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A b s t r a c t :  

o o  

Formal Laurent-Puisieux series (LPS) of the form ~ akz kl" are important in calculus and complex 
k=ke 

analysis. In some Computer Algebra Systems (CASs) it is possible to define an LPS by direct or 
recursive definition of its coefficients. Since some operations cannot be directly supported within the 
LPS domain, some systems generally convert LPS to finite truncated LPS for operations such as ad- 
dition, multiplication, division, inversion and formal substitution. This results in a substantial loss of 
information. Since a goal of Computer Algebra is - -  in contrast to numerical programming-- to work 
with formal objects and preserve such symbolic information, CAS should be able to use LPS when 

possible. 
There is a one-to-one correspondence between formal power series with positive radius of convergence 
and corresponding analytic functions. It should be possible to automate conversion between these 
forms. Among CASs only MACSYMA [5] provides a procedure powerseries to calculate LPS from 
analytic expressions in certain special cases, but this is rather limited. 
In [2]-[4] we gave an algorithmic approach for computing an LPS for a very rich family of functions. 
It covers e.g. a high percentage of the power series that are listed in the special series dictionary [I]. 
The algorithm has been implemented by the author and A. Rennoch in the CAS MATHEMATICA [7], 
and by D. Gruntz in MAPLE [6]. 
In this note we present some example results of our MATIIEMATICA implementation which give insight 

in the underlying algorithmic procedure. 

1 The algorithm 

I n  [2]-[4] three types of functions are covered by an algorithmic procedure for the conversion into 
o o  

their representing La.urent-Puisieux series (LPS) ~ akz k/'~ (ko 6 2~) at the origin: functions of 
k=ko 

rational type which are rational, or have a rational derivative of some order, functions of exp-like 
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type which satisfy a homogeneous linear differential equation (DE) with constant coefficients, and 
functions of hypergeometric type whose definition is given below. 

The most interesting case are the functions of hypergeometric type as almost all transcendental 
elementary functions like exp x, sin x, cos x, arcsin x, arctan x, and many others are of that  type. 

An LPS F = ~ akx kin (ko E 2~) as well as its corresponding function f is called to be of 
k~..ko 

hypergeometric type if it has a positive radius of convergence, and if its coefficients ak satisfy a 
recurrence equation (RE) of the form 

ak+m = R(k) ak fo rk_>ko  (1) 

ak = Ak f o r k = k 0 ,  k 0 ÷ l  . . . . .  k 0 + m - 1  

for some m G IN, Ak e C (k = k0 ÷ 1,k0 -t- 2 , . . . , k 0  ÷ m - 1), Ak0 E C \ {0}, and some rational 
function R. The number m is then called the symmetry number of (the given representation of) F. 
A RE of type (1) is also called to be of hypergeometric type. 

We want to emphasize that the above terminology of functions of hypergeometric type is def- 
initely more general than the terminology of generalized hypergeometric functions. The function 
sin x e.g. is no t  a generalized hypergeometric function as obviously no RE of the type (1) holds for 
its series coefficients with m = 1. So sin x is not of hypergeometric type with symmetry number 1; 
it is, however, of hypergeometric type with symmetry number 2. A more difficult example of the 
same kind is the function e a r c s i n x  which is neither even nor odd, and nevertheless turns out to be 
of hypergeometric type with symmetry number 2, too, as we shall see later. 

In ([2], Lemma 2.1, and Theorem 8.1) we gave a list of transformations on LPS that  preserve 
the hypergeometric type. 

L e m m a  Let F be an LPS of hypergeometric type. Then 

(a) xJF (j G IN), (b) F/x  j ( j  E ~N), (c) F(Ax)  (A E C) ,  

F (xq ~) (p, q e ~l) , (e) e ( x )  ~ F ( - x )  , (f) F ' ,  (d) 

are of hypergeometric type, too. If a-1 = 0, then also 

(g) f F is of hypergeometric type. 

It is essential for the development of our algorithm that functions of hypergeometric type satisfy a 
simple differential equation, see ([2], Theorems 2.1, and 8.1). 

T h e o r e m  Each LPS of hypergeometric type satisfies a homogeneous linear differential equation 
with polynomial coefficients. 

The following algorithm for a function call PowerSer±es I f , x , 0 ]  corresponding to the conversion 
of the function f into its representing LPS with respect to the variable x was introduced in ([2], 
Algorithm 3.1). 

A l g o r i t h m  

(1) R a t i o n a l  f u n c t i o n s  
If f is rational in x, then use the r a t i ona l  a l g o r i t h m  (see e.g. [2], Section 4). 

(2) F i n d  a h o m o g e n e o u s  l inear  d i f fe ren t ia l  e q u a t i o n  for f w i t h  p o l y n o m i a l  coeff ic ients  
(for details, see [2], Section 5). 
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(a) Fix a number Nmax E ~ ,  the maximal order of the differential equation searched for; a 
suitable value should be Nma,, := 4. 

(b) Set N := 1. 

(c) Calculate f(g);  e i the r ,  if the derivative f(g) is rational, apply the r a t i ona l  a lgo r i thm,  
and integrate; 

(d) or  find a homogeneous linear differential equation with polynomial coefficients for f of 
order N 

N 

pj I(j) = 0 
j=O 

with polynomials pj (j = 1 , . . . ,  N ) i n  the variable x. 

(e) If (d) was not successfifl, then increase N by one, and go back to (c), until N = Nmax. 

(3) F ind  the  c o r r e s p o n d i n g  r e c u r r e n c e  e q u a t i o n  (see [2], Section 6). 
Suppose you found a homogeneous linear differential equation with polynomial coefficients for 
f in step (2), then transfer it into a recurrence equation for the coefficients a,~. The recurrence 
equation is then of the special type 

M 

~_, Pja.+j = 0 (2) 
j=O 

with polynomials Pj (j = 0 , . . . ,  M) in the variable n, and M E IN. 

(4) T y p e  of  r e c u r r e n c e  e q u a t i o n  (see [2], Section 7). 
Determine the type of the recurrence equation according to the following fist. 

(a) If the RE (2) contains only two summands then f is of hypergeometric type, and an ex- 
plicit formula for the coefficients can be found by the hypergeometric coefficient formula 
(see e.g. [2], equation (2.2)), and some initial conditions. 

(b) If the DE has constant coefficients (cj e C (j = O,. . . ,Q))  

Q 
ejcJ  = 0 ,  

j=O 

then f is of exp-like type. In this case the substitution b,~ := n!.a,, leads to the recurrence 
equation 

Q 

E ejbn+j ---- O, 
j=O 

which has the same constant coefficients as the differential equation, and is solved by a 
known algebraic scheme using the first Q initial coefficients, (see e.g. [2], Section 7). 

(c) If the recurrence equation is none of the above types, try to solve it by other known 
recurrence equation solvers. 

The above algorithm has been implemented by the author and A. Rennoch in MATHEMATICA [7], 
and by D. Gruntz in MAPLE [6]. In the preceding sections we present some example results of our 
MATIIEMATICA implementation [3] which give insight in the underlying algorithmic procedure. 
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2 Examples  of  formal Laurent series 

In this section we present  some of  the results in the form of  direct  MATttEMATICA o u tp u t .  For 
didact ical  purposes ,  our  MATHEMATICA implemen ta t ion  informs a b o u t  the  in t e rmed ia te  calcula- 

tions. 
First  we consider power  series of  hypergeonmtr ic  type.  T h e  exponen t ia l  funct ion  is a very  easy 

example.  

In[l]:= PowerSeries[E'x,x,O] 

ps-info: I step(s) for DE: 

-~[x] + f'Ex] = 0 

ps-info: RE for all n >= O: 

a In] 
a[1 + n] ...... 

I +n 

ps-info: function of hypergeometric type 

ps-info: for all n <= -I: a[n]=0 

ps-info: a[0] = 1 

k 

x 

0ut[l]= Sum[--, {k, 0, Infinity}] 

k~ 

Note that the division by x m (m 6 IN) leads to a different DE, but the corresponding RE is similar. 

In [2] := PowerSeries [E'x/x'3,x,O] 

ps-info: 1 step(s) for DE: 

(3 - x) :f[x] + x : f ' [x ]  = o 
ps-info: RE for all n >= -3: 

a [n] 
a[l + n] = 

4+ n 

ps-info: :function of hypergeometric type 

ps-info: for all n <= -4:a[n]=0 

ps-info: a[0] = I 

-3+k 

x 

Out [2] = Sum [ 
k~ 

, {k, O, Infinity}] 

Also, if we subs t i t u t e  x by x 4, e.g., a to ta l ly  different D E  is found,  the s y m m e t r y  n u m b e r  increases 
to 4, and we get the o u t p u t  

In [ 3 ] : =  P o w e r S e r i e s [ x * E x p [ x ' 4 ] , x , O ]  
ps-info: 1 step(s) for DE: 

4 

( - 1  - 4 x ) : f [ x ]  + x : f ' [ x ]  = 0 

ps-info: RE for all n >= -2: 

4 a[n] 

a f4 + n] = 

3 +n 

ps-info: function of hyperEeometric type 
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p s - i n f o :  a[0] = 0, a[1] = 1, a[2] = 0, a[3] = 0, a[4] = 0 
l + 4 k  

x 

0ut[3]= Sum[ , {k, 0, Infinity}] 

k~ 

Note that if the RE has symmetry number m then the resulting LPS is decomposed of m shifted 
series. In the given case three of these four summands vanish by the calculated initial values. This 
is not the case for the LPS of sin(x + y), whose resulting RE has symmetry number 2, and we get 
a decomposition in two shifted series 

In [4] : = PowerSeries [Sin [x+y], x, 0] 

ps-info: 2 step(s) for DE: 

f [ x ]  + f " [ x ]  = 0 

ps-info: RE for all n >= O: 

a [n] 
a [2  + n] = - (  ) 

(1 + n) (2 + n) 

ps-info: function of hypergeometric type 

ps-info: a[O] = Sin[y], a[l] = Cos[y] 

k 1 +2k k 2k 

(-1) x Cos[y] (-I) x Sin[y] 

Out[4]= Sum[, , {k, O, Infinity}] + Sum[, 

(1 + 2 k)!  (2 k)~ 

obviously corresponding to the addition formula sin(z + y) = sin z cos y + cos x sin y. 

The  following are some functions of hypergeometr ic  type some of which may be unexpected.  

In [5] : = PowerSer ies  [ArcSin [x] ,  x, O] 
p s - i n f o :  2 s t e p ( s )  f o r  DE: 

2 
x f ' [ x ]  + ( - 1  + x ) f " [ x ]  = 0 

ps-info: RE for all n >= O: 

2 

n a[n] 

a[2 + n] = 

(1 + n) (2 + n) 

ps-info: function of hypergeometric type 

ps-info: a[0] = 0, a[l] = 1, a[2] = 0 

1 k 
(-) 

4 

Out[S]= Sum[ 

k! 

1 +2k 2 

x (2  k) ! 

2 
(1 + 2 k)!  

, {k, O, I n f i n i t y } ]  

, {k, O, Infinity}] 

Tlle inverse sine function is an example of a function of hypergeometr ic  type whoses square is of 
hypergeometr ic  type,  too. 

In [6] : = PowerSer ies  [ArcSin [x] "2, x, O] 
p s - i n f o :  3 s t e p ( s )  f o r  DE: 
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2 

f ' [ x ]  + 3 x f " [ x ]  + ( - 1  + x ) f 

ps-info: RE for all n >= i: 

2 

n a[n] 

a[2 + n] : 

(1 + n) (2 + n) 

ps-info: function of hypergeometric type 

ps-info: a[l] : O, a[2] = I, a[3] = 0 

k 2 + 2 k  2 
4 x k!  

Out [6] = Sum[, 
(1 + k) (1 + 2 k)! 

(3) 
[x] = o 

, {k, O, Infinity}] 

Other example functions of hypergeometric type with squares of hypergeometric type are e ~, sin x, 

cos z, sinh x (whose square has symmetry  number 4), cosh x, Bessel J x, BesselI x, as well as the 
next two examples one of which was mentioned before. 

I n [ Z ]  : :  P o w e r S e r i e s  [ E x p [ A r c S i n [ x ] ]  , x ,O]  
p s - i n f o :  2 s t e p ( s )  f o r  DE: 

2 
f[x] + x f ' [ x ]  + ( - I  + x ) f " [ x ]  : 0 

ps-info: RE for all n >: O: 

" 2 

(I + n ) a[n] 

a[2 + n] = 

(I + n) (2 + n) 

ps-info: function of hypergeometric type 

ps-info: a[O] : I, a[1] : I 

k 2k 5 2 

4 x Product[- - 2 j + j , {j, k}] 

4 

Out [ z ] :  Sum[, 
(2 k) 

, {k, O, Infinity}] + 

> Sum[ 

k I+2k I 2 

4 x Product[- - j + j , {j, k}] 

2 

(I + 2 k)! 

, {k, O, Infinity}] 

In[8] := Po.erSeries [Exp[ArcSinh[x]] ,x,O] 

ps-info: 2 step(s) for DE: 

2 

- f [ x ]  + x f ' [ x ]  + ( I  + x ) f " [ x ]  : o 

ps-info: RE for all n >: O: 

(I - n) a[n] 

a[2 + n] = 

2 +n 

ps-info: function of hypergeometric type 

ps-info: a[O] = I, a[1] = I 
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1 k 2 k  
( - ( - ) )  x ( 2  k) !  

4 
Out [8]= x + Sum[ 

2 
(I - 2 k) k~ 

, {k, 0, InfiniZy}] 

B oth  are special cases of  (A = 1, and A = - i ,  x ~ ix) 

In [9] : = PowerSeries [ (x+Sqrt [l+x'2] ) "A, x, O] 

ps-info: 2 step(s) for DE: 

2 2 

-(A f [ x ] )  + x f ' [ x ]  + (1 + x ) f " [ x ]  = 0 
ps-info: KE for all n >= O: 

(A - n) (A + n) a[n] 

a[2 + n] = 

(1 + n) ( 2  + n) 
p s - i n f o :  f u n c t i o n  of h y p e r g e o m e t r i c  t y p e  
p s - i n f o :  a[0]  = 1, a[1]  = A 

k 2 k -A 

( - 4 )  x 
A 

Pochhammer [--, k] Pochhammer [ - ,  k] 

2 2 

Out[9]= Sum[ , {k, O, Infinity}] + 

(2 k)~ 

k 

( - 4 )  
1 +2k I-A 1 + A 

A x Pochhammer[ ..... , k] Pochhammer[ ..... , k] 

2 2 

> Sum[ , {k, O, 

(1 + 2 k) !  
Infini~y}] 

Here P o c h h a m m e r [ a , k ]  denotes  the  Pochhammer symbol (or  shifted factorial) defined by 

1 if k = 0  
Pochh n er[a, = (a)k : =  

a . ( a + l ) . . . ( a + k - 1 )  i l k  6 IN 

Note  tha t  ~ .  = ( a + k - l ) k  . Here are more  examples .  

In[t0]:= 

ps-info: 

ps-info: 

ps-info: 

ps-info: 

PowerSeries [E- (x'2) *Err [x] , x, O] 

2 step(s) for DE: 

-2 f[x] - 2 x f'[x] + ~''[x] : 0 

KE for all n >= O: 

2 a[n] 

a [ 2  + n] = 

2 + n 

function of hypergeometric type 

2 

a[O] = O, a[1] = , a[2] = 0 

Sqrt [Pi] 
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k 1 + 2 k  

2 4  x k! 

Out [I0] : Sum[ 

Sqrt[Pi] (I + 2 k)! 

, {k, O, Infinity}] 

In[ll]:= PowerSeries[E'x-2 E'(-x/2) Cos[Sqrt[3]x/2-Pi/3],x,O] 

ps-info: 3 step(s) for DE: 

(3) 
-f[x] + f [x] : o 

ps-info: RE for all n >= O: 

a[n] 
a[3 + n] = 

(1 + n) (2 + n) (3 + n) 
p s - i n f o :  f u n c t i o n  o f  h y p e r g e o m e t r i c  t y p e  

3 

ps-info: a[O] : O, all] = O, a[2] =-, a[3] = O, a[4] = 0 

2 

2 +3k 

9 (1 + k)  x 

Out[ll]: Sum[ , {k, O, Infinity}] 

(3 + 3 k)! 

In[12]:: PowerSeries[Integrate[Exp[-A'2 t'2] Cos[2 x t],{t,O,Infinity}],x,O] 
ps-info: I step(s) for DE: 

2 

2 x f i x ]  + A f ' [ x ]  = 0 

ps-info: RE for all n >= -i: 

-2 aCn] 
a [ 2  + n]  = 

2 

A (2 + n) 

ps-info: function of hypergeometric type 

Sqrt [Pi] Abs[A] 

ps-info: a[O] = 

2 
2A 

ps-info: a[l] : 0 

-2k 2k 

(-A ) Sqrt[Pi] x Abs[A] 

Out [12]  : Sum[. 

2 
2 A  k! 

, {k, O, Infinity}] 

By the use of  the  a l g o r i t h m  we discovered a mispr in t  in [1]. We have  

In[13]:= PowerSeries[4/x*Integrate[Exp[t'2],Erf[t],{t,O,Sqrt[x]/2}],x,O] 
ps-info: 3 step(s) for DE: 

2 2 

-f + (12 - 3 x) f'Cx] + (18 x - x ) f''[x] + 4 x f'''[x] = 0 
ps-info: RE for all n >= O: 
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(1  + n )  a [ n ]  

a [1  + n] = 
2 (2 + n) ( 3 +  2 n) 

n 
p a - i n f o :  RE m o d i f i e d  t o  (n  -> - )  

2 
ps-info: RE for all n >= -I: 

(2 + n) a[n] 

a[2 + n] = 

2 (3 + n)  (4 + n)  

p s - i n f o :  f u n c t i o n  of h y p e r g e o m e t r i c  type 

1 
ps-info: a[O] = , a[l] = 0 

Sqrt [Pi] 

k 

x k~ 

Out [ 1 3 ] :  Sum[--- 

Sqrt[Pi] (1 + k) (1 + 2 k)! 

, {k, O, Infinity}] 

so t h a t  in f o r m u l a  (5 .18 .3 )  o f  [1] a f ac to r i a l  s ign is mis s ing ,  a n d  it s h o u l d  r ead  as 

= - - = - e t2erf  t dt 

k=l k 

t2 (in [1] the error  funct ion  is defined by err z = f~  e -  dr, and is not  normal ized by a fac tor  2 / v / ~  ). 
Next  a re  two  e x a m p l e s  o f  exp- l ike  t y p e  

In [143 : = PowerSeries [Sin [x] *Exp Ix] , x, O] 

ps-info: 2 step(s) for DE: 

2 f [ x ]  - 2 f ' [ x ]  + f " [ x ]  : o 

ps-info: RE for all n >= O: 

2 (-a[n]+ a[l + n] + n a[l + n]) 

a[2 + n] : 

(1 + n) (2 + n) 
ps-info: DE has constant coefficients 

ps-info: modified RE (b[n] = ni a[n]): 

2 bin] - 2 b[l + n] + b[2 + n] : 0 

k/2 k k Pi 

2 x Sin[ .... ] 

4 

Out[14]= Sum[ ................. , {k, O, Infinity}] 

k~ 

In [15] : = PowerSeries [Cos [x] *Exp [2x] , x, O] 

ps-info: 2 step(s) for DE: 

s fix] - 4 f'[x] + f"[x] = 0 

ps-info: RE for all n >= O: 

-5 a[n] + 4 a[1 + n] + 4 n a[1 + n] 

a[2 + n] = 

(I + n) (2 + n) 
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ps-info: DE has constant coefficients 

ps-info: modified RE (b[n] = n! a[n]): 

5 b[n] - 4 b[1 + n] + b[2 + n] = 0 

k/2 k 1 
5 x Cos[k ArcTan[-]] 

2 

Out[15]= Sum[ , {k, O, Infinity}] 

k~ 

a n d  f ina l ly  we give s o m e  e x a n l p l e s  of r a t i o n a l  t y p e  

In[16]:= PowerSeries[I/(x-x^3),x,O] 

1 

ps-info: rational algorithm applied ( ....... 

3 

k k 
1 (1 - ( - 1 ) )  x 

OutC16]= - + Sum[ 
x 2 

X - X 

-1 

2 ( -1  + x) 

, {k, O, Infinity}] 

1 
+ 

X 

I 

2 (1 + x) 

In [17]:= PowerSeries[1/(x'2+3x+2),x,O] 

ps-info: rational algorithm applied ( 

1 k 
( - ( - ) )  

k 2 k 
Out[17]= Sum[((-l) ) x , 

2 

1 1 1 

2 
2 +  3 x + x  

{k, O, Infinity}] 

l + x  2 + x  

T h e  fo l lowing  is the  g e n e r a t i n g  f u n c t i o n  f ( x )  = 

def ined  by the  r e c u r r e n c e  

o o  

a k x  k of the  F i b o n a c c i  n u m b e r s  an t h a t  are  
k=O 

T h e  call  

a n + l  ---- an  + a n - I  , ao = 0 , a 1 = 1 . 

In[18] := PowerSeries[x/(1-x-x'2),x,O] 

X 

ps-info: rational algorithm applied ( 

2 
1 - X - X 

-S + Sqrt[5] 5 + Sqrt[5] 

-(-I + Sqrt[5]) I + Sqrt[5] 

10 ( + x) 10 ( + x) 

2 2 
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-2 k -10 k k 
( - (  ) + (  ) ) x  

1 + Sqrt[5] 3/2 
5 - 5 

0ut  [18]= Sum[ 
Sqr¢ [5] 

, {k, O, Infinity}] 

produces  a well-known closed fo rmu la  for the F ibonacc i  numbers .  

3 Logarithmic singularities and Puis ieux series 

T h e  a lgor i thm covers func t ions  which co r respond  to h y p e rg eo m e t r i c  t ype  L a u r e n t - P u i s i e u x  series 
r a t h e r  t h a n  jus t  Lauren t  series. We give some examples .  

In [19]:= PowerSeries[Sin[Sqrt[x]],x,O] 

ps-info: 2 step(s) for DE: 

f[x] + 2 f'[x] + 4 x f"[x] : 0 

1 

ps-info: RE for all n >= -: 

2 

- a [ n ]  

a [ 1  + n ]  = 

2 (1 + n) (1 + 2 n) 
n 

p s - i n f o :  RE m o d i f i e d  to  (n -> - )  
2 

ps-info: RE for all n >= O: 

a[n] 

a[2 + n] : -( ) 

(1 + n) (2 + n). 

p s - i n f o :  f u n c t i o n  of  h y p e r g e o m e t r i c  t y p e  
p s - i n f o :  a[O] = O, a[1]  = 1, a[2]  = 0 

k 1/2 + k 
( - 1 )  x 

0ut[19] = Sum[. , {k, O, Infinity}] 

(I + 2 k)! 

Note  t ha t ,  again,  the DE for sin ~ is r a t h e r  different fl'om tha t  for sin x. 

In[20]:= PowerSeries[((l+Sqrt[x])/x)'(I/3),x,O] 

ps-info: 2 step(s) for DE: 

2 2 

(I + 2 x) f[x] + (-21 x + 33 x ) f'[x] + 18 (-I + x) x 

I 

ps-info: RE for all n >= -: 

6 

(2 + 3 n) (I + 6 n) a[n] 

a[l + n] = 

(4 + 3 n) (S + 6 n) 

f"[x] = 0 

- 3 0  - 



n 

ps-info: RE modified to (n -> -) 

6 

ps-info: RE for all n >= -4: 

(I + n )  (4  + n )  a [ n ]  

a IS  + n ]  = 

(5 + n) (8 + n) 

ps-info: function of hypergeometric type 

ps-info: a[O] = 1, 

I 

a[1] = o, a[2] = o, a[3] = -, a[4] = o, a[S] = 0 

3 

-(I/3) + k 

x 

Out [20 ]=  Sum[ 

I 

Pochh&mmer[-(-), 2 k] 

3 

(2  k)! 

, {k, O, Infinity}] + 

1 / 6  + k 2 
x P o c h h a a u u e r [ - ,  2 k]  

3 

> Sum[ 
3 ( 1 + 2 k ) !  

, {k, O, Infinity}] 

The algorithm covers moreover the case of logarithmic singularities which occur if the derivative of 
some order of f corresponds to a series of hypergeometric  type. An example of that  kind is 

In [21]:= PowerSeries[ArcSech[x],x,O] 

ps-info: 2 step(s) for DE: 

2 3 

( - 1  + 2 x ) f ' [ x ]  + ( - x  + x ) f " [ x ]  = 0 

ps-info: RE for all n >= -I: 

n (I + n) a[n] 

a[2 + n] = 

2 

(2 + n) 

ps-info: function of hypergeometric type 

1 

ps-info: working with f' = -( ) 

-2 2 

Sqr%[-I + x ] x 
ps-info: RE for all n >= -2: 

(2  + n) a[n] 

a[2 + n] = 

3 + n 

ps-info: a[O] =-I, all] = 0 

Ik 2 k 

- ( ( - )  x (2 k) ) 
4 

Out [21 ]=  Log[2]  - Log [ x ]  + Sum[ . {k, I, Infinity}] 
2 

2 kk! 

- 31 - 
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