
                                 

The Design and Evaluation of  
Multi-Finger Mouse Emulation Techniques 

Justin Matejka, Tovi Grossman, Jessica Lo, George Fitzmaurice  
Autodesk Research 

210 King St. East, Toronto, Ontario, Canada, M5A 1J7 
{firstname.lastname}@autodesk.com 

 
ABSTRACT 
We explore the use of multi-finger input to emulate full 
mouse functionality, such as the tracking state, three 
buttons, and chording. We first present the design space for 
such techniques, which serves as a guide for the systematic 
investigation of possible solutions. We then perform a 
series of pilot studies to come up with recommendations for 
the various aspects of the design space. These pilot studies 
allow us to arrive at a recommended technique, the 
SDMouse. In a formal study, the SDMouse was shown to 
significantly improve performance in comparison to 
previously developed mouse emulation techniques.  
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INTRODUCTION 
The recent release of several commercial multi-touch 
systems, such as SMART's Table and Microsoft’s Surface, 
has created a great deal of excitement surrounding multi-
touch input in both the public and research communities. 
Multi-touch interfaces offer a new modality of interaction, 
providing a unique usage experience [18, 20, 29].  

Unfortunately, multi-touch input raises a number of 
interesting yet difficult challenges when it comes to the 
design of user interfaces. Multi-touch input generally 
assumes direct input, where the user interacts with 
graphical imagery directly under the points of contact. Due 
to this direct interaction, it suffers from the same drawbacks 
as traditional single point touch screens. For example, direct 
interaction may cause fatigue, reduced precision, and 
occlusions from the user’s hand.  Research targeting single 
point touch screens, has attempted to address these issues 
[1]. 

More recently, researchers have explored leveraging the 
extra input provided by multi-touch systems to seek out 
new solutions and strategies to the difficulties caused by 
direct touch interaction. For example, Benko et al. used two 
fingers and various on-screen widgets to improve the 
precision of the control over a cursor [3].  

However, even if the precision, occlusion, and fatigue 
problems are solved, almost all research to date supporting 
direct touch interaction has only considered supporting a 
“left click” event. Receiving less attention is that to 
properly interact with many graphical interfaces, the right 
and middle buttons, are also desirable and in some cases 
essential. Just as Benko argues that a tracking state should 
be made available from a multi-touch system [3], we argue 
that right and middle clicks should be supported.  

In an effort to address this challenge, we explore “full” 
mouse emulation techniques, which support the 
functionality of a 3-button mouse. We first describe design 
considerations for mouse emulation techniques, and then a 
design space which allows us to systematically explore 
various configurations supporting mouse emulation. 
Through a series of pilot studies, we converge on the 
SDMouse as a recommended mouse emulation technique 
(Figure 1). In a formal study, SDMouse outperforms 
previously proposed mouse emulation techniques, while 
possessing a number of beneficial design properties. 

MOTIVATION 
In some sense, emulating a mouse on a multi-touch display 
may seem to defeat the purpose of having a multi-touch 
system in the first place. However, we feel it is an 
important issue to address, since it is likely that only a 
minority of today’s end user applications will be completely 
rethought and re-engineered to provide user experiences 
specifically tailored to multi-touch input. What is more 

 
Figure 1. The SDMouse uses multi-finger input to emulate the 

functionality of a 3-button mouse. 
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plausible is that while some applications will fully support 
multi-touch interaction, others will only possess specific 
modes supporting multi-touch, and some will not change at 
all, and will consist of only traditional GUI elements.  

As an example, consider a user who is scaling and rotating 
photos using multi-touch interaction, and then decides to 
email the photos to a friend. The user may be required to 
switch to their email client, which may not support multi-
touch interaction. Or maybe the photo browsing application 
contains a traditional GUI menu for emailing the photo to a 
friend. In either case, the user would be left frustrated if 
they were required to perform this operation without the aid 
of a mouse emulation technique. TabletPC users could 
relate to this difficulty, as only a minority of applications 
which run on TabletPCs have had their user interfaces 
tailored specifically for stylus input, resulting in numerous 
frustrating interaction issues [13]. 

RELATED WORK 
A great deal of research has been conducted on multi-point, 
touch sensitive surfaces [5, 18, 20]. A variety of 
technologies have been used to sense multi-finger and hand 
input such as camera based solutions [16, 17, 19, 28, 31] 
and capacitive sensing [6]. While we have attempted to 
factor out the sensing technology, it still can impact the 
robustness of a solution. 

Numerous challenges occur when trying to operate a high 
resolution graphical user interface with fingers that obscure 
the underlying data. Various research projects attempt to 
address these problems [1, 3, 24, 27]. Our explorations are 
compatible with many of these techniques.    

The appeal of multi-point input is that it can be used to 
provide a richer set of inputs to interactive systems. This 
input can be used to affect and manipulate the data directly 
or to enhance traditional GUI elements such as modifying 
the cursor [21, 22]. Multi-point input has been explored 
within 3D volumetric display [14] and still other research 
explores combining multi-finger input with pen input [4]. 

Using multiple hands to control cursor input has also been 
investigated [3, 22, 29, 30]. Our investigation focuses on 
providing a one-handed solution so that the other hand can 
be used for additional interactions.  

Some hardware configurations sense the finger position 
while above the touch surface [7]. For example, the 
SmartSkin system [25] provides basic mouse emulation by 
sensing the height of the hand above the touch surface (the 
tracking state) as well as detecting finger contact which 
generates a left button-down event. It also explores the use 
of the palm of the hand as a trigger. While multipoint 
sensing is possible, they do not describe how to support full 
mouse emulation. In addition, we want to provide a solution 
for systems that do not have the ability to sense when 
fingers are in the tracking state.  

Yet other systems attempt to artificially create a tracking 
state by sensing surface contact area [3] where a small 

contact area is interpreted as the tracking state and larger 
contact area as part of the clicking and drag state. 
Directional finger rubbing has also been studied to trigger 
more continuous input events [23]. However this would 
likely interfere with cursor position or drag events. 

Comparisons between unimanual direct touch and mouse 
input indicate roughly equivalent performance times for 
selection tasks [12]. While some benefits may be realized 
by adopting a bimanual selection technique, we focus on 
unimanual solutions. 

Most systems that offer partial mouse emulation, do not 
offer the ability to position the cursor without triggering a 
left mouse button event [24, 26]. That is, they do not 
support the input tracking state. The DTMouse [8] does 
offer partial mouse emulation, but the technique introduces 
modes and timeout periods which could impede on certain 
interactions. The now defunct FingerWorks system [9] 
offers a full mouse emulation design, but requires awkward 
chordings which may be difficult to learn and awkward to 
use. We will compare SDMouse to both of these existing 
emulation techniques.   

DESIGN CONSIDERATIONS  
There are a number of design goals to consider when 
developing a multi-touch emulation of a mouse. Here we 
discuss the functionality which we wish to support, and 
then the design properties we wish to uphold. 

Functionality Support 
Despite its simplistic design, the mouse is actually capable 
of providing numerous forms of input. Here we outline 
those forms of functionality which we consider. 

Tracking State. The technique needs to support cursor 
positioning without needing to trigger a mouse button. 

Three Buttons. We wish to support the left, middle, and 
right buttons, for both clicking and dragging operations. 
While some mice have additional buttons, they are rarely 
required for application use, and used mostly for shortcuts, 
and so we will not attempt to support them. 

Multiple Button Chording. Many applications also require 
simultaneous use of multiple mouse buttons (chording), 
which we will make an effort to support.  

Scroll Wheel. We also consider the functionality of the 
scroll wheel to be a shortcut, and do not support it. 
Furthermore, in many applications the middle button 
provides scrolling. However, we do discuss ways to augment 
our designs with scrolling in the future work section. 

Design Properties 
The mouse possesses numerous subtle properties which 
have made it such a successful device [2]. In emulating the 
mouse, we hope to achieve as many of these properties as 
possible. Doing so on a multi-touch surface introduces 
further design properties to consider:   

Minimal Fatigue. The technique should minimize physical 
and mental discomfort.  
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Precision. The technique should allow for precise input. 

Visibility Support. The technique should minimize the 
effect of occlusions caused by the hand. 

Edge support. The technique should allow users to position 
and use the cursor along the display space edges.  

Intuitive mapping. The design should relate to the physical 
mouse layout so that it is easy to initially learn and 
subsequently remember. 

Fewest touch points. The technique should use as few touch 
points as possible to improve comfort and minimize friction 
when dragging.  

Scale Independent. The technique should work regardless 
of the size of the user’s hand. 

Orientation Independent. The technique should work 
regardless of the hand orientation relative to the display. 

Timing Independent. The technique should not rely on 
timeout periods, which may impede fluidity.  

DESIGN SPACE 
In this section we present the design space for developing 
multi-finger mouse emulation techniques. This design space 
was generated by considering various techniques which 
have been previously used to accomplish mouse activities. 
By defining this space of possible designs, we will be able 
to systematically explore potential emulation techniques. 

Mapping 
Mapping refers to how the cursor is positioned in relation to 
the point of contact with the touch screen. The following 
methods of mapping were investigated:  

Direct 
A direct mapping is the most traditional form of input for 
touch screens [5]. The cursor is placed directly where the 
tracking finger touches the screen. While intuitive, a direct 
mapping causes the finger to occlude the cursor, and 
selections may become difficult as targets become smaller. 

Offset 
An offset mapping positions the cursor slightly above the 
position of the finger [1, 24, 26]. This prevents occlusions. 
However, this sometimes causes users to do guesswork 
with where the cursor will be placed, and the bottom of the 
screen may not be accessible.  

Scaled Absolute 
The problem of accessibility of the screen can be solved 
with a scaled absolute mapping, in which the cursor is 
mapped from a smaller rectangular portion of the screen 
onto the entire screen. Each point on the smaller rectangle 
then has a corresponding point on the full screen, thus 
allowing for all points of the screen to be accessible.   

Relative 
Relative mapping also allows for the entire screen to be 
accessible and may give a sense of familiarity to the user 
since it works like a mouse. The cursor moves in the 

general direction of the movement of the finger(s) and is 
not dependant on where your fingers are on the screen.  
Clutching is then possible and therefore the cursor can 
reach anywhere on the screen and the hand can be 
repositioned to avoid occlusion of the cursor. 

Tracking Fingers 
Tracking fingers refers to the number of fingers required to 
move the cursor in the mouse-over status.   
One 
When using one finger for tracking, the mapping functions 
are applied to the point at which that one finger makes 
contact with the touch screen. 
Two 
An alternative which has been used in both single [8], and 
bimanual [3] techniques, is to use two fingers for tracking, 
with the cursor placed at the midpoint of the two fingers. 
Previous research has implied that using two fingers 
provides Visibility Support and Precision [8, 22]. In our 
work we will only consider single handed techniques, 
reserving the second hand for other operations. 

Button Distinction 
Traditional multi-touch systems do not distinguish which 
finger has made contact with the surface. Thus, to design 
the mouse emulation techniques, we considered the 
following characteristics for distinguishing between left, 
right and middle buttons events:   
Chording 
Chording refers to using the number of fingers in contact 
with the screen to delineate which button should be 
activated. Both FingerWorks and DTMouse utilize 
chording. Ironically, techniques which utilize chording 
recognition, cannot support mouse button chording. 

Side 
The Side technique determines the button based on which side 
additional fingers are placed relative to the tracking fingers. 

Distance 
Buttons can also be recognized depending on the distance at 
which the additional fingers are placed in relation to the 
tracking fingers. 

Gesture 
Alternatively, the fingers can be used to perform gestures to 
specify which button should be activated. 

Button Activation 
Button activation reflects how the button-down and button-
up events are actually initiated.  

Momentary 
In momentary activation, a button-down event is registered 
as soon as the user contacts the touch screen with a finger 
or fingers. By releasing the finger or fingers from the 
screen, the corresponding button-up event is activated. 

Toggle 
In toggling, generating a button-down or button-up event 
occurs after a tap has occurred (the finger touches the 
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screen and is lifted from the screen).  If a button has been 
activated, tapping the screen would register a button-up 
event. Otherwise, if it has not been activated, tapping the 
screen would activate a button-down event. 

Pressure 
A third potential button activation method is to use 
pressure. Pressing firmly on the display activates a button-
down event, and releasing registers a button-up event [3]. 
Because most multi-touch systems do not provide accurate 
pressure information, we will not explore the use of pressure. 
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Chording     4 
Sides     3 
Distances     2 
Gesture     2 
Side+Chording     3 
Side+Distance     2 
Chording+Distance     3 

Table 1. Properties of Finger-to-Button Mappings. 

FINGER-TO-BUTTON MAPPINGS 
Previous emulation techniques [8, 9, 22] have used various 
finger-to-button mappings, utilizing a combination of 
different button distinction techniques outlined above. We 
develop potential techniques in a more systematic nature. 
By utilizing the above-described button distinction aspect of 
the design, we developed four techniques using only one 
button distinction method (Chording, Side, Distance, 
Gesture) as well as three hybrid methods (Side+Chording, 
Side+Distance, and Chording+Distance). For simplicity the 
below descriptions assume single finger tracking, using the 
index finger, except for the Sides Technique, which 
requires two finger tracking. Other than this technique, the 
techniques could all be implemented using one or two 
finger tracking. Human factors research has shown that  
movements of the thumb, index finger and little finger are 
more highly individuated than movements of the middle or 
ring fingers [15]. If possible, each of the described 
techniques should be implemented with this in mind. Table 
1 summarizes the design properties associated which each 
technique.  Since none of the proposed solutions satisfy all 
of the desirable design characteristics, the challenge 
becomes satisfying a suitable subset of them. 

Chording Technique 
The Chording Technique uses the idea of chording to 
specify the left, right, or middle buttons.  One additional 
finger specifies a left mouse button event; two additional 
fingers specify a middle mouse button; and three specify a 
right button event (Figure 2).  The placement of the non-
tracking fingers is irrelevant (scale and orientation 
independent).  However, a timeout is needed to determine 
how long to wait for additional fingers before registering 
the first one as a left click. We used a timeout of 150ms. 

 
Figure 2. The Chording Technique. 

Side Technique 
In order to use only side information to determine which 
button to activate, the index and ring fingers must be used 
for tracking.  The thumb would activate the left button, the 
pinky would activate the right button, and the middle finger 
would activate the middle button (Figure 3).   

 
Figure 3. The Side Technique. 

Distance Technique 
The Distance Technique defines a short (< 150 px), medium 
(150-250 px) and far (> 250 px) distance to the right of the 
index finger, for activating the left, middle, and right 
button. The middle finger, ring finger, and the pinky finger 
are used to activate the three buttons (Figure 4). 

 
Figure 4. The Distance Technique. 

Gesture Technique 
This technique uses the index finger for tracking and only 
the thumb to select the button.  Tapping the thumb activates 
the left button.  Pressing down and swiping to the left 
activates the middle button, and swiping to the right 
activates the right button (Figure 5).  A timeout value (150 
ms) is used to determine how long to wait for a gesture 
before executing the left button event. 

 
Figure 5. The Gesture Technique. 

Side+Chording 
The Side+Chording technique uses side information to 
determine the left and right button state. These fingers are 
chorded to activate the middle mouse button (Figure 6). 

 
Figure 6. The Side+Chording Technique. 
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Side+Distance 
With the Side+Distance technique the thumb is dedicated 
for left button activation.  Pressing the middle finger, close 
to the index finger (<150 px) activates the middle mouse 
button, and pressing a finger further to the right (ring or 
pinky) (> 150 px) activates the right button  (Figure 7). 

 
Figure 7. The Side+Distance Technique. 

Chording+Distance 
This technique is similar to Side+Chording, but we use 
distance to distinguish between the left (< 150 px) and right 
(> 150 px) buttons, and chording to execute the middle 
button (Figure 8). 

 
Figure 8. The Chording+Distance Technique. 

PILOT STUDIES 
Fully combining all four aspects of our design space, would 
results in almost 100 possible “techniques”. We narrowed 
down this design space by using a converging-series design, 
running a series of four, two participant, pilot studies. Since 
the pilots only have two subjects, they should not be treated 
as rigorous experimental findings. While this method would 
not allow us to examine some of the interesting interactions 
between different aspects of the design space, we felt that 
the results of these studies, combined with examining 
pragmatic issues, would be useful to reduce the candidate 
techniques down to a smaller number of viable options.  
Our goal is not necessarily to find the best single technique, 
but to generate general recommendations and insights. 

Apparatus 
All studies were conducted on a custom 21” multi-touch 
monitor with 1600x1200 display resolution (Figure 9).  The 
device is capable of detecting points of contact at a 
resolution less than 0.25mm.  Pressure information was not 
available.  The screen was covered with uncoated glass, and 
unfortunately this caused an undesirable resistance when 
dragging fingers along the surface.  The display was 
positioned at an angle of 40° to minimize fatigue [12]. 

Task 
Our task consisted of acquiring a target with the pointer, 
and then either clicking, double clicking, or dragging the 
target to a dock location with one of the three mouse 
buttons (left, middle, right). Before each trial the participant 
moved the cursor into a start location near the bottom of the 
screen (Figure 10a).  After a 0.5s second delay, the start 
circle would disappear and the trial would begin by 
displaying a target square with the task instructions directly 
above it (Figure 10b-d). 

The participants were asked to perform “as quickly and 
accurately as possible”.  For the single click tasks, the trial 
ended when the appropriate button-up event was recorded.  
Similarly, the double-click tasks ended on the second 
mouse-up event.  When the target was moved within the 
dock, the color of the target changed from green to blue to 
indicate that the target was over the dock area. If the target 
was released outside of the docking area, an error was 
recorded, and the participant would have to re-acquire the 
target from its last location and try again to drag it in.   

Independent Variables 
The design of each individual pilot study varied, using 
different combinations of independent variables. In some 
studies, the width of the target was varied. For the drag 
tasks, the docking region was always 30 pixels wider than 
the target.  The distance of both the length from the start 
position to the target, and from the target to the docking 
location, was also varied in some of the below studies. 

 
Figure 9. The experiment apparatus used for our studies. 

 
Figure 10. Task appearance and instructions. (a) The 
start position. (b) Drag task. (c) Single click task (d) 
Double click task.  The mouse icon indicates which 
button to use (in these examples: left, left, right). 

PILOT STUDY 1: BUTTON ACTIVATION 
The purpose of the first pilot study was to compare 
momentary button activation (finger down for button-down 
event, finger up for button-up event) with toggle button 
activation (tap once for button-down event, tap again for 
button-up event).  

Design 
Two male subjects aged 24 and 25 participated in this study.  
Both were right handed and experienced computer users. 

The independent variables were activation type (momentary 
and toggle), task (click, double click, and drag), and button 
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(left, middle, and right).  The target size and target distance 
were both held constant at values of 48 pixels, and 375 
pixels respectively. Since our focus was only on button 
activation, we used the Side+Distance technique, one finger 
tracking, and a direct cursor mapping, which we felt would 
be the most intuitive choices for the user. 

Each participant performed 8 blocks of trials for each 
activation type, with the order counterbalanced between 
participants.  Blocks consisted of one trial for each of the 9 
task and button combinations presented in random order.   

Results 
Figure 11 illustrates the completion times recorded from the 
study. For each task momentary activation was faster, and 
the overall mean completion times were 1.78s for 
Momentary and 2.65s for Toggle. This result was somewhat 
anticipated. The click was faster for momentary mode, as it 
requires a single “tap” of the finger, while in toggle mode it 
requires two finger taps (one for button-down, one for 
button-up).  The problem is exaggerated further with the 
double-click task where momentary activation requires two 
taps, and toggle activation requires four taps (button-down, 
button-up, button-down, button-up), as apparent in Figure 
11. For the dragging portion of the drag task, we thought 
toggle may be superior, since momentary activation 
requires two fingers on the surface, while toggle activation 
needs only one.  With the surface friction of the display, it 
becomes noticeably less comfortable to drag with each 
additional finger placed on the display.  In the drag task, 
Toggle activation was closer in performance to Momentary 
activation, but was still slower. As such, we recommend the 
use of Momentary activation, and will use this type of 
activation for our remaining studies. 

 
Figure 11. Pilot 1 completion times for the activation modes. 

PILOT STUDY 2: TRACKING FINGERS 
The second pilot study was to look at controlling the 
tracking-state position of the cursor with either one or two 
fingers.  Two finger tracking places the cursor between the 
two fingers, offering the advantage of the input fingers not 
obscuring the pointer location.  It has also been suggested 
that using two fingers provides more stability for pointing 
than does tracking with one finger [3, 8]. 

Design 
Two male subjects aged 25 and 26 participated in this study.  
Both were right handed and experienced computer users. 

The independent variables were tracking fingers (one finger 
and two fingers), task (click and drag), target size (16 
pixels, 64 pixels), and distance (250 pixels, 500 pixels).  
We felt the number of tracking fingers used would have 
little effect on the actual button activation, so only the left 
button was used. For the two-finger technique, the thumb 
and middle fingers were used for tracking, and the index 
finger was used to activate the left button. The one finger 
technique was the exact same, except only the middle finger 
was used for tracking. Momentary activation was used, as 
per our Pilot Study 1 results. The offset cursor mapping was 
used so that we could look at the effect of one or two finger 
tracking on pointing precision without the compounding 
effect of cursor occlusion.   

Each block consisted of one trial for each of the 8 task, 
target size, and distance combinations, presented in random 
order.  The first participant did all of the one-finger trials 
first, while the second began with the two-finger trials. 

Results 
Overall, one-finger tracking performed better than two-
finger tracking, with mean completion times of 1.75s and 
2.04s respectively. We found that when using one finger 
tracking subjects were more likely to “leap” to the target, 
that is, lift their tracking finger off the screen and place it 
down at the target, than they were with two finger tracking.  
Two finger tracking performed comparatively better in the 
small target conditions (Figure 12), but was still slower.   

 
Figure 12. Task completion times for Pilot Study 2: one and 

two finger tracking modes. 

For both subjects, one-finger tracking was preferred over 
two-finger for both large and small target sizes.  Since one 
finger tracking also addresses the design consideration of 
using fewer touch points and performed better in this pilot, 
it is our recommended tracking mode, and will be used for 
the remaining studies. 

PILOT STUDY 3: CURSOR MAPPING 
Pilot 3 was designed to determine which of our four cursor 
mappings (direct, scaled, offset, relative) is most preferable. 

Design 
Two male subjects aged 24 and 25 participated in this study.  
Both were right handed and experienced computer users. 

The independent variables were cursor mapping (direct, 
offset, relative, and scaled), task (click and drag), target 
size (16 pixels, 64 pixels), and distance (250 pixels, 500 
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pixels).  As in Pilot Study 2, this study used only the left 
button.  One finger tracking was performed using the index 
finger, and the left button was activated with the thumb, 
using momentary button activation.   

Each participant performed 4 blocks for each of the 4 
techniques, with each block consisting of the 8 
combinations of task, target size, and distance.  The first 
participant did the cursor mapping techniques in the order 
of direct, scaled, offset, relative, and the second participant 
did the reverse order. 

Results 
Overall completion times were 1.77s, 1.62s, 1.81s, and 
2.15s, for direct, offset, relative and scaled respectively. For 
large target tasks, direct mapping, with the cursor directly 
under the tracking finger, was 0.13s faster than the next best 
technique, offset (Figure 13).  It was also subjectively 
preferred as the subjects felt most comfortable pointing 
directly at the target. They could do so because the large 
target was larger than the area obscured by their finger. 

However, when acquiring small targets, the direct mapping 
does not fare as well, and was 0.43s slower than the offset 
technique.  The cursor and small target are both occluded 
by the tracking finger, making it difficult to see if the cursor 
is over the target.  Offsetting the cursor slightly above the 
tracking finger provides many of the benefits of the direct 
mapping, while addressing the occlusion problem. 

 
Figure 13. Task completion times for Pilot Study 3: 

Cursor mapping modes. 

Despite its advantage for large targets, the frustration 
caused by activating small targets causes us to recommend 
against a direct mapping. The offset mapping performed 
best  overall, but does not possess edge support, as the 
bottom edge will not be accessible. While relative and 
scaled input did not perform as well, they provide edge 
support, and further, were reported to reduce fatigue, since 
the input footprint was lowered. As relative mode 
performed better than scaled, we recommend the use of a 
relative mapping when the designer feels it is important to 
reduce input footprints and provide edge support.  
Otherwise, our recommendation is to use the offset 
mapping, and to seek potential solutions to the edge support 
problem. For example, it could be addressed by altering the 
mapping near the bottom of the screen, or extending the 
tracking area beyond the display surface. Since our current 

investigations are not focused on the edge support problem, 
we will use the offset mapping for our remaining studies. 

PILOT STUDY 4: TECHNIQUES 
The purpose of the final pilot study is to investigate the 7 
described finger-to-button mapping techniques. 

Design 
Two male subjects aged 25 and 26 participated in the study.  
Both were right handed and experienced computer users. 

The independent variables were technique (Chording, Side, 
Distance, Gesture, Side+Distance, Side+Chording, and 
Chording+Distance), task (click, drag), and button (left, 
middle, right).  The target size and distance were both fixed 
to values of 48 pixels and 375 pixels respectively.  

Based on the recommendations from the three previous 
pilots, the button activation mode was momentary, the 
tracking mode was one finger (except for the Side 
Technique), and the cursor mapping was offset.  Each block 
consisted of one of each of the 6 combinations of task and 
distance, and each participant performed 6 blocks of trials 
for each technique.  The first participant performed the 
techniques in the above order, and the order was reversed 
for the second participant. 

Results 
The best performing techniques were Side+Distance 
(1.73s), and Distance (1.82s) (Figure 14).  Both techniques 
support our intuitive mapping design property. 
Side+Distance has the advantage of using the thumb for left 
button input, which the subjects preferred. 

Our own experience, in addition to the feedback received 
from the subjects, suggests that the techniques that require 
chording (Chording, Side+Chording, and Chording+ 
Distance) are awkward to use, as they are time dependent, 
and introduce additional fingers during dragging operations. 
The Side Technique requires two-finger tracking with the 
index and ring fingers and as such, is ergonomically 
uncomfortable to use. Users liked the gesture technique, but 
it took longer, and is timing dependent. 

 
Figure 14. Task completion times for finger-to-button 

mapping techniques. 

The results of the experiment show that all of these 
techniques are viable.  However, considering together the 
quantitative data, subjective feedback, and qualitative 
observations, our recommendation is to use the 
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Side+Distance mapping. It is intuitive, minimizes touch 
points, is timing independent, and comfortable to use.  

PILOT STUDIES SUMMARY: THE SDMouse  
Our pilot studies have provided valuable insight into the 
design of multi-finger mouse emulation techniques.  While 
it is difficult to suggest a single design, we are motivated to 
evaluate one possible technique against existing solutions.  
As such, we propose the SDMouse where: 

• Button activation is momentary 
• Tracking fingers is one 
• Cursor mapping is offset 
• Finger to button mapping is Side+Distance (hence 

SDMouse) 

As discussed earlier, any emulation technique (including 
the SDMouse) will not satisfy all desirable design 
characteristics, and the above dimensions could all be 
modified if desired.  For example, if edge support is 
desired, the cursor mapping could be relative.   

EXPERIMENT 
The goal of this experiment is to compare the performance 
of the SDMouse to previously suggested techniques for 
mouse emulation. Furthermore, we believe it is important to 
understand how close these techniques are to being optimal; 
that is, matching the performance of an actual physical 
mouse. Below we briefly describe the techniques which 
SDMouse will be compared against. 

Techniques 
Comparison Technique 1: FingerWorks 
FingerWorks [9] uses two fingers in the tracking mode and 
was actually designed for indirect multi-touch devices, so it 
uses a relative cursor mapping (Figure 15). Since 
FingerWorks was not meant to be used in a direct touch 
configuration, our results do not reflect an overall 
assessment of the technique.  Three fingers are required for 
the emulation of all the buttons.  The buttons are 
distinguished by the arrangement of the fingers, and 
activated momentarily.  For the left mouse button, the 
index, middle, and ring fingers are tapped.  For the middle 
mouse button, the thumb, index, and middle fingers are 
used.  Lastly, for the right button, the thumb, ring, and 
pinky fingers are used with the hand slightly spread. 

 
Figure 15. The FingerWorks technique. 

Comparison Technique 2: Fluid DTMouse 
Fluid DTMouse supports tracking and the left and right 
button, but does not support the middle mouse button. It 
supports both one-finger and two-finger tracking, with a 
direct cursor mapping. A toggle button activation protocol 
is used. To create a left button-down or button-up event, the 

user tracks with two fingers, and then taps the index finger. 
For the right button, the user tracks with a single finger, and 
taps with a second (Figure 16). 

The original Fluid DTMouse supports a mode that treats a 
single touch point as a left click, but supporting this would 
disable a user’s ability to position the cursor before clicking 
the right button. This would make it very hard to be precise 
with the right button, and so we do not enable this mode. 

 
Figure 16. The Fluid DTMouse Technique. 

Comparison Technique 3: Actual Mouse 
To provide an empirical comparison to an actual mouse, we 
used a 3-button 400 dpi optical mouse with ballistic 
pointing enabled and set to a comfortable level such that 
mouse clutching was never needed. Previous work [26] has 
shown that direct pointing can surpass the use of an indirect 
mouse, however, this result only applied to single finger 
usage. We expect the overhead cost of introducing tracking 
and multiple button support will cause the emulation 
techniques, both previous and our own, to be slower than a 
physical mouse. Our goal here is not to match the 
performance of the mouse, it is only to empirically 
determine the magnitude of the introduced cost. 

Task and Apparatus 
The task and apparatus which we used was identical to the 
pilot studies, with the exception of a physical mouse, 
described above. 

Participants 
Twelve volunteers (10 male, 2 female), aged 21-36 
participated in this experiment. Participants were all right 
handed, experienced computer users without any multi-
touch experience. 

Design 
A repeated measures within-participant design was used. 
The independent variables were technique (SDMouse, 
DTMouse, FingerWorks, Mouse), task (click, drag), button 
(left, right), distance (250 pixels, 500 pixels), and size (16 
pixels, 64 pixels). We did not include the middle mouse 
button since DTMouse does not support it. A fully crossed 
design resulted in 64 conditions. Each participant 
performed the experiment in one session lasting 
approximately 60 minutes. The session was broken up by 
the techniques, with 5 blocks of trials completed for each 
technique. In each block participants would complete each 
of the 8 combinations of task, button, distance, and size. 

Before using each technique, participants completed a short 
warm-up session, to familiarize themselves with the 
technique. The ordering of techniques was counterbalanced 
using a Balanced Latin Square design.   
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Results 
Completion Times 
Completion time was calculated in the same manner as the 
pilot studies. The analysis included trials in which errors 
occurred. However, we used the median completion time to 
correct for typical skewing of the time data and to remove 
outliers. The median was calculated across the 5 blocks. 

Repeated measure analysis of variance showed main effects 
for technique (F3,33 = 74.7, p < .0001), task (F1,11 = 284, p < 
.0001), button (F1,11 = 23.3, p < .005), distance (F1,11 = 17.2, 
p < .005), and size (F1,11 = 80.6, p < .0001). Overall 
completion times were 1.58 for the mouse, 2.41 for 
SDMouse, 3.16 for FingerWorks, and 4.25 for DTMouse. 
Pairwise comparison using Tukey adjustment showed that 
all of these values were significantly different (p < .001).  

The interaction between technique and task was significant, 
(F3,33 = 5.0, p < .01). The effect is illustrated in Figure 17. 
SDMouse comes closer to approaching the performance to 
the mouse in the clicking task, with a difference of 0.54s. In 
the dragging task the difference is 1.1s. This is consistent 
with previous comparisons of direct touch with the mouse 
[12]. The interaction between technique and button was 
also significant (F3,33 = 10.36, p < .0001). Figure 18 shows 
that the mouse and SDMouse have equal times for left and 
right click, while for FingerWorks and DTMouse right 
button times were much higher. The technique x size and 
technique x distance interactions did not reach significance. 

 
Figure 17. Completion times by task. 

 
Figure 18. Completion times by button. 

Error Rates 
Repeated measure analysis of variance showed that 
technique also had a significant effect on error rates (F3,33 = 
25.5, p < .0001). The average error rates were 8.5% for the 
mouse, 21.8% for SDMouse, 27.8% for FingerWorks, and 

42.8% for DTMouse. A main cause of errors came from the 
dragging task, due to the friction created with the surface 
(F1,11 = 27.9, p < .0001). The display surface material was 
slightly sticky, which caused the fingers to sometimes skip. 
This would be registered as an error. However, it should be 
noted that users were still able to complete the task, and our 
analysis of movement time incorporated these errors. 
Considering the pointing task only, error rates were 6.2% 
for the mouse, 14.8% for SDMouse, 23.5% for 
FingerWorks, and 35.9% for DTMouse. We believe the 
high error rates for FingerWorks and DTMouse were 
caused by the difficulty learning the finger mappings. 

DISCUSSION & FUTURE WORK 
Designing a multi-touch mouse emulation technique 
introduces numerous issues to consider. While performance 
and error rates are important measurements of success, we 
have found that additional factors play into the appeal of a 
technique. For example, how easy is it to remember? How 
well does it map to a physical mouse? Is it comfortable?  

Offering graphical widgets such as Microsoft’s Vista 
TabletPC mouse or a TrackingMenu [10] version are two 
examples of approaching the problem from a different 
angle. An interesting solution to explore would be to 
present a graphical mouse next to the index finger when it 
is in contact with the sensing surface and is stationary. The 
user would then use their thumb and mouse graphic to 
trigger a mouse button or perform a mouse action. 

The mouse is often used in conjunction with modifier keys 
(Ctrl, Shift, etc). We believe this can be achieved utilizing 
the other hand and is another area of future research.  

In addition, providing mouse scrollwheel support is another 
area we wish to investigate. Two potential solutions are to 
use repeated middle finger swiping or thumb rotation 
(Figure 19).  Repeatedly swiping the middle finger up or 
down while the tracking finger is stationary would signal 
scrollwheel up/down events.  Alternatively, with thumb 
rotation, a clockwise circular gesture with the thumb 
translates to scrollwheel up events while counterclockwise 
gestures map to scrollwheel down events. Our initial 
implementations of the swiping technique seemed to work 
but required a rate-based mapping.  

 
Figure 19. Mouse Wheel Techniques: (a) swiping (b) rotation. 

We did not study very precise (e.g., single pixel) 
positioning or selection tasks. While two-finger designs aim 
to offer more precise cursor positioning by positioning the 
cursor between the two finger points, we believe the single 
finger tracking design with cursor offset can be similarly 
accurate as the multi-touch sensing technology improves.   
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Our approach to exploring the design space utilized pilot 
studies to examine individual design issues. We note that 
this method does not allow us to examine some of the 
interesting interactions between different aspects of the 
design space. Also, the pilot studies were not meant to lead 
us to absolute truths or performance measurements; instead 
they were meant to lead us to potential design solutions. 

CONCLUSIONS 
Multi-touch systems offer the potential of very rich input. 
However, it is unreasonable to expect that every application 
will be rewritten to support a multi-touch interaction mode. 
Users will need to be able to interact with the traditional 
user interfaces using multi-touch input, much like TabletPC 
users are forced to interact with traditional GUI’s with a 
stylus. More importantly, full mouse emulation should be 
supported in multi-touch environments to effectively 
interface with traditional applications which have minimal 
or no multi-touch capabilities. Our research contribution is 
the systematic exploration of the solution space of one 
handed, multi-touch, full mouse emulation techniques. By 
constructing a design space and conducting controlled 
studies we have been able to generate a set of viable 
designs, such as the SDMouse.  
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