Optimising Client Accesses within Armada

Fabian Groffen

Martin Kersten

Stefan Manegold

Centrum Wiskunde & Informatica
Science Park 123
1098 XG Amsterdam, The Netherlands
{fabian,mk,manegold}@cwi.nl

ABSTRACT

The Armada model describes how a distributed database
system evolves, using multiple nodes that together form the
database. In such system, posing a query involves continu-
ously locating the right node until sufficient data to answer
the query has been found.

Locating a node involves making a connection to such
node. Since making a connection is expensive in time, avoid-
ing to do so where possible, pays off in the total query execu-
tion time. In this short paper, we give an extended summary
of our work on cutting down the number of made connec-
tions per query in an Armada system.

1. INTRODUCTION

In previous work, we presented Armada, a reference model
for an evolving database system [1]. Due to space reasons
we have to refer the reader to our paper for details. In short,
the Armada model builds a “lineage” tree representing the
growth in history of a distributed database that is divided
into two new pieces on every step. The divisions contain
enough information to tell what data went where, allowing
a client in the system to convergence to its target from any
node in the system. However, instead of reaching the data
directly after a single catalog lookup, multiple steps can be
necessary to reach the data being looked for.

The small tree on the right depicts a little
Armada lineage tree. Clients typically arrive
at any one of the leafs of the tree, and start
their query from there. The structure of the
Armada model allows for each node in the tree
to tell how to get nearer to a given value, if
the value is not supposed to be stored locally. A node can
redirect a client if it does not hold the requested value itself,
either one step down in the tree, or to any node up on the
path from itself towards the root. Hence, a client that sends
a query to node b in the small tree, asking for a value stored
on node e, gets a redirect from b to a. a in turn, redirects
to ¢, which eventually redirects the client to node e, which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WDDDM °09, March 31, 2009, Nuremberg, Germany

Copyright 2009 ACM 978-1-60558-462-1/09/03 ...$5.00.

PostgreSQL ‘ MySQL ‘ MonetDB
0.134 21.021 | 0.099 14.735 | 0.123 23.112

Table 1: Wall-clock times in seconds for performing
1000 queries over a single or multiple connections.

can answer the query. The other way around, if the client
starts at e and asks for a value from b, e redirects the client
to a, and then reaches via another redirect b. Obviously,
depending on where the client starts its query, the number
of redirects necessary to find the answer can be large or
small.

Armada is a model designed to facilitate the use of both
replication and fragmentation. It supports administration
of operations for both retrieval and evolution of data with a
self-tuning flavour: due to the flexibility of the model, new
systems can participate when necessary, old ones can leave,
and the actual number of systems or location of data is hid-
den from users of the system. The Armada administration
allows for localisation of data without need for a central en-
tity that becomes a bottleneck and hot-spot in busy systems.

In this paper we study the process of locating the right
node by following directions in the Armada model. We focus
on the costs associated to the process of following for differ-
ent Armada systems. Since a traditional non-distributed
system would have direct access to the data in any case, in
comparison an Armada system introduces extra work caused
by additional redirects. Hence we look for strategies to min-
imise the required redirects in the Armada model.

That redirects are indeed expensive, is shown by Table 1.
It shows a small experiment we conducted on an OpenSolaris
AMD Athlon64 3800+ system running three Open Source
database systems. For each database system the left value
represents 1000 simple queries performed over a single con-
nection, while the right value represents the number of sec-
onds necessary to perform the same 1000 queries but each
over a new connection to the database system. From the
table it can be concluded that separate connections are 158,
150 and 189 times slower for PostgreSQL, MySQL and Mon-
etDB respectively. For this reason it seems beneficial to try
and reduce the number of connections one has to make dur-
ing the query process, since this takes a substantial amount
of time.

Throughout this paper we frequent the terms agent, site
and box. When we refer to an agent, we refer to the entity in
the system that interacts with the data nodes in the Armada
system. A site is a data node, capable of storing boxes in
the Armada system. A boz is a logical block of data hosted
on a site, a product of dividing the database.

2. EXPERIMENTAL ENVIRONMENT

In this extended abstract, we look at a limited set of en-
vironmental settings and their effect on the number of redi-
rects that need to be followed. The key measurement we
use is hopcount. It represents the number of steps taken
by the agent for a query from the starting site to the site
holding the active box that is responsible for the value be-
ing looked for. An agent that directly contacts a site which
contains an active box that is responsible for the data value,
has hopcount = 0 for that particular query. The bigger
avg(hopcount) becomes, the worse the seek performance of
the Armada.

For simplicity, we assume that each site contains at most
one box. If there are no more available sites, the Armada
cannot grow any further, even though some sites may be able
to store more data using a box. The agent in an Armada is
the entity that performs most of the work. It basically deals
with the entire traversing through the system, by means of
following redirects. On successive queries, the agent has a
number of options to try and minimise the amount of hops
taken for each query. The baseline approach for an agent is
the naive strategy of the Lazy Policy.

When using the Lazy Policy, an agent starts each query
at the same site, which is the only site it knows, the origin.
Obviously this stresses the origin with a magnificent hit-
count, and takes the agent as many hops as there are on the
shortest path from the root to the target box. An alternative
to this naive approach is the Cache Policy.

Smart agents use the Cache Policy and cache the lineage
trails they see when traversing the Armada, and use that
cache prior contacting a site to make an educated guess what
would be the most appropriate site to contact, e.g. the site
closest to the target. Obviously, out of date cached trails
can be thrown away when being encountered to reduce the
search space. A caching agent can ultimately get a hopcount
close to 0, as its cached trails represent the part of the Ar-
mada it is interested in. However, it is not realistic to have
all trails for the entire Armada cached, as this may be a
continuously growing large amount. This large amount may
not be an issue memory wise, but it will be a performance is-
sue given that the search space increases. Hence, the agent
needs to define a policy for itself that defines which trails
need to be kept, with a limited number of cache buckets.

The shape of an Armada tree is influenced by the data it
contains. To experiment with different tree shapes, and to
see the effect of them, we used two carefully crafted work-
loads. For each workload we used the same value range
starting at 0, ending at some predefined positive number.
By doing this, the sets can be used to query the other sets
without getting an artificial skew because of a range mis-
match.

The Linear set is a simple ascending counter with regular
gaps to fill up to the desired value range. Since no duplicates
are allowed, each value appears at most once in the Armada.
The gaps between the values are equal, and hence do not
affect chunking decisions due to the introduction of skew.

A randomised list of values is the Uniform set. It uses
a perfect even distribution. While gaps are still possible,
duplicates are not allowed. The random order of the values,
causes unlike the Linear set to have unordered insertion of
values.

100

T T
linear

9 | uniform —&— f
80 R
70 b
60
50 R

Hops

40 b
30 b
20 b
10 b

O L L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 500C

sequence number

(a) Linear Set

. .
linear

uniform —&—

Hops
w

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 500C

sequence number

(b) Uniform Set

Figure 1: Querying using the Lazy policy.

3. QUERYING

Querying the Linear set using a lazy policy in general
yields in many hops. Obviously when querying with the Lin-
ear set itself the number of hops necessary per query contin-
uously increases as the values are found further away, deeper
in the tree, as can be observed from Figure la. Querying
with the uniform set on the other hand, nicely requests val-
ues which are located scattered over the entire tree. This
results in on average a hopcount close to half of the tree
depth.

The Uniform set has much smaller hop counts when queried
with any set compared to the Linear set, as can be seen in
Figure 1b. This is due to the depth of the tree generated
by the Uniform set being much smaller as a result of better
tree balancing caused by the random value insertions. Still,
when querying with the Linear set, a slightly increasing hop-
count is seen. This is due to the Linear set getting a larger
reach all the time, while the Uniform set has the maximum
reach from the start.

The cache policy on the other hand, has very low hop
counts when using an unlimited cache, simply because it can
position the agent very well for every query already starting
once it has learnt a part of the tree.

average hops over 100 samples

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
sequence number

(a) First Generation

average hops over 100 samples

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
sequence number

(b) Second Generation

Figure 2: Querying the Uniform set using the Cache
policy.

Cache Policy.

The cache policy, depicted in Figure 2a, outperforms any
other policy by far. Its superior low hop counts are mainly
due to the unlimited amount of cache slots which eventu-
ally allow to collect all trails available in the entire Armada.
Mainly because of this unrealistically high (and theoreti-
cally unbounded) storage capacity, this policy in its unlim-
ited form is considered to be artificial and only feasible in a
hypothetical world. The more trails are stored, the longer
the time it takes to search through these trails. Since trails
are only appended, this just makes the cache lookup slower
and slower over time. The problem is made worse given that
each trail has to be searched step by step to find a possi-
ble best match from the cache. However, its supreme per-
formance win cannot be ignored. To be able to understand
this performance and possibly approach it with a much more
realistic policy, we have to look in more detail into the as-
sociation tree and in particular where most of our hops go.
The Uniform set is a good starting point for this. The cache
policy performs so well on this set, simply because it hardly
mispredicts. Because it considers its own cache, it always
knows the origin, resulting in an equal to lazy performance
in the worst case. However, if there is a cache item for the
right branch, the cache policy can use it, jumping ahead in

the right direction. The more trails cached, the more precise
the cache policy becomes, which eventually means that the
chosen site for a query is immediately the right one.

=\ =\
A A A
B

|

|

v

|

|

v

| |

| |

v v

B

—— ——

(a) (b) (©) B

Figure 3: Association trial intersections.

Limited Cache.

When the cache size is reduced, no longer all trails can
be kept, and trails have to be thrown out. The performance
of the next query depends on which trail is removed, as it
might affect how much the agent can start close to the ac-
tual target. A metric that we can use here is the length of
the trails after their common part starting from the origin.
Consider Figure 3 depicting three situations where two trails
intersect. In the figure, only the sites referenced in the trails
are depicted. This equals the association tree, and hence
can have a situation as in Figure 3(a) where trail A € B.
Obviously, for this situation, trail B can be chosen without
losing any information, as we can reach the same sites as
before. As a metric, for this situation we can define that by
replacing B with A, we reduce the possible hops we have
to take for any query at maximum by 2 hops. At the same
time, we do not add any additional hops in the worst case
scenario, as all sites from A are contained in B. Figure 3(b)
on the other hand shows trail B which is much more spe-
cific than A, but does not fully contain A. In the depicted
case, it may be evident that the loss of discarding trail A
does not outweigh the win of storing trail B. The to be dis-
carded site from A can be reached via B by stepping from
the last site in the common part of both trails. In terms
of hops, this case reduces the number of hops at maximum
by 4, while it increases them at maximum by one. Lastly
Figure 3(c) shows trail A and B where the overlap is par-
tial and the benefit of either over the other is not obviously
clear. Applying our metric, the maximum number of hops is
decreased by 4, increased with 3. Though the loss of either
branch is substantial. It may be clear that when the cache
slots are all filled, an algorithm to find which trail should
be dropped — if any — needs to be run. From the metric
used before, we can define the benefit ratio as the maximum
number of reduced hops divided by the maximum number
of added hops. This ratio has a value greater than 1 for
trail A against B if B reduces more hops, than those lost
by removing A. When the ratio is smaller than 1, trail A is
favourable for the system as a whole. When there is no loss
such as in Figure 3(a), the ratio cannot be computed. This
is not a problem, as in such case A can always be replaced
by B.

OO0 -
‘0-0 "0

Figure 4: Benefit calculations for three trails.

First Replacement Algorithm.

From Figure 2(a) the average number of hops taken per
query for various cache sizes can be read. It immediately
shows up that the performance only slightly increases, with
the obvious exception for a single trail cache. This behaviour
can be explained by the longest trail always remaining in
the cache, as it is the most beneficial trail according to the
benefit ratio. The algorithm adds the longest trails to the
cache first, often resulting in little to no performance im-
provement. The trails have a very large common part, but
are selected by the algorithm because they have a larger
benefit ratio than other (shorter) trails, while those could
possibly be more useful when they address an entirely dif-
ferent branch. It is obvious that the chosen trails to cache
are quite inefficient for the total picture.

It is obvious that the algorithm in its current form is not
ideal. In particular the performance for 2 and 3 trails in
the cache is equal, and indicates inefficient trail caching. In-
depth analysis revealed that the current algorithm favours
longer trails over shorter ones, even though the shorter ones
address completely different branches. We can conclude that
with the current algorithm, the amount of overlap with other
trails in the cache is ignored. This results in trails that are
very close to other cached trails to be added in favour of
other cached trails which have a smaller benefit ratio. The
trail that is added to the cache as a result simply is a loss
in the total picture of the cache coverage. The benefit ratio
algorithm needs to be refined to take the overall benefit for
the cache as a whole into account when replacing a cached
trail for another.

Second Replacement Algorithm.

In the replacement algorithm as depicted in Figure 2(b),
instead of comparing a new trail to each of the trails in
the cache separately, the new trail is compared to the other
trails in the cache as if it were part of the cache. This leads
to removal of the trail in the cache that results in the least
loss in terms of benefit. The essential difference between
the first cache replacement algorithm and this algorithm is
that the benefit is no longer calculated based on solely the
trail itself. The benefit is now calculated as the number of
hops that are reduced considering all other cache trails. As
a result, those sites (hops) that are in common with other
trails do not count for the benefit any more. For this, the
longest part in common with the other trails in the cache has
to be determined, to calculate how many sites are uniquely
added to the list of known sites by the trail.

The cache replacement algorithm works by requiring one
extra slot in the cache to store a new trail. To ease the
algorithm, a new trail is only added if it is not already in the
cache, or superseded by a trail from the cache. Also, when a
trail is found that supersedes a trail from the cache, it is used
as replacement for the superseded cache trail immediately.
This way, trails added to the cache are always trails that
address a site which is not addressed by all others.

If the number of trails in the cache exceeds the maximum

number of allowed trails, the cache replacement algorithm
is run to evict one trail from the cache to be removed. The
trail to be removed is chosen based on the afore described
benefit function. For each trail in the cache, the benefit is
calculated, and the trail with the smallest benefit is chosen
to be removed. Figure 4 depicts a situation of three trails.
On the right of the picture the benefit calculation for each of
the trails is shown by taking the total length subtracted by
the length of the part of the trail in common. It is obvious
that the trail with benefit 1 would be evicted in favour of the
other two with both a benefit of 2. Note that after removing
this trail, the benefits of the other two trails have to be
recalculated because the common parts may have changed,
as is the case for the longest trail in the figure.

It is to be expected that there is not always a single trail
that has the lowest benefit. There may very well be multiple
trails matching. The algorithm removes the oldest trail in
such case, as it is based on a cache that is implemented as a
linked list, where new trails are appended to the tail. Hence,
the first trail found when traversing the list is the oldest.
The rationale for doing this is that the more recently added
trails may better reflect the current query behaviour.

The effect of this cache replacement algorithm is clear
given the two graphs of Figure 2. The second generation
graph shows a better improvement per added cache trail,
and eventually a lower hopcount for a number of trails. For
example, while the first generation would require 15 to 20
cache trails to reach a half a hop performance, the second
generation reaches that performance with 10 trails for the
uniform set.

4. CONCLUSIONS

The Armada agents have to locate data in the system.
They do so by following lineage trail information, available
on every site. An Armada that has grown large involves
many sites, which all potentially can contain the data an
agent is looking for. While network connections are expen-
sive, time wise, the more an agent needs to hop around, the
worse the performance.

Two agent policies have been studied to see the effect of
them on two data sets. While different sets result in trees
of different depths, the hops taken by an agent are affected
by this depth. From the two policies we discussed, only the
policy where the agent caches trails for later reuse reaches a
good performance for all sets.

Since an unlimited cache is a rather unlimited resource
claim, we conducted several experiments with limited cache
sizes. By revising our cache algorithms, based on charac-
teristics of Armada lineage trails, we reached an acceptable
amount of hops per query for a limited amount of cache.
This result indicates that the active Armada agent is viable
in terms of costs with respect to the autonomy and distri-
bution it allows.

S. REFERENCES

[1] F. Groffen, M. L. Kersten, and S. Manegold. Armada:
a Reference Model for an Evolving Database System. In
Proceedings of Datenbanksysteme in Business,
Technologie und Web, Aachen, Germany, Mar. 2007.

