overhead 
of the virtualized services. Figure 3 shows the startup time of five 

types of services on machine B, including RPCSS, IISADMIN 
and W3SVC on 2k, as well as RPCSS and Dcomlaunch on XP. 
The tests were performed under seven different situations: starting 
original service in host; starting one, two and three service 
instances respectively on VMWare; starting one, two and three 
service instances respectively on FVM. We use a testing program 
to launch the tested services and record their startup time. The 
startup time for each service is obtained by measuring the elapsed 
time from the moment just before calling API OpenSCManager() 
to the moment when API QueryServiceStatusEx() returns result 
SERVICE_RUNNING.  

From Figure 3, the service startup time under the situations 
of starting one, two and three service instances on FVM are 
almost equal to that of the original service on host. This indicates 
that the startup overhead of the virtualized services on FVM is 
almost zero, and remains very small even when starting multiple 
virtualized service instances. On the other hand, the service 
startup time under the situations of starting two and three service 
instances on VMWare are almost twice or triple that on FVM. 
This means the overhead of starting two or three service instances 
on VMWare can be almost twice or triple that on FVM. 

The third experiment aims to measure the performance of IIS 
web servers redundantly running on single OS. Figure 4 shows 
the performance of IIS web servers under the condition 
redundantly running three IIS web servers on FVM and VMWare 
respectively. The test data were collected by Webbench, a 
licensed PC Magazine benchmark program, from three runs. The 
IIS web servers and workloads were deployed on machine A, and 
the configurations of all IIS servers on both FVM and VMWare 
were the same despite that they may need optimization. On the 
other side, the Webbench controllers and clients were deployed 
on machine B. In each testing session, each web server had one to 

System calls Native FVM IPC confined FVM Difference

Isolation-Principle 64493 113%,  0.3% 

Global-Object-Principle 64388 113%,  0.2% 
NtOpenSemaph
ore 

30234 64286 

Host-Object-Principle 64471 113%,  0.3% 

Isolation-Principle 72545 95%,   0.3% 

Global-Object-Principle 72410 94%,   0.1% NtCreatePort 37241 72309 

Host-Object-Principle 72537 95%,   0.3% 

Isolation-Principle 72849 91%,   0.1% 

Global-Object-Principle 72793 91%,   0.1% NtOpenSection 38134 72742 

Host-Object-Principle 72823 91%    0.1% 

Isolation-Principle 269535 32%,   0.1% 

Global-Object-Principle 269251 32%,   0.03%
NtCreateNamed
PipeFile 

204711 269150 

Host-Object-Principle 269323 32%,   0.1% 



twenty clients concurrently sending requests to it, and each client 
only had one engine. The testing data are the average of three web 
servers. The results indicate that the performance of IIS web 
servers on FVM is as fast as two to three times that of VMWare 
under the condition running three IIS instances simultaneously on 
single Windows OS.  

In summary, enforcing IPC confinement mechanism imposes 
small additional performance overhead on Windows OS, while 
the startup of multiple virtualized services and the performance of 
IIS web servers redundantly running on single Windows OS are 
much faster than that of VMWare. Therefore, FVM enforced with 
IPC confinement mechanism suits better for building 
intrusion/fault tolerant systems.  

5. Related work 
The former version of FVM was able to confine IPC within VM, 
but could not correctly handle the inter-process communication 
between processes in host and in VM. As a result, it failed to run 
some important services in VM, such as RPCSS and IIS. With our 
IPC confinement mechanism, those services are successfully 
virtualized. 

There are also other Windows OS level virtualization 
projects known from literature. SWsoft’s Virtuozzo [5] can 
provide isolated environments called Virtual Dedicated Server or 
Virtual Private Server on Windows platform, but we could not 
find any IPC confinement description from their public 
documents. Some commercial products on Windows with similar 
virtualization techniques are Softricity Desktop [6] and 
AppStream [7]. In particular, Softricity Desktop [6] is able to 
preserve inter-application communications between applications 
in different VM. Although this can facilitate the applications’ 
executions, it reduces the isolation level. In addition, 
implementing all IPC confinement at the user-level system library 
interface makes it easy to be bypassed. 

6. Summary 
This is the first paper to propose the principles and mechanism for 
Windows IPC confinement which was an unsolved problem in 
Windows OS-level virtual machine technology. It not only can 
confine IPC within VM scope, but can also correctly facilitate all 
necessary IPCs between processes in VM and in host so that 
executions of the processes in VM are not impacted. It employs 
two tables to help automatically and efficiently figure out these 
IPCs. One table records IPC objects created by system services in 
host, through which processes in VM is able to talk with the 
system services. The other table records the global IPC objects 
created inside a VM which should only be accessed by processes 
in the VM instead of processes in other VMs or in host. Enforced 
with the IPC confinement mechanism, we can successfully fix the 
service virtualization problems that previous FVM version could 
not.  

As intrusion/fault tolerant systems require redundancy and 
frequent invocation, we conducted two experiments on the FVM 
enforced with IPC confinement mechanism to evaluate the 
performance of redundant web servers and the overhead of 
service invocation. Compared to VMWare, the redundant web 
servers running on FVM are as fast as two to three times that of 
VMWare. Meanwhile, the service startup overhead is almost zero, 
and the overhead of starting two or three service instances on 
FVM can be almost half or one-third of that on VMWare.  

In addition, since VMs share most resources with host 
environment, they can quickly recover from compromised state 

by discarding the modified resources stored in VM and utilizing 
resources in host again. Therefore, the properties of being able to 
run multiple service instances with tiny startup and runtime 
overhead, as well as being able to quickly recover from fault or 
intrusion, make the FVM that is enforced with IPC confinement 
mechanism an excellent building block for dependable systems. 
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