

The Design and Evaluation of
Multi-Finger Mouse Emulation Techniques

Justin Matejka, Tovi Grossman, Jessica Lo, George Fitzmaurice
Autodesk Research

210 King St. East, Toronto, Ontario, Canada, M5A 1J7
{firstname.lastname}@autodesk.com

ABSTRACT
We explore the use of multi-finger input to emulate full
mouse functionality, such as the tracking state, three
buttons, and chording. We first present the design space for
such techniques, which serves as a guide for the systematic
investigation of possible solutions. We then perform a
series of pilot studies to come up with recommendations for
the various aspects of the design space. These pilot studies
allow us to arrive at a recommended technique, the
SDMouse. In a formal study, the SDMouse was shown to
significantly improve performance in comparison to
previously developed mouse emulation techniques.

Author Keywords
Multi-finger input, multi-touch displays, mouse emulation.

ACM Classification Keywords
H.5.2 [User Interfaces]: Interaction styles.

INTRODUCTION
The recent release of several commercial multi-touch
systems, such as SMART's Table and Microsoft’s Surface,
has created a great deal of excitement surrounding multi-
touch input in both the public and research communities.
Multi-touch interfaces offer a new modality of interaction,
providing a unique usage experience [18, 20, 29].

Unfortunately, multi-touch input raises a number of
interesting yet difficult challenges when it comes to the
design of user interfaces. Multi-touch input generally
assumes direct input, where the user interacts with
graphical imagery directly under the points of contact. Due
to this direct interaction, it suffers from the same drawbacks
as traditional single point touch screens. For example, direct
interaction may cause fatigue, reduced precision, and
occlusions from the user’s hand. Research targeting single
point touch screens, has attempted to address these issues
[1].

More recently, researchers have explored leveraging the
extra input provided by multi-touch systems to seek out
new solutions and strategies to the difficulties caused by
direct touch interaction. For example, Benko et al. used two
fingers and various on-screen widgets to improve the
precision of the control over a cursor [3].

However, even if the precision, occlusion, and fatigue
problems are solved, almost all research to date supporting
direct touch interaction has only considered supporting a
“left click” event. Receiving less attention is that to
properly interact with many graphical interfaces, the right
and middle buttons, are also desirable and in some cases
essential. Just as Benko argues that a tracking state should
be made available from a multi-touch system [3], we argue
that right and middle clicks should be supported.

In an effort to address this challenge, we explore “full”
mouse emulation techniques, which support the
functionality of a 3-button mouse. We first describe design
considerations for mouse emulation techniques, and then a
design space which allows us to systematically explore
various configurations supporting mouse emulation.
Through a series of pilot studies, we converge on the
SDMouse as a recommended mouse emulation technique
(Figure 1). In a formal study, SDMouse outperforms
previously proposed mouse emulation techniques, while
possessing a number of beneficial design properties.

MOTIVATION
In some sense, emulating a mouse on a multi-touch display
may seem to defeat the purpose of having a multi-touch
system in the first place. However, we feel it is an
important issue to address, since it is likely that only a
minority of today’s end user applications will be completely
rethought and re-engineered to provide user experiences
specifically tailored to multi-touch input. What is more

Figure 1. The SDMouse uses multi-finger input to emulate the

functionality of a 3-button mouse.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2009, April 4–9, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-246-7/09/04...$5.00.

CHI 2009 ~ Tabletop Gestures April 7th, 2009 ~ Boston, MA, USA

1073

plausible is that while some applications will fully support
multi-touch interaction, others will only possess specific
modes supporting multi-touch, and some will not change at
all, and will consist of only traditional GUI elements.

As an example, consider a user who is scaling and rotating
photos using multi-touch interaction, and then decides to
email the photos to a friend. The user may be required to
switch to their email client, which may not support multi-
touch interaction. Or maybe the photo browsing application
contains a traditional GUI menu for emailing the photo to a
friend. In either case, the user would be left frustrated if
they were required to perform this operation without the aid
of a mouse emulation technique. TabletPC users could
relate to this difficulty, as only a minority of applications
which run on TabletPCs have had their user interfaces
tailored specifically for stylus input, resulting in numerous
frustrating interaction issues [13].

RELATED WORK
A great deal of research has been conducted on multi-point,
touch sensitive surfaces [5, 18, 20]. A variety of
technologies have been used to sense multi-finger and hand
input such as camera based solutions [16, 17, 19, 28, 31]
and capacitive sensing [6]. While we have attempted to
factor out the sensing technology, it still can impact the
robustness of a solution.

Numerous challenges occur when trying to operate a high
resolution graphical user interface with fingers that obscure
the underlying data. Various research projects attempt to
address these problems [1, 3, 24, 27]. Our explorations are
compatible with many of these techniques.

The appeal of multi-point input is that it can be used to
provide a richer set of inputs to interactive systems. This
input can be used to affect and manipulate the data directly
or to enhance traditional GUI elements such as modifying
the cursor [21, 22]. Multi-point input has been explored
within 3D volumetric display [14] and still other research
explores combining multi-finger input with pen input [4].

Using multiple hands to control cursor input has also been
investigated [3, 22, 29, 30]. Our investigation focuses on
providing a one-handed solution so that the other hand can
be used for additional interactions.

Some hardware configurations sense the finger position
while above the touch surface [7]. For example, the
SmartSkin system [25] provides basic mouse emulation by
sensing the height of the hand above the touch surface (the
tracking state) as well as detecting finger contact which
generates a left button-down event. It also explores the use
of the palm of the hand as a trigger. While multipoint
sensing is possible, they do not describe how to support full
mouse emulation. In addition, we want to provide a solution
for systems that do not have the ability to sense when
fingers are in the tracking state.

Yet other systems attempt to artificially create a tracking
state by sensing surface contact area [3] where a small

contact area is interpreted as the tracking state and larger
contact area as part of the clicking and drag state.
Directional finger rubbing has also been studied to trigger
more continuous input events [23]. However this would
likely interfere with cursor position or drag events.

Comparisons between unimanual direct touch and mouse
input indicate roughly equivalent performance times for
selection tasks [12]. While some benefits may be realized
by adopting a bimanual selection technique, we focus on
unimanual solutions.

Most systems that offer partial mouse emulation, do not
offer the ability to position the cursor without triggering a
left mouse button event [24, 26]. That is, they do not
support the input tracking state. The DTMouse [8] does
offer partial mouse emulation, but the technique introduces
modes and timeout periods which could impede on certain
interactions. The now defunct FingerWorks system [9]
offers a full mouse emulation design, but requires awkward
chordings which may be difficult to learn and awkward to
use. We will compare SDMouse to both of these existing
emulation techniques.

DESIGN CONSIDERATIONS
There are a number of design goals to consider when
developing a multi-touch emulation of a mouse. Here we
discuss the functionality which we wish to support, and
then the design properties we wish to uphold.

Functionality Support
Despite its simplistic design, the mouse is actually capable
of providing numerous forms of input. Here we outline
those forms of functionality which we consider.

Tracking State. The technique needs to support cursor
positioning without needing to trigger a mouse button.

Three Buttons. We wish to support the left, middle, and
right buttons, for both clicking and dragging operations.
While some mice have additional buttons, they are rarely
required for application use, and used mostly for shortcuts,
and so we will not attempt to support them.

Multiple Button Chording. Many applications also require
simultaneous use of multiple mouse buttons (chording),
which we will make an effort to support.

Scroll Wheel. We also consider the functionality of the
scroll wheel to be a shortcut, and do not support it.
Furthermore, in many applications the middle button
provides scrolling. However, we do discuss ways to augment
our designs with scrolling in the future work section.

Design Properties
The mouse possesses numerous subtle properties which
have made it such a successful device [2]. In emulating the
mouse, we hope to achieve as many of these properties as
possible. Doing so on a multi-touch surface introduces
further design properties to consider:

Minimal Fatigue. The technique should minimize physical
and mental discomfort.

CHI 2009 ~ Tabletop Gestures April 7th, 2009 ~ Boston, MA, USA

1074

Precision. The technique should allow for precise input.

Visibility Support. The technique should minimize the
effect of occlusions caused by the hand.

Edge support. The technique should allow users to position
and use the cursor along the display space edges.

Intuitive mapping. The design should relate to the physical
mouse layout so that it is easy to initially learn and
subsequently remember.

Fewest touch points. The technique should use as few touch
points as possible to improve comfort and minimize friction
when dragging.

Scale Independent. The technique should work regardless
of the size of the user’s hand.

Orientation Independent. The technique should work
regardless of the hand orientation relative to the display.

Timing Independent. The technique should not rely on
timeout periods, which may impede fluidity.

DESIGN SPACE
In this section we present the design space for developing
multi-finger mouse emulation techniques. This design space
was generated by considering various techniques which
have been previously used to accomplish mouse activities.
By defining this space of possible designs, we will be able
to systematically explore potential emulation techniques.

Mapping
Mapping refers to how the cursor is positioned in relation to
the point of contact with the touch screen. The following
methods of mapping were investigated:

Direct
A direct mapping is the most traditional form of input for
touch screens [5]. The cursor is placed directly where the
tracking finger touches the screen. While intuitive, a direct
mapping causes the finger to occlude the cursor, and
selections may become difficult as targets become smaller.

Offset
An offset mapping positions the cursor slightly above the
position of the finger [1, 24, 26]. This prevents occlusions.
However, this sometimes causes users to do guesswork
with where the cursor will be placed, and the bottom of the
screen may not be accessible.

Scaled Absolute
The problem of accessibility of the screen can be solved
with a scaled absolute mapping, in which the cursor is
mapped from a smaller rectangular portion of the screen
onto the entire screen. Each point on the smaller rectangle
then has a corresponding point on the full screen, thus
allowing for all points of the screen to be accessible.

Relative
Relative mapping also allows for the entire screen to be
accessible and may give a sense of familiarity to the user
since it works like a mouse. The cursor moves in the

general direction of the movement of the finger(s) and is
not dependant on where your fingers are on the screen.
Clutching is then possible and therefore the cursor can
reach anywhere on the screen and the hand can be
repositioned to avoid occlusion of the cursor.

Tracking Fingers
Tracking fingers refers to the number of fingers required to
move the cursor in the mouse-over status.
One
When using one finger for tracking, the mapping functions
are applied to the point at which that one finger makes
contact with the touch screen.
Two
An alternative which has been used in both single [8], and
bimanual [3] techniques, is to use two fingers for tracking,
with the cursor placed at the midpoint of the two fingers.
Previous research has implied that using two fingers
provides Visibility Support and Precision [8, 22]. In our
work we will only consider single handed techniques,
reserving the second hand for other operations.

Button Distinction
Traditional multi-touch systems do not distinguish which
finger has made contact with the surface. Thus, to design
the mouse emulation techniques, we considered the
following characteristics for distinguishing between left,
right and middle buttons events:
Chording
Chording refers to using the number of fingers in contact
with the screen to delineate which button should be
activated. Both FingerWorks and DTMouse utilize
chording. Ironically, techniques which utilize chording
recognition, cannot support mouse button chording.

Side
The Side technique determines the button based on which side
additional fingers are placed relative to the tracking fingers.

Distance
Buttons can also be recognized depending on the distance at
which the additional fingers are placed in relation to the
tracking fingers.

Gesture
Alternatively, the fingers can be used to perform gestures to
specify which button should be activated.

Button Activation
Button activation reflects how the button-down and button-
up events are actually initiated.

Momentary
In momentary activation, a button-down event is registered
as soon as the user contacts the touch screen with a finger
or fingers. By releasing the finger or fingers from the
screen, the corresponding button-up event is activated.

Toggle
In toggling, generating a button-down or button-up event
occurs after a tap has occurred (the finger touches the

CHI 2009 ~ Tabletop Gestures April 7th, 2009 ~ Boston, MA, USA

1075

screen and is lifted from the screen). If a button has been
activated, tapping the screen would register a button-up
event. Otherwise, if it has not been activated, tapping the
screen would activate a button-down event.

Pressure
A third potential button activation method is to use
pressure. Pressing firmly on the display activates a button-
down event, and releasing registers a button-up event [3].
Because most multi-touch systems do not provide accurate
pressure information, we will not explore the use of pressure.

Sc
al

e
In

de
pe

nd
en

t

O
rie

nt
at

io
n

In
de

pe
nd

en
t

Ti
m

in
g

In
de

pe
nd

en
t

A
llo

w
s f

or

bu
tto

n
ch

or
di

ng

M
ax

im
um

To

uc
h

po
in

ts

Chording 4
Sides 3
Distances 2
Gesture 2
Side+Chording 3
Side+Distance 2
Chording+Distance 3

Table 1. Properties of Finger-to-Button Mappings.

FINGER-TO-BUTTON MAPPINGS
Previous emulation techniques [8, 9, 22] have used various
finger-to-button mappings, utilizing a combination of
different button distinction techniques outlined above. We
develop potential techniques in a more systematic nature.
By utilizing the above-described button distinction aspect of
the design, we developed four techniques using only one
button distinction method (Chording, Side, Distance,
Gesture) as well as three hybrid methods (Side+Chording,
Side+Distance, and Chording+Distance). For simplicity the
below descriptions assume single finger tracking, using the
index finger, except for the Sides Technique, which
requires two finger tracking. Other than this technique, the
techniques could all be implemented using one or two
finger tracking. Human factors research has shown that
movements of the thumb, index finger and little finger are
more highly individuated than movements of the middle or
ring fingers [15]. If possible, each of the described
techniques should be implemented with this in mind. Table
1 summarizes the design properties associated which each
technique. Since none of the proposed solutions satisfy all
of the desirable design characteristics, the challenge
becomes satisfying a suitable subset of them.

Chording Technique
The Chording Technique uses the idea of chording to
specify the left, right, or middle buttons. One additional
finger specifies a left mouse button event; two additional
fingers specify a middle mouse button; and three specify a
right button event (Figure 2). The placement of the non-
tracking fingers is irrelevant (scale and orientation
independent). However, a timeout is needed to determine
how long to wait for additional fingers before registering
the first one as a left click. We used a timeout of 150ms.

Figure 2. The Chording Technique.

Side Technique
In order to use only side information to determine which
button to activate, the index and ring fingers must be used
for tracking. The thumb would activate the left button, the
pinky would activate the right button, and the middle finger
would activate the middle button (Figure 3).

Figure 3. The Side Technique.

Distance Technique
The Distance Technique defines a short (< 150 px), medium
(150-250 px) and far (> 250 px) distance to the right of the
index finger, for activating the left, middle, and right
button. The middle finger, ring finger, and the pinky finger
are used to activate the three buttons (Figure 4).

Figure 4. The Distance Technique.

Gesture Technique
This technique uses the index finger for tracking and only
the thumb to select the button. Tapping the thumb activates
the left button. Pressing down and swiping to the left
activates the middle button, and swiping to the right
activates the right button (Figure 5). A timeout value (150
ms) is used to determine how long to wait for a gesture
before executing the left button event.

Figure 5. The Gesture Technique.

Side+Chording
The Side+Chording technique uses side information to
determine the left and right button state. These fingers are
chorded to activate the middle mouse button (Figure 6).

Figure 6. The Side+Chording Technique.

CHI 2009 ~ Tabletop Gestures April 7th, 2009 ~ Boston, MA, USA

1076

Side+Distance
With the Side+Distance technique the thumb is dedicated
for left button activation. Pressing the middle finger, close
to the index finger (<150 px) activates the middle mouse
button, and pressing a finger further to the right (ring or
pinky) (> 150 px) activates the right button (Figure 7).

Figure 7. The Side+Distance Technique.

Chording+Distance
This technique is similar to Side+Chording, but we use
distance to distinguish between the left (< 150 px) and right
(> 150 px) buttons, and chording to execute the middle
button (Figure 8).

Figure 8. The Chording+Distance Technique.

PILOT STUDIES
Fully combining all four aspects of our design space, would
results in almost 100 possible “techniques”. We narrowed
down this design space by using a converging-series design,
running a series of four, two participant, pilot studies. Since
the pilots only have two subjects, they should not be treated
as rigorous experimental findings. While this method would
not allow us to examine some of the interesting interactions
between different aspects of the design space, we felt that
the results of these studies, combined with examining
pragmatic issues, would be useful to reduce the candidate
techniques down to a smaller number of viable options.
Our goal is not necessarily to find the best single technique,
but to generate general recommendations and insights.

Apparatus
All studies were conducted on a custom 21” multi-touch
monitor with 1600x1200 display resolution (Figure 9). The
device is capable of detecting points of contact at a
resolution less than 0.25mm. Pressure information was not
available. The screen was covered with uncoated glass, and
unfortunately this caused an undesirable resistance when
dragging fingers along the surface. The display was
positioned at an angle of 40° to minimize fatigue [12].

Task
Our task consisted of acquiring a target with the pointer,
and then either clicking, double clicking, or dragging the
target to a dock location with one of the three mouse
buttons (left, middle, right). Before each trial the participant
moved the cursor into a start location near the bottom of the
screen (Figure 10a). After a 0.5s second delay, the start
circle would disappear and the trial would begin by
displaying a target square with the task instructions directly
above it (Figure 10b-d).

The participants were asked to perform “as quickly and
accurately as possible”. For the single click tasks, the trial
ended when the appropriate button-up event was recorded.
Similarly, the double-click tasks ended on the second
mouse-up event. When the target was moved within the
dock, the color of the target changed from green to blue to
indicate that the target was over the dock area. If the target
was released outside of the docking area, an error was
recorded, and the participant would have to re-acquire the
target from its last location and try again to drag it in.

Independent Variables
The design of each individual pilot study varied, using
different combinations of independent variables. In some
studies, the width of the target was varied. For the drag
tasks, the docking region was always 30 pixels wider than
the target. The distance of both the length from the start
position to the target, and from the target to the docking
location, was also varied in some of the below studies.

Figure 9. The experiment apparatus used for our studies.

Figure 10. Task appearance and instructions. (a) The
start position. (b) Drag task. (c) Single click task (d)
Double click task. The mouse icon indicates which
button to use (in these examples: left, left, right).

PILOT STUDY 1: BUTTON ACTIVATION
The purpose of the first pilot study was to compare
momentary button activation (finger down for button-down
event, finger up for button-up event) with toggle button
activation (tap once for button-down event, tap again for
button-up event).

Design
Two male subjects aged 24 and 25 participated in this study.
Both were right handed and experienced computer users.

The independent variables were activation type (momentary
and toggle), task (click, double click, and drag), and button

CHI 2009 ~ Tabletop Gestures April 7th, 2009 ~ Boston, MA, USA

1077

(left, middle, and right). The target size and target distance
were both held constant at values of 48 pixels, and 375
pixels respectively. Since our focus was only on button
activation, we used the Side+Distance technique, one finger
tracking, and a direct cursor mapping, which we felt would
be the most intuitive choices for the user.

Each participant performed 8 blocks of trials for each
activation type, with the order counterbalanced between
participants. Blocks consisted of one trial for each of the 9
task and button combinations presented in random order.

Results
Figure 11 illustrates the completion times recorded from the
study. For each task momentary activation was faster, and
the overall mean completion times were 1.78s for
Momentary and 2.65s for Toggle. This result was somewhat
anticipated. The click was faster for momentary mode, as it
requires a single “tap” of the finger, while in toggle mode it
requires two finger taps (one for button-down, one for
button-up). The problem is exaggerated further with the
double-click task where momentary activation requires two
taps, and toggle activation requires four taps (button-down,
button-up, button-down, button-up), as apparent in Figure
11. For the dragging portion of the drag task, we thought
toggle may be superior, since momentary activation
requires two fingers on the surface, while toggle activation
needs only one. With the surface friction of the display, it
becomes noticeably less comfortable to drag with each
additional finger placed on the display. In the drag task,
Toggle activation was closer in performance to Momentary
activation, but was still slower. As such, we recommend the
use of Momentary activation, and will use this type of
activation for our remaining studies.

Figure 11. Pilot 1 completion times for the activation modes.

PILOT STUDY 2: TRACKING FINGERS
The second pilot study was to look at controlling the
tracking-state position of the cursor with either one or two
fingers. Two finger tracking places the cursor between the
two fingers, offering the advantage of the input fingers not
obscuring the pointer location. It has also been suggested
that using two fingers provides more stability for pointing
than does tracking with one finger [3, 8].

Design
Two male subjects aged 25 and 26 participated in this study.
Both were right handed and experienced computer users.

The independent variables were tracking fingers (one finger
and two fingers), task (click and drag), target size (16
pixels, 64 pixels), and distance (250 pixels, 500 pixels).
We felt the number of tracking fingers used would have
little effect on the actual button activation, so only the left
button was used. For the two-finger technique, the thumb
and middle fingers were used for tracking, and the index
finger was used to activate the left button. The one finger
technique was the exact same, except only the middle finger
was used for tracking. Momentary activation was used, as
per our Pilot Study 1 results. The offset cursor mapping was
used so that we could look at the effect of one or two finger
tracking on pointing precision without the compounding
effect of cursor occlusion.

Each block consisted of one trial for each of the 8 task,
target size, and distance combinations, presented in random
order. The first participant did all of the one-finger trials
first, while the second began with the two-finger trials.

Results
Overall, one-finger tracking performed better than two-
finger tracking, with mean completion times of 1.75s and
2.04s respectively. We found that when using one finger
tracking subjects were more likely to “leap” to the target,
that is, lift their tracking finger off the screen and place it
down at the target, than they were with two finger tracking.
Two finger tracking performed comparatively better in the
small target conditions (Figure 12), but was still slower.

Figure 12. Task completion times for Pilot Study 2: one and

two finger tracking modes.

For both subjects, one-finger tracking was preferred over
two-finger for both large and small target sizes. Since one
finger tracking also addresses the design consideration of
using fewer touch points and performed better in this pilot,
it is our recommended tracking mode, and will be used for
the remaining studies.

PILOT STUDY 3: CURSOR MAPPING
Pilot 3 was designed to determine which of our four cursor
mappings (direct, scaled, offset, relative) is most preferable.

Design
Two male subjects aged 24 and 25 participated in this study.
Both were right handed and experienced computer users.

The independent variables were cursor mapping (direct,
offset, relative, and scaled), task (click and drag), target
size (16 pixels, 64 pixels), and distance (250 pixels, 500

CHI 2009 ~ Tabletop Gestures April 7th, 2009 ~ Boston, MA, USA

1078

pixels). As in Pilot Study 2, this study used only the left
button. One finger tracking was performed using the index
finger, and the left button was activated with the thumb,
using momentary button activation.

Each participant performed 4 blocks for each of the 4
techniques, with each block consisting of the 8
combinations of task, target size, and distance. The first
participant did the cursor mapping techniques in the order
of direct, scaled, offset, relative, and the second participant
did the reverse order.

Results
Overall completion times were 1.77s, 1.62s, 1.81s, and
2.15s, for direct, offset, relative and scaled respectively. For
large target tasks, direct mapping, with the cursor directly
under the tracking finger, was 0.13s faster than the next best
technique, offset (Figure 13). It was also subjectively
preferred as the subjects felt most comfortable pointing
directly at the target. They could do so because the large
target was larger than the area obscured by their finger.

However, when acquiring small targets, the direct mapping
does not fare as well, and was 0.43s slower than the offset
technique. The cursor and small target are both occluded
by the tracking finger, making it difficult to see if the cursor
is over the target. Offsetting the cursor slightly above the
tracking finger provides many of the benefits of the direct
mapping, while addressing the occlusion problem.

Figure 13. Task completion times for Pilot Study 3:

Cursor mapping modes.

Despite its advantage for large targets, the frustration
caused by activating small targets causes us to recommend
against a direct mapping. The offset mapping performed
best overall, but does not possess edge support, as the
bottom edge will not be accessible. While relative and
scaled input did not perform as well, they provide edge
support, and further, were reported to reduce fatigue, since
the input footprint was lowered. As relative mode
performed better than scaled, we recommend the use of a
relative mapping when the designer feels it is important to
reduce input footprints and provide edge support.
Otherwise, our recommendation is to use the offset
mapping, and to seek potential solutions to the edge support
problem. For example, it could be addressed by altering the
mapping near the bottom of the screen, or extending the
tracking area beyond the display surface. Since our current

investigations are not focused on the edge support problem,
we will use the offset mapping for our remaining studies.

PILOT STUDY 4: TECHNIQUES
The purpose of the final pilot study is to investigate the 7
described finger-to-button mapping techniques.

Design
Two male subjects aged 25 and 26 participated in the study.
Both were right handed and experienced computer users.

The independent variables were technique (Chording, Side,
Distance, Gesture, Side+Distance, Side+Chording, and
Chording+Distance), task (click, drag), and button (left,
middle, right). The target size and distance were both fixed
to values of 48 pixels and 375 pixels respectively.

Based on the recommendations from the three previous
pilots, the button activation mode was momentary, the
tracking mode was one finger (except for the Side
Technique), and the cursor mapping was offset. Each block
consisted of one of each of the 6 combinations of task and
distance, and each participant performed 6 blocks of trials
for each technique. The first participant performed the
techniques in the above order, and the order was reversed
for the second participant.

Results
The best performing techniques were Side+Distance
(1.73s), and Distance (1.82s) (Figure 14). Both techniques
support our intuitive mapping design property.
Side+Distance has the advantage of using the thumb for left
button input, which the subjects preferred.

Our own experience, in addition to the feedback received
from the subjects, suggests that the techniques that require
chording (Chording, Side+Chording, and Chording+
Distance) are awkward to use, as they are time dependent,
and introduce additional fingers during dragging operations.
The Side Technique requires two-finger tracking with the
index and ring fingers and as such, is ergonomically
uncomfortable to use. Users liked the gesture technique, but
it took longer, and is timing dependent.

Figure 14. Task completion times for finger-to-button

mapping techniques.

The results of the experiment show that all of these
techniques are viable. However, considering together the
quantitative data, subjective feedback, and qualitative
observations, our recommendation is to use the

CHI 2009 ~ Tabletop Gestures April 7th, 2009 ~ Boston, MA, USA

1079

Side+Distance mapping. It is intuitive, minimizes touch
points, is timing independent, and comfortable to use.

PILOT STUDIES SUMMARY: THE SDMouse
Our pilot studies have provided valuable insight into the
design of multi-finger mouse emulation techniques. While
it is difficult to suggest a single design, we are motivated to
evaluate one possible technique against existing solutions.
As such, we propose the SDMouse where:

• Button activation is momentary
• Tracking fingers is one
• Cursor mapping is offset
• Finger to button mapping is Side+Distance (hence

SDMouse)

As discussed earlier, any emulation technique (including
the SDMouse) will not satisfy all desirable design
characteristics, and the above dimensions could all be
modified if desired. For example, if edge support is
desired, the cursor mapping could be relative.

EXPERIMENT
The goal of this experiment is to compare the performance
of the SDMouse to previously suggested techniques for
mouse emulation. Furthermore, we believe it is important to
understand how close these techniques are to being optimal;
that is, matching the performance of an actual physical
mouse. Below we briefly describe the techniques which
SDMouse will be compared against.

Techniques
Comparison Technique 1: FingerWorks
FingerWorks [9] uses two fingers in the tracking mode and
was actually designed for indirect multi-touch devices, so it
uses a relative cursor mapping (Figure 15). Since
FingerWorks was not meant to be used in a direct touch
configuration, our results do not reflect an overall
assessment of the technique. Three fingers are required for
the emulation of all the buttons. The buttons are
distinguished by the arrangement of the fingers, and
activated momentarily. For the left mouse button, the
index, middle, and ring fingers are tapped. For the middle
mouse button, the thumb, index, and middle fingers are
used. Lastly, for the right button, the thumb, ring, and
pinky fingers are used with the hand slightly spread.

Figure 15. The FingerWorks technique.

Comparison Technique 2: Fluid DTMouse
Fluid DTMouse supports tracking and the left and right
button, but does not support the middle mouse button. It
supports both one-finger and two-finger tracking, with a
direct cursor mapping. A toggle button activation protocol
is used. To create a left button-down or button-up event, the

user tracks with two fingers, and then taps the index finger.
For the right button, the user tracks with a single finger, and
taps with a second (Figure 16).

The original Fluid DTMouse supports a mode that treats a
single touch point as a left click, but supporting this would
disable a user’s ability to position the cursor before clicking
the right button. This would make it very hard to be precise
with the right button, and so we do not enable this mode.

Figure 16. The Fluid DTMouse Technique.

Comparison Technique 3: Actual Mouse
To provide an empirical comparison to an actual mouse, we
used a 3-button 400 dpi optical mouse with ballistic
pointing enabled and set to a comfortable level such that
mouse clutching was never needed. Previous work [26] has
shown that direct pointing can surpass the use of an indirect
mouse, however, this result only applied to single finger
usage. We expect the overhead cost of introducing tracking
and multiple button support will cause the emulation
techniques, both previous and our own, to be slower than a
physical mouse. Our goal here is not to match the
performance of the mouse, it is only to empirically
determine the magnitude of the introduced cost.

Task and Apparatus
The task and apparatus which we used was identical to the
pilot studies, with the exception of a physical mouse,
described above.

Participants
Twelve volunteers (10 male, 2 female), aged 21-36
participated in this experiment. Participants were all right
handed, experienced computer users without any multi-
touch experience.

Design
A repeated measures within-participant design was used.
The independent variables were technique (SDMouse,
DTMouse, FingerWorks, Mouse), task (click, drag), button
(left, right), distance (250 pixels, 500 pixels), and size (16
pixels, 64 pixels). We did not include the middle mouse
button since DTMouse does not support it. A fully crossed
design resulted in 64 conditions. Each participant
performed the experiment in one session lasting
approximately 60 minutes. The session was broken up by
the techniques, with 5 blocks of trials completed for each
technique. In each block participants would complete each
of the 8 combinations of task, button, distance, and size.

Before using each technique, participants completed a short
warm-up session, to familiarize themselves with the
technique. The ordering of techniques was counterbalanced
using a Balanced Latin Square design.

CHI 2009 ~ Tabletop Gestures April 7th, 2009 ~ Boston, MA, USA

1080

Results
Completion Times
Completion time was calculated in the same manner as the
pilot studies. The analysis included trials in which errors
occurred. However, we used the median completion time to
correct for typical skewing of the time data and to remove
outliers. The median was calculated across the 5 blocks.

Repeated measure analysis of variance showed main effects
for technique (F3,33 = 74.7, p < .0001), task (F1,11 = 284, p <
.0001), button (F1,11 = 23.3, p < .005), distance (F1,11 = 17.2,
p < .005), and size (F1,11 = 80.6, p < .0001). Overall
completion times were 1.58 for the mouse, 2.41 for
SDMouse, 3.16 for FingerWorks, and 4.25 for DTMouse.
Pairwise comparison using Tukey adjustment showed that
all of these values were significantly different (p < .001).

The interaction between technique and task was significant,
(F3,33 = 5.0, p < .01). The effect is illustrated in Figure 17.
SDMouse comes closer to approaching the performance to
the mouse in the clicking task, with a difference of 0.54s. In
the dragging task the difference is 1.1s. This is consistent
with previous comparisons of direct touch with the mouse
[12]. The interaction between technique and button was
also significant (F3,33 = 10.36, p < .0001). Figure 18 shows
that the mouse and SDMouse have equal times for left and
right click, while for FingerWorks and DTMouse right
button times were much higher. The technique x size and
technique x distance interactions did not reach significance.

Figure 17. Completion times by task.

Figure 18. Completion times by button.

Error Rates
Repeated measure analysis of variance showed that
technique also had a significant effect on error rates (F3,33 =
25.5, p < .0001). The average error rates were 8.5% for the
mouse, 21.8% for SDMouse, 27.8% for FingerWorks, and

42.8% for DTMouse. A main cause of errors came from the
dragging task, due to the friction created with the surface
(F1,11 = 27.9, p < .0001). The display surface material was
slightly sticky, which caused the fingers to sometimes skip.
This would be registered as an error. However, it should be
noted that users were still able to complete the task, and our
analysis of movement time incorporated these errors.
Considering the pointing task only, error rates were 6.2%
for the mouse, 14.8% for SDMouse, 23.5% for
FingerWorks, and 35.9% for DTMouse. We believe the
high error rates for FingerWorks and DTMouse were
caused by the difficulty learning the finger mappings.

DISCUSSION & FUTURE WORK
Designing a multi-touch mouse emulation technique
introduces numerous issues to consider. While performance
and error rates are important measurements of success, we
have found that additional factors play into the appeal of a
technique. For example, how easy is it to remember? How
well does it map to a physical mouse? Is it comfortable?

Offering graphical widgets such as Microsoft’s Vista
TabletPC mouse or a TrackingMenu [10] version are two
examples of approaching the problem from a different
angle. An interesting solution to explore would be to
present a graphical mouse next to the index finger when it
is in contact with the sensing surface and is stationary. The
user would then use their thumb and mouse graphic to
trigger a mouse button or perform a mouse action.

The mouse is often used in conjunction with modifier keys
(Ctrl, Shift, etc). We believe this can be achieved utilizing
the other hand and is another area of future research.

In addition, providing mouse scrollwheel support is another
area we wish to investigate. Two potential solutions are to
use repeated middle finger swiping or thumb rotation
(Figure 19). Repeatedly swiping the middle finger up or
down while the tracking finger is stationary would signal
scrollwheel up/down events. Alternatively, with thumb
rotation, a clockwise circular gesture with the thumb
translates to scrollwheel up events while counterclockwise
gestures map to scrollwheel down events. Our initial
implementations of the swiping technique seemed to work
but required a rate-based mapping.

Figure 19. Mouse Wheel Techniques: (a) swiping (b) rotation.

We did not study very precise (e.g., single pixel)
positioning or selection tasks. While two-finger designs aim
to offer more precise cursor positioning by positioning the
cursor between the two finger points, we believe the single
finger tracking design with cursor offset can be similarly
accurate as the multi-touch sensing technology improves.

CHI 2009 ~ Tabletop Gestures April 7th, 2009 ~ Boston, MA, USA

1081

Our approach to exploring the design space utilized pilot
studies to examine individual design issues. We note that
this method does not allow us to examine some of the
interesting interactions between different aspects of the
design space. Also, the pilot studies were not meant to lead
us to absolute truths or performance measurements; instead
they were meant to lead us to potential design solutions.

CONCLUSIONS
Multi-touch systems offer the potential of very rich input.
However, it is unreasonable to expect that every application
will be rewritten to support a multi-touch interaction mode.
Users will need to be able to interact with the traditional
user interfaces using multi-touch input, much like TabletPC
users are forced to interact with traditional GUI’s with a
stylus. More importantly, full mouse emulation should be
supported in multi-touch environments to effectively
interface with traditional applications which have minimal
or no multi-touch capabilities. Our research contribution is
the systematic exploration of the solution space of one
handed, multi-touch, full mouse emulation techniques. By
constructing a design space and conducting controlled
studies we have been able to generate a set of viable
designs, such as the SDMouse.

REFERENCES
1. Albinsson, P. and Zhai, S. (2003). High precision touch

screen interaction. ACM CHI. 105-112.
2. Balakrishnan, R., Baudel, T., Kurtenbach, G., and

Fitzmaurice, G. (1997). The Rockin'Mouse: integral 3D
manipulation on a plane. ACM CHI. 311-318.

3. Benko, H., Wilson, A., Baudisch, P. (2006). Precise
Selection Techniques for Multi-Touch Screens. ACM
CHI. 1263-1272.

4. Brandl, P., Forlines, C., Wigdor, D., Haller, M., and
Shen, C. (2008). Combining and measuring the benefits
of bimanual pen and direct-touch interaction on
horizontal interfaces. AVI. 154-161.

5. Buxton, W., Hill, R., and Rowley, P. (1985). Issues and
techniques in touch-sensitive tablet input. ACM
SIGGRAPH, 215-224.

6. Dietz, P. and Leigh, D. (2001). DiamondTouch: a multi-
user touch technology. ACM UIST. 219-226.

7. Echtler, F., Huber, M., and Klinker, G. (2008). Shadow
tracking on multi-touch tables. AVI. 388-391.

8. Esenther, A. and Ryall, K. (2006). Fluid DTMouse: better
mouse support for touch-based interactions. AVI. 112-115.

9. Fingerworks, Inc. (2008). User’s Guide.
http://www.fingerworks.com/gesture_guide_mouse.html

10. Fitzmaurice, G., Khan, A., Pieké, R., Buxton, B., and
Kurtenbach, G. (2003). Tracking menus. ACM UIST.
71-79.

11. Forlines, C., Vogel, D., and Balakrishnan, R. (2006).
HybridPointing: fluid switching between absolute and
relative pointing with a direct input device. ACM UIST.
211-220.

12. Forlines, C., Wigdor, D., Shen, C., and Balakrishnan, R.
(2007). Direct-touch vs. mouse input for tabletop
displays. ACM CHI. 647-656.

13. Grossman, T., Hinckley, K., Baudisch, P., Agrawala,
M., and Balakrishnan, R. (2006). Hover widgets: using
the tracking state to extend the capabilities of pen-
operated devices. ACM CHI. 861-870.

14. Grossman, T., Wigdor, D., and Balakrishnan, R. (2004).
Multi-Finger Gestural Interaction with 3D Volumetric
Displays. ACM UIST. 61-70.

15. Hager-Ross, C., Schieber, M. (2000). Quantifying the
Independence of Human Finger Movements:
Comparisions of Digits, Hands, and Movement
Frequencies. J. of Neuroscience, 20(22), 8542-8550.

16. Han, J. Y. (2005). Low-cost multi-touch sensing through
frustrated total internal reflection. ACM UIST 115-118.

17. Letessier, J. and Bérard, F. (2004). Visual tracking of bare
fingers for interactive surfaces. ACM UIST. 119-122.

18. Malik, S. (2007). An Exploration of Multi-Finger
Interaction on Multi-Touch Surfaces. Univ. of Toronto.

19. Malik, S., Ranjan, A., and Balakrishnan, R. (2006).
Interacting with large displays from a distance with
vision-tracked multi-finger gestural input. ACM UIST.
43-52.

20. Moscovich, T. (2007). Principles and Applications of
Multi-touch Interaction. Brown University.

21. Moscovich, T. and Hughes, J. F. (2006). Multi-finger
cursor techniques. Graphics Interface. 1-7.

22. Moscovich, T. and Hughes, J. F. (2008). Indirect
mappings of multi-touch input using one and two hands.
ACM CHI. 1275-1284.

23. Olwal, A., Feiner, S., and Heyman, S. (2008). Rubbing
and tapping for precise and rapid selection on touch-
screen displays. ACM CHI. 295-304.

24. Potter, R. L., Weldon, L. J., and Shneiderman, B.
(1988). Improving the accuracy of touch screens: an
experimental evaluation of three strategies. ACM CHI.
27-32.

25. Rekimoto, J. (2002). SmartSkin: an infrastructure for
freehand manipulation on interactive surfaces. ACM
CHI. 113-120.

26. Sears, A. and Shneiderman, B. (1991) High Precision
Touch-Screens: Design Strategies and Comparison with
a Mouse, Int. Journ. of Man-Machine Studies, 43(4),
593-613.

27. Vogel, D. and Baudisch, P. (2007). Shift: a technique
for operating pen-based interfaces using touch. ACM
CHI. 657-666.

28. von Hardenberg, C. and Bérard, F. (2001). Bare-hand
human-computer interaction. ACM PUI. 1-8.

29. Wu, M. and Balakrishnan, R. (2003). Multi-Finger and
Whole Hand Gestural Interaction Techniques for Multi-
User Tabletop Displays. ACM UIST. 193-202.

30. Wu, M., Shen. C., Ryall, K., Forlines, C., Balakrishnan,
R. (2006). Gesture Registration, Relaxation, and Reuse
for Multi-Point Direct-Touch Surfaces. IEEE TableTop.
183-190.

31. Zhang, Z., Wu, Y., Shan, Y., and Shafer, S. (2001).
Visual panel: virtual mouse, keyboard and 3D controller
with an ordinary piece of paper. ACM PUI. 1-8.

CHI 2009 ~ Tabletop Gestures April 7th, 2009 ~ Boston, MA, USA

1082

