Application-Based TCP Hijacking

Oliver Zheng
skillzer@interchange.ubc.ca

Jason Poon
jasazn@interchange.ubc.ca

Konstantin Beznosov
beznosov@ece.ubc.ca

University of British Columbia
2332 Main Mall, Vancouver, Canada V6P 3V2

ABSTRACT

We present application-based TCP hijacking (ABTH), a new
attack on TCP applications that exploits flaws due to the
interplay between TCP and application protocols to inject
data into an application session without either server or
client applications noticing the spoofing attack. Following
the injection of a TCP packet, ABTH resynchronizes the
TCP stacks of both the server and the client. To eval-
uate the feasibility and effectiveness of ABTH, we devel-
oped a tool that allows impersonating users of Windows
Live Messenger in the matter of few seconds. Due to its
generic nature, ABTH can be mounted on a variety of mod-
ern protocols for TCP-based applications. Countermeasures
to thwart and/or limit the effectiveness of ABTH could in-
clude strict Ethernet switching and cryptographic protection
of messages. However, the former cannot be guaranteed by
the application provider and the latter appears to be still
prohibitively expensive for such large-scale applications with
hundreds of millions of sporadic users as Windows Live Mes-
senger.

General Terms
Security, Theory

Keywords

TCP hijacking, application-based TCP hijacking, Windows
Live Messenger, application protocols, packet injection

1. INTRODUCTION

Since its first specification in 1974 [14], the Transmission
Control Protocol (TCP) has grown to become the core trans-
port protocol for a vast number of applications including
HTTP, FTP, SMTP, and TELNET. The security proper-
ties of these application protocols are partially dependent
on the security of TCP and the underlying Internet Proto-
col (IP). Many network attacks that exploit vulnerabilities
of the TCP design have shown prominence over the past

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EUROSEC *09 Nuremberg, Germany

Copyright 2009 ACM 978-1-60558-472-0/09/0003 ...$5.00.

decades [9]. While preventive mechanisms have been de-
veloped to throttle or outright eliminate most of these at-
tacks [6], the list of TCP vulnerabilities continues to grow.

In this paper, we present application-based TCP hijacking
(ABTH), a new technique for attacking TCP-based commu-
nications. ABTH extends TCP hijacking [16] by meddling
with application-layer protocols. Traditional TCP hijack-
ing attacks exploit vulnerabilities of the transport and net-
work layers. However, the majority of these attacks have
been circumvented through the use of hardware switches and
routers [6], which provide countermeasures against such di-
rect low-level attacks. On the other hand, ABTH utilizes
loopholes in the logistics of application-level communication
to evade policy enforcement at the transport and IP layers.
Trivial design features of application protocols become fatal
vulnerabilities that can be exploited by ABTH.

To demonstrate the feasibility and effectiveness of ABTH,
we developed an attack on the communications of Microsoft
Windows Live Messenger (WLM). With instant messaging
(IM) becoming ubiquitous at both home and work [1], Win-
dows Live Messenger (WLM) represents one of the largest
IM networks, featuring 17 million users [5]. By attacking
the Microsoft Notification Protocol (MSNP)—the protocol
in use by WLM—with ABTH, the privacy and confidential-
ity of WLM users can be compromised; an attacker is capa-
ble of spoofing any command available to the WLM client
and impersonating any contact known to the victim. As a
result, unauthorized messages can be delivered to various
WLM clients. We contacted Microsoft about the weakness
of MSNP against ABTH in the spring of 2008; the subject
matter was still under investigation as of February 2009.
Although our sample attack is limited to WLM, due to its
generic nature, ABTH can be mounted on a variety of ap-
plication protocols.

Among several ways to mitigate ABTH, Internet service
providers (ISPs) could employ stricter security controls on
the network layer. TCP applications could also employ TLS
or other forms of data confidentiality and integrity protec-
tion. However, the former cannot be guaranteed by the ap-
plication provider(s) and the latter appears to be still pro-
hibitively expensive for such large-scale applications with
millions of sporadic users as WLM.

The remainder of the paper is organized as follows. Rel-
evant background information on TCP and existing attacks
on the transport protocol are discussed in Section 2. The
theory and general operation of ABTH is described in Sec-
tion 3. The application of ABTH for MSNP is demonstrated
in Section 4. The limitations of ABTH and countermeasures

against it as well as its feasibility are discussed in Section 5.
The paper is concluded in Section 6.

2. BACKGROUND AND RELATED WORK

In this section, necessary background information on TCP
including the details of existing security flaws are presented.

2.1 Overview of TCP

TCP is a connection-oriented transport protocol that guar-
antees reliable in-order delivery of network packets [14]. A
pair of hosts initiate contact and communicate by sending
packets to each other. Each end of the connection is identi-
fied by an Internet Protocol (IP) address and a TCP port,
both of which are determined prior to the establishment of
connection.

Each TCP packet is tagged with a sequence number, an
acknowledgement number, and a receive window, herein re-
ferred to as seqnum, acknum, and rcvwnd, respectively. Se-
qnum represents the n-th byte of data transferred; acknum
confirms the n-th byte of data received; rcvwnd corresponds
to the number of bytes the host is willing to receive and
capable of processing. Within each TCP header are also 8
control flags. After a connection is established (which is the
only relevant timeframe ABTH deals with), each packet can
confirm reception of data by setting the ACK flag and/or
contain data; thus, some packets with no data have just the
ACK flag set to denote an empty acknowledgement packet.
For each data packet that is sent, a returning packet has to
be received with acknum equal the seqnum + the length of
the sent packet to affirm delivery of all consecutive bytes up
to and including the last byte. A data packet with the same
acknum may be received in lieu of an empty acknowledge-
ment packet, in which case this packet needs confirmation
as well.

In order for the two hosts to be in a synchronized state
where data packets can be received and processed as valid
packets, the seqnum of one host must match the acknum
of the other and vice versa. As an example to illustrate
seqnum and acknum, a client connects to a server through
TCP. After establishing a connection, assume the client has
a seqnum of 50 and the server has a seqnum of 100. The
next packet the client sends must entail seqnum 50 and ack-
num 100. If the client sends a data packet of 10 bytes, the
client seqnum increases to 60 and the server must send an
acknowledgement packet with seqnum 100 and acknum 60.

When either hosts receives a packet containing an unex-
pected seqnum two scenarios may occur. If the received
seqnum is within the range of the expected seqnum and the
rcvwnd (the received packet arrived before another packet
with the expected seqnum), the data is buffered and no ac-
knowledgement packet is sent. (An acknowledgement packet
would confirm the reception of the missing packet.) Other-
wise, the packet is dropped and an acknowledgement packet
is sent with an acknum of the expected seqnum, which may
incite a TCP ack storm [10], an undesirable effect in the
perspective of an attacker.

2.2 Adversary Model

For the TCP attacks to follow as well as ABTH, the main
assumption is that attackers are able to listen to network
traffic of a TCP session and inject spoofed packets into the
network. We do not assume that the attacker has neces-
sarily the capabilities of launching a denial-of-service attack

or deleting or rerouting network traffic. Additionally, the
attacker is assumed not to need to temper with the estab-
lishing of the TCP connection; the attacker may administer
an attack on any live TCP connection anytime.

In wired networks, sniffing and spoofing may be very lim-
ited. For example, network switches prevent sniffing in Eth-
ernet and it is usually very difficult to sniff on routers. In-
ternet service providers (ISPs) and enterprises often use net-
work access control to block IP spoofing. However, in wire-
less networks, especially in unencrypted 802.11 networks,
sniffing and spoofing can be done with well designed soft-
ware and off-the-shelf hardware.

Computational capabilities of the attacker do not go be-
yond the limits of a consumer-level personal computer. For
example, in our implementation of ABTH for Windows Live
Messenger, the victim was attacked in the matter of two
seconds with the use of a modest laptop.

2.3 Attacks on TCP

Many attacks on TCP exploit vulnerabilities of the se-
gnum and acknum synchronization mechanism. In order to
demonstrate the value of ABTH, attacks pertinent to ABTH
are first discussed in the following sections. All of these at-
tacks, including ABTH, assume the threat model defined in
Section 2.2. There are other TCP attacks that assume dif-
ferent (and perhaps weaker) adversary models, but they are
not relevant for this discussion.

2.3.1 TCP Hijacking

By eavesdropping on a TCP session, an attacker is able
to observe and calculate the expected seqnums and acknums
of both hosts and is therefore able to inject a spoofed TCP
packet [9]. The spoofed packet would contain the seqnum
and acknum expected by the recipient and the source ad-
dress of the other host. Although the spoofed packet is sent
by the attacker, the recipient does not have the ability to
authenticate the source of the packet and would therefore
accept it as a valid packet. However, following this spoof,
the connection is effectively broken, as the expected seqnums
and acknums of the two hosts are out of sync. Subsequent
data packets sent to either host would be regarded as invalid
due to the mismatch of numbers, and no acknowledgement
packets are sent in response. Thus, the connection is quickly
reset by both hosts. As a result, both hosts would notice a
disruption in the network service and may suspect an attack.

2.3.2 Man-in-the-Middle

Following a TCP hijacking attack, the attacker can act as
a man-in-the-middle by relaying all messages from one host
to the other [10, 8]. Although the initial spoofed packet
has caused an imbalance between the TCP stacks of both
hosts, for each packet sent by either hosts, an attacker is
able to forward the packet to the recipient host by spoofing
a copy of the packet and translating the seqnums and ack-
nums on the fly. However, a problem arises when each host
receives the original packet(s) that was sent to each other,
with the unexpected seqnums and acknums. As previously
mentioned, a packet is considered valid if its seqnum falls
within the range of the expected seqnum and the rcvwnd.
Spoofed packets cause the spoofed host to lag behind on its
seqnum, and thus packets sent from the spoofed host are
not in the acceptable range. Subsequently, for each packet
the spoofed host sends, the other host drops it and sends

back an acknowledgement packet with the expected seqnum
and acknum trying to correct this desynchronization. The
spoofed host would try to do the same by sending an ac-
knowledgement packet, which incites the other host to send
another. This repeated cycle of sending packets creates an
ack storm, in which both hosts continuously send empty ack
packets.

While the ack storm stops as soon as one packet is dropped
due to the unreliability of the underlying physical network,
it creates a massive load of network traffic [10]. Intrusion
detection systems can characterize this load with statistical
analysis of empty packets on the network and notify users
of the attack.

2.3.3 ARP Poisoning

A method of avoiding TCP ack storms is to stop hosts
from receiving legitimate packets. While the attacker can-
not delete or reroute packets, the attacker can utilize Ad-
dress Resolution Protocol (ARP) poisoning to mislead hosts
into ignoring legitimate packets. ARP provides translation
of IP address to MAC address. If ARP poisoned with the
wrong MAC address, a host will send TCP/IP packets to
the wrong MAC address and ignore incoming packets from
the real MAC address. The attacker needs only to poison
ARP tables of one host to circumvent ack storms, as the
compromised host will not respond to the other host.

However, ARP traffic does not travel beyond the local
area network (LAN) and imposes the restriction that the
attacker be within the same LAN as at least one host. More
importantly, ARP poisoning is a low network level attack
that can be easily prevented with hardware enforcement [15];
most hardware switches disable ARP poisoning.

2.34 Restoring Synchronization

The attacker can try to resynchronize both hosts by in-
citing the lagging host to send packets manually [11]. For
example, an attacker exploiting the TELNET protocol may
send a notice to the user to type in a few characters. How-
ever, slightly more experienced users will easily detect such
a peculiarity.

As discussed, existing attacks on TCP do not provide
much guarantee for an attack to be executed unnoticed.

3. APPLICATION-BASED TCP HIJACKING

ABTH improves upon conventional TCP session hijacking
by allowing an attacker to automatically resynchronize TCP
seqnums and acknums of the two hosts of the connection. It
is a specific method of exercising TCP hijacking based on the
application protocol without utilizing ARP poisoning or any
other techniques below the transport layer. The technique
assumes the adversary model described in Section 2.2.

Many application protocols intended for two-way commu-
nication, such as TELNET and FTP, maintain a persistent
TCP connection. A typical method for ensuring the connec-
tion is open is for one of the hosts to periodically send an
application-level command to the other host. Application-
level commands, such as a ping, feature two characteristics
of particular importance to ABTH: they prompt automatic
response from the other host and they do not modify appli-
cation states.

ABTH exploits these seemingly trivial application-level
commands at the TCP level to perform TCP hijacking and
resynchronization. In most application protocols, a ping to

a host will provoke a response; using this knowledge the at-
tacker can inflate the seqnum of the host. Assuming ping
responses exceed the data length of pings, injecting certain
multiples of pings directed at each host would counterbal-
ance the difference created by an injected packet.

As a result, an attacker can spoof a packet containing
a malicious command and is able to minimize and quickly
stop an ack storm by spoofing multiple pings to the hosts
to bring up a lagging seqnum of a host to a desired seqnum.
The order in which these packets are injected should follow
a specific rule. For a packet sent to each host, the seqnum
should fall within the acceptable range of the expected se-
gqnum and rcvwnd. For an RFC specified implementation of
a TCP stack, the packet is dropped and an ack is returned;
for the Windows TCP stack, the packet contents (if any) is
buffered by the receiver and no ack is returned, thus mini-
mizing the ack storm. If performed correctly, ABTH should
finish quickly enough for these acks (if any) to be virtually
undetectable. The distinctions among different TCP stack
implementations are discussed in Section 5.4, as different
implementations process incoming packets differently (per-
haps due to ambiguous interpretations of the TCP state ma-
chine [19]) and alter the behavior of ABTH, for better and
for worse.

Once ABTH is completed, the connection is repaired and
subsequent legitimate and/or illegitimate application com-
mands can be received and processed successfully. In com-
parison to typical TCP hijacking methods which usually
lead victims suspicious of an attack, ABTH exploits a com-
bination of TCP and the application protocol to execute
an attack that conforms to the specification of TCP and
the application protocol and also maintains a small network
footprint. This allows the attacker to carry out an attack
without using exploits prohibited and impractical in well-
controlled networks and evade existing intrusion detection
systems. The significance of ABTH is in providing the at-
tacker with an exit strategy in which the attack may be
executed unnoticed.

4. CASE STUDY:

WINDOWS LIVE MESSENGER

First released in 1999, Windows Live Messenger (WLM)
has since grown to become one of the most popular instant
messaging (IM) services. WLM uses the Microsoft Notifica-
tion Protocol (MSNP) to communicate to servers within the
.NET Messenger Service [13].

4.1 .NET Messenger Service

The .Net Messenger Service provides WLM clients with
instant messaging and presence services that are required
for user-to-user communication. As shown in Figure 1, the
service consists of a centralized cluster of servers; two types
of servers exist within this cluster: notification servers (NS)
and mixer servers (MS) [18].

When a user logs into their WLM account, a persistent
TCP connection to an NS is established. This connection
must always remain active for the lifetime of the session; a
lost connection will result in the client being logged out and
disconnected from the messaging service. Control packets
are transmitted between the NS and the user via the per-
sistent connection and include information such as a user’s
contact list and presence information (e.g., user status, email

Table 1: MSNP control commands relevant to ABTH.

Command Description Size in bytes
PNG\r\n Client command to ping the NS. 5
QNG [2]1\r\n NS’s response to PNG. 8
CHL [22]\r\n NS command to ping the client. 28
QRY [24]1\r\n[32] Client’s response to CHL. 60
QRY [2]\r\n NS’s response to client’s QRY. 8
RNG [10] [ip:port] [19] [email] [name] [21] \r\n[ws] NS’s invite to the client for 120

new conversation session.

Parts of commands are denoted using the following notation:

[#] an integer or string of # characters wide, irrelevant for the context of ABTH
[ip:port] the IP address and TCP port of the mixer server

[email] an email address of the user with whom the new conversation will be

[name] the name of the user with whom the new conversation will be

[ws] a variable length of whitespace padded to the command by the attacker

Figure 1: .NET Messenger Service infrastructure

WLM Client
#1

Content
Packets

Control
Packets

NET Messenger
Service

Notification |
Servers

Mixer Server

Control Content
Packets Packets
WLM Client

#2

notification).

In addition to transmitting control packets, the NS also
sends the client an IP address of the MS to be used for a
new chat session. For instance, if Alice attempts to talk to
Bob, he will receive, from the connected NS, the location of
an MS to which Bob needs to connect in order to chat with
Alice. Participants of an IM conversation are connected to
the same MS, which relays content packets between clients.
These content packets carry messages, such as instant mes-
sages, sent among WLM clients through the mixer.

4.2 Microsoft Notification Protocol

MSNP is a text-based application protocol that defines the
communication between WLM clients and servers. Although
the protocol was first intended to be an open standard [7],
it has since become proprietary and has undergone numer-
ous revisions. However, due to the unencrypted nature of
the protocol, attempts to reverse-engineer the protocol have
proven successful [12, 4].

The protocol consists of plain text commands; each com-

mand is prefixed with three capital letters (e.g., command
PNG represents ping), and is sent in a separate packet.

To determine the validity of the persistent connection be-
tween the NS and the client, MSNP allows for asynchronous
bidirectional pings; both the WLM client and the NS have
the ability to initiate a ping. The client pings the NS with
PNG; the NS pings the client with CHL. Both pings provoke
responses from the receiving host. If a response is not re-
ceived, the client will be disconnected from the messaging
service. WLM pings the NS every 45 seconds whereas in al-
ternative IM clients, such as Pidgin [3], pings occur every 30
seconds. Table 1 specifies the structure of MSNP commands
that are relevant to our ABTH attack on MSNP. Note that
a ping initiated by the NS results in three MSNP commands
(CHL-QRY-QRY).

Because confidentiality and integrity of MSNP traffic are
not protected, an attacker can listen to the traffic and in-
ject MSNP messages at will. Afterwards, the attacker can
employ ABTH and the MSNP commands shown in Table 1
to eliminate the discrepancy between the seqnums and ack-
nums of the client and the NS created by the spoof packet.
Completion of ABTH will circumvent service disconnection
and detection of a spoofed packet. The fact that MSNP al-
lows whitespace padding after commands can be leveraged
to simplify ABTH calculations and reduce the number of
packets necessary to resynchronize the TCP connection.

To illustrate our application of ABTH to MSNP, we de-
scribe in the following section how we have spoofed an MSNP
command without disconnecting the client. The spoofed
command creates the effect of identity impersonation.

4.3 Identity Spoofing

In order to accomplish an identity spoof, we will utilize the
official WLM client, the live .NET Messaging Service, and
a custom-made rogue WLM mixer server. The attacker in-
jects a RNG command from the NS to the victim; this control
packet is used by NS to invite the client to a new conversa-
tion session and contains two items of interest: the address
of an MS and the email and name of the contact that in-
vited the victim to the conversation. The attacker can utilize
these two parameters by setting the address of the MS to a
rogue mixer server and setting the email and name of the
user to impersonate. Upon receiving the RNG command, the
victim will connect to the specified MS to join an IM con-

Figure 2: Identity spoof packet flow

Notification WLM
Server Attacker Client
Seq_Ack Seq Ack
500 100 . PNG (6 by’(es)'“"* 100 500
Repeat
Exchange —— QNG (s bytes)—» .
24 Times... _ T
< TCP Ack (0 bytes) e
692 220 T CHL 28byteg) , |]
< QRY (80 bytes)—
=T Repeat
- — QRY(s bytes)—» B Exghange
2 Times...
L TCP Ack (0 byles)—
T —R
NG (120 bytes) . 220 572
220 692

versation with the user whose name and email was denoted
in the command.

The injection of the RNG packet has caused the victim’s
acknum to grow by 120, the size of the RNG, and the victim’s
expected seqnum of the next TCP packet to increase by 120
as well. As a result of this mismatch in the seqnums and
acknums of the two hosts, further communication on this
TCP connection will be dropped. This mismatch can be
resolved by utilizing ABTH to force the pretended source
of the malicious packet, the NS, to actually send 120 bytes
worth of data. Forcing one side of the connection to send 120
bytes of data will also incur a cost in the sequence number
space of the other side of the connection. As a result, we
will need to balance the seqnums and acknums of both sides
of the connection to fill the 120 byte gap.

In the case of MSNP, we can use the PNG/QNG combination
to inflate the NS side of the connection and the CHL/QRY/QRY
combination to inflate the client. Each PNG/QNG combination
will elicit a cost of 8 bytes on the NS’s seqnum and 5 bytes
on the acknum. The seqnum and acknum of client side of the
connection can be increased via the CHL/QRY/QRY commands
which will elicit a cost of 60 bytes to the client’s seqnum
and 36 bytes to the acknum. With this information, we can
form two algebraic equations where x represents the number
of PNG/QNG combinations to send to the NS and y represents
the number of CHL/QRY/QRY combinations to send to the
client:

(1) NS segnum = Client acknum

b5x = 60y
T = 12y
(2) Client seqnum = NS acknum
8x = 36y + 120
Putting these equations together, we get:
8(12y) = 36y + 120
Ly o= 2
e = 24

As a result, we will need to inject 2 CHL commands to the

client and 24 PNG commands to the NS.

Let us assume, for the sake of simplicity, that prior to the
spoofed packet, the seqnums of the client and the NS are 100
and 500, respectively, as shown in the first row of Figure 2.
Figure 2 outlines the flow of injected packets between the two
hosts. The dotted arrows extend ping responses, as these
packets are still received by the other end of the connection
but are largely ignored since they contain incorrect seqnums
and acknums in the perspective of the receiver. As the last
row shows, with matching seqnums and acknums, ABTH has
completed its series of application specific commands and
has successfully resynchronized the TCP connection. The
connection is now is ready to transmit legitimate and/or
illegitimate packets further.

As a result of spoofing the RNG command and seqnum and
acknum re-synchronization via ABTH, the attacker is able
to send/receive any number of IM chat messages to/from
the victim, while impersonating the user specified in the RNG
command. As the victim’s WLM client is unable to differ-
entiate between a rogue mixer server and a legitimate one,
it thereby cannot recognize the illegitimacy of the conversa-
tion. From this point on, the attacker can continue his/her
conversation with the victim until either the MS connection
times out or the victim signs off.

5. DISCUSSION
Our experiments demonstrate that MSNP can be success-

fully attacked through ABTH. However, ABTH has several
caveats.

5.1 Limitations

In the case of WLM, it is crucial that ABTH is completed
prior to the next client-to-NS ping, which occurs roughly
every 45 seconds. Otherwise, the client would ping the NS
and discover the imbalance in seqnums, leading to a time-
out and disconnection. Depending on the resources of the

attacker, ABTH can be reasonably accomplished within this
timeframe, as our experiments—described in Section 5.3—
have demonstrated.

Our attack tool calculates and generates prior to the at-
tack the required commands to send, which allows it to com-
plete an attack within 2 seconds after it observes a PNG com-
mand sent from the victim to an NS. If the victim’s client
and the NS exchange a packet during the restoration phase,
ABTH would fail in resynchronizing their TCP stacks. As
a result, no network traffic can occur while ABTH is in
progress. Our measurements described in Section 5.3 sug-
gest that 2 seconds is a sufficiently short interval for achiev-
ing success rate of 95%. Complex algorithms capable of ad-
justing to live traffic dynamically might improve it further.

ABTH requires the length of ping responses be greater
than the commands issued to provoke them. If this were
not the case, an attempt to resynchronize the two hosts
through ABTH would only widen the gap of mismatched
seqnums. Likewise, application commands that do not pro-
voke responses would not work either, e.g., no operation or
null data [10].

5.2 Countermeasures

In order to properly authenticate messages, a naive coun-
termeasure against ABTH is to encrypt all application traf-
fic, for example with SSL/TLS. However, WLM and other
large-scale applications would require substantial server re-
sources to encrypt all network traffic. In the scenario where
applications connect peers to peers by allowing a communi-
cation channel between two clients, as MSNP implicitly does
through the mixer connection, clients may encrypt traffic
and authenticate each other through the channel provided
by the application. For example, SimpLite-MSN [2] sets up
RSA keys and authenticates all instant messaging traffic for
MSNP, thus providing protection against spoofing.

As ABTH requires a predetermined number of spoofed
packets to inflate the seqnums and acknums of the hosts,
intrusion detection systems (IDSs) may detect this form of
attack due to the sudden spike in traffic between the hosts.
However, this behaviour may step within the boundaries of
legitimate application traffic.

Furthermore, a regulatory mechanism in the application
protocol, such as tagging application messages with sequence
numbers, has the potential for providing integrity for each
packet. With such a mechanism, it would be difficult to in-
ject a packet and expect further messages to be accepted.
This straightforward yet non-trivial detail also alleviates the
application protocol from its dependence on the network
layer and the assumption that packets on the network layer
are authentic.

For network service providers, the most effective method
to disable ABTH and message spoofing altogether would be
to prohibit IP packets with forged source IP addresses [17].
However, this method would be ineffective in an unencrypted
wireless medium, such as WiFi, commonly found in coffee
shops and other public locations.

5.3 Feasibility

Our implementation of ABTH on MSNP completes within
roughly 2 seconds and is triggered on the reception of a
MSNP PNG command. In order for the attack to succeed,
no message exchange between the victim’s client and the
NS can occur within these 2 seconds. While the amount

of MSNP traffic is dependent on a variety of factors, we
logged the success rate against the number of online WLM
contacts, which is the only quantifiable metric in a WLM
session. Our measurements obtained through monitoring
several days of MSNP traffic suggest that the probability of
a control message occurring within 2 seconds of a ping is less
than 5%, regardless of the number of contacts online on the
contact list, as can be seen in Figure 3.

Figure 3: Success rate of ABTH attack vs. the num-

ber of victim’s contacts being online.

100 *
90 *
80 d
70
60
50
40
30
20
10

0 T T T T d
0 10 20 30 40 50

* 0, %00 POYIN
o *® 000t 2000 “,o.o., A

*

Success Rate Percentage

Number of Online Contacts

5.4 Victim Environment

The implementation of the TCP/IP stack on the victim’s
operating system dictates the behaviour of an ABTH attack.
The quirk is that different implementations behave differ-
ently upon receiving a packet with unexpected seq and ack-
nums. Gathered from empirical tests, we summarize three
TCP stacks in Table 2: an ideal (non-existent) RFC specified
interpretation of TCP packet processing (as shown in [19]),
and the TCP stack implementation on Microsoft Windows
and Linux. The above implementations only deal with pack-
ets with seqnum within the acceptable range (greater or
equal to expected seqnum and smaller than the receive win-
dow); otherwise, the packet is dropped and an ack is sent
back regardless of the implementation of the TCP stack.

In the RFC specified interpretation, each ping packet, PNG
in the case of MSNP, would be met with an additional ack
storm. In a publicly switched network where packet latency
is typically 20ms, the MSNP ABTH attack that takes 2 sec-
onds would generate roughly 2500 ack packets, assuming the
attacker generates a packet every round trip time (40ms).
Whether or not this statistic is acceptable for a TCP attack
based on its environment and threat model is beyond the
scope of this discussion, although we believe this is quite
low.

In the Windows implementation, which was used exten-
sively in our testing, no acks are returned for packets with
seqnums and acknums larger than the expected (row 4 of
Table 2). This directly resulted in elimination of ack storms
all together; a total of two ack packets are sent by the vic-
tim. Our assumption in this case is that the NS of the .Net
Messenger Service runs on Windows.

In the case of Linux, the attack fails completely. Since a
packet with the expected seqnum but larger than expected
acknum (row 2 of Table 2) is accepted by the TCP stack, it

Table 2: Treatment of a packet with unexpected seqnums and acknums on different TCP stacks

Seqnum Acknum | RFC Specified Interpretation Microsoft Windows Linux
Accepted Ack Returned Accepted | Ack Returned | Accepted | Ack Returned
= Expected | < Expected v v v v v v
= Expected | > Expected X v X v v v
> Expected | < Expected v X v X v X
> Expected | > Expected X v X X X v

The > Expected value for Seqnum implies that the number is larger than the expected value but smaller than the receive

window, thus falling within the range of acceptable seqnum.

renders complete desynchronization quite difficult. The host
that receives response packets, QNG in the case of MSNP,
would accept them and pass them to the application. Any
attempt to elicit a response to fill a gap in seqnum (caused
by a malicious packet) would increase the acknum of the
receiving host, and thus fail.

6. CONCLUSION

By exploiting a combination of the innocuous features of
the transport and application layers and by taking advan-
tage of the lack of confidentiality and integrity protection
at either layer, application-based TCP hijacking (ABTH)
offers an elegant way of attacking certain application proto-
cols. Sending commands to both hosts to provoke responses
allows an attacker to create a gap in TCP sequence num-
bers of a size exactly large enough for the injection of a
spoofed command. We presented a proof of the ABTH con-
cept by successfully applying it to attack Windows Live Mes-
senger, Microsoft’s popular instant messaging application,
which uses the Microsoft Notification Protocol (MSNP).

While some protocols, such as MSNP, were designed to
suit flexible environments, as the environment evolved, these
features have become subtle vulnerabilities. Although hard-
ware Ethernet equipment has been updated to obstruct lower
level attacks (e.g., ARP poisoning), the realm of attacks
is reaching beyond the protection capabilities of network
devices. In environments that provide a common physical
communication medium, such as hubbed networks and cof-
fee shops that offer unencrypted WiFi service, ABTH poses
a threat. Application protocols vulnerable to ABTH, such
as MSNP, were not designed to offer secure communication
channels. As such, it is imperative that, as protocols become
more widely adopted, they are improved upon and revised
to accommodate their broadening uses.

7. REFERENCES

[1] AOL’s Third Annual Instant Messager Trends Survey.
Available at aim.com/survey.

[2] MSN Messenger Encryption and Security Software.
Available at
secway.fr /us/products/simplitemsn /home.php.

[3] Pidgin, the Universal IM Client. Available at
pidgin.im.

[4] Unofficial MSN Protocol Documentation, June 2007.
Available at msnpiki.msnfanatic.com/index.php.

[5] Windows Live Messenger Ads Reach Millions of
Consumers, 2008. Available at
advertising.microsoft.com/windows-live-messenger.

[6] 1. Dubrawsky. Safe Layer 2 Security In-Depth. White
paper, Cisco Systems, Inc., 2004.

[7] T. Fout. Inside Windows Messenger - How It
Communicates, October 2001. Available at
technet.microsoft.com/en-us/library /bb457041.aspx.

[8] M. Gregg. Hack the Stack: Using Snort and Ethereal
to Master the 8 Layers of an Insecure Network.
Syngress, October 2006.

[9] B. Harris and R. Hunt. TCP/IP Security Threats and
Attack Methods. Computer Communications,
22(10):885-897, June 1991.

[10] L. Joncheray. A simple active attack against TCP. In
SSYM’95: Proceedings of the 5th conference on
USENIX UNIX Security Symposium, pages 2-2,
Berkeley, CA, USA, 1995. USENIX Association.

[11] K. Lam, D. LeBlanc, and B. Smith. Theft on the Web:
Prevent Session Hijacking, 2005. Available at
technet.microsoft.com/en-us/magazine/cc160809.aspx.

[12] M. Mintz and A. Sayers. MSN Messenger Protocol,
December 2003. Available at
hypothetic.org/docs/msn/index.php.

[13] P. Piccard, B. Baskin, and G. Spillman. Securing IM
and P2P Applications for the Enterprise. Syngress,
May 2005.

[14] J. Postel. Transmission Control Protocol. RFC 793
(Standard), September 1981. Updated by RFCs 1122,
3168. Available at ietf.org/rfc/rfc793.txt.

[15] R. Spangler. Packet Sniffing on Layer 2 Switched
Local Area Networks, December 2003. Available at
packetwatch.net /documents/papers/layer2sniffing. pdf.

[16] M. Stamp. Information Security: Principles and
Practice. Wiley-Interscience, October 2005.

[17] S. J. Templeton and K. Levitt. Detecting Spoofed
Packets. In DARPA Information Survivability
Conference and Ezxposition, volume 1, pages 164175,
April 2003.

[18] C. Torre. Windows Live Messenger - What. How.
Why. Available at
channel9.msdn.com/Showpost.aspx?postid=215459.

[19] R. Y. Zaghal and J. I. Khan. EFSM/SDL modeling of
the original TCP standard (RFC793) and the
Congestion Control Mechanism of TCP Reno.
Available at
http://www.medianet.kent.edu/techreports/TR2005-
07-22-tcp-EFSM.pdf.

