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ABSTRACT
In this paper, we discuss a curious relationship between Co-
operative Coevolutionary Algorithms (CCEAs) and univari-
ate Estimation of Distribution Algorithms (EDAs). Specif-
ically, the distribution model for univariate EDAs is equiv-
alent to the infinite population EGT model common in the
analysis of CCEAs. This relationship may permit cross-
pollination between these two disparate fields. As an exam-
ple, we derive a new EDA based on a known CCEA from
the literature, and provide some preliminary experimental
analysis of the algorithm.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; G.1.6 [Optimization]: Global
Optimization

General Terms
Theory, Algorithms

Keywords
Cooperative Coevolution, Estimation of Distribution Algo-
rithms, Evolutionary Game Theory

1. INTRODUCTION
We describe a relationship between two seemingly un-

related corners of the evolutionary computation commu-
nity: Cooperative Coevolutionary Algorithms (CCEAs) and
univariate Estimation of Distribution Algorithms (EDAs).
These two families of algorithms were independently pro-
posed and developed. Cooperative coevolution has emerged
as a mechanism to simplify the search space by projecting
it into multiple smaller subspaces, each searched by a sep-
arate population; whereas EDAs have often been proposed
as competitors with “traditional” sample-based EAs, by re-
placing the sample population with a distribution estimate.
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In particular, univariate Estimation of Distribution Algo-
rithms represent the population distribution as a collection
of separate per-gene distributions.

As it turns out, these algorithms have a strong but non-
intuitive relationship. The per-gene distributions of uni-
variate EDAs are not only closely related to the multiple
populations of CCEAs, but such distributions are in fact
equivalent to the infinite-sized “populations” used in a very
common theoretical model for CCEAs, one based on Evolu-
tionary Game Theory (EGT). This relationship promises to
yield cross-pollination between the two fields: CCEAs have
lately built a strong theoretical formulation; and EDAs have
both good theory and efficient algorithms. We hope that this
paper kindles discussion between the two fields.

We begin the paper by first discussing CCEAs and rele-
vant theory. We then discuss univariate EDAs and outline
one well-known univariate EDA algorithm as an example.
We then formally show the relationship between the two.
Based on this relationship, we offer an example of direct
transfer from one area to the other: namely, we introduce a
new theoretical univariate EDA formulation derived from a
CCEA EGT model. We prove that the algorithm can con-
verge to the optimum with any desired probability, though
it is not efficient compared to existing EDA algorithms. We
also provide an actual EDA algorithm which is an approxi-
mation of the theoretical version.

2. COOPERATIVE COEVOLUTION
Coevolutionary algorithms generally assign fitness to an

individual not based on an absolute measure but rather on
the interaction of that individual with other individuals in
the evolutionary system. The hallmark of a coevolutionary
algorithm is that the relative order of any two individuals
may change depending on the presence of those other indi-
viduals in the system.

In this paper, we focus on n-population cooperative ar-
rangements, popularly known as Cooperative Coevolution-
ary Algorithms (CCEAs) [13, 14]. In CCEAs, the solution
space is broken into some n sub-solution spaces, and each
sub-solution space is assigned a population. An individual
is assessed by grouping it with individuals from the other
populations to form a complete solution; the quality of this
solution is then incorporated into the individual’s fitness.
Cooperative coevolutionary algorithms can be generational
or steady-state, and often take one of two forms: serial ver-
sus parallel algorithms. One common parallel generational
CCEA may be described as:



Algorithm 1: Parallel Generational CCEA

loop
for each population p ∈ P do

for each individual i ∈ p do
Evaluate(i, p, P )

for each population p ∈ P do
Breed whole population p

Much of cooperative coevolution research has focused on
the specifics of the Evaluate(i, p, P ) function. Choice of eval-
uation procedure in CCEAs is known to lead to pathologies.
Certain of these have been studied at length using a the-
oretical model for CCEAs which, while somewhat different
from actual CCEAs, provides insight into their dynamics.
We discuss this model next.

2.1 The Evolutionary Game Theory Infinite
Population Model

Analyses of cooperative (and other) coevolution will often
make use of an infinite population formulation derived from
evolutionary game theory (EGT). This formulation usually
assumes that each population is infinite in size, but is drawn
from a finite set of genotypes. Much EGT work in cooper-
ative coevolution has focused on two populations. The first
population is represented by a vector x where xi indicates
the proportion of genotype i in the population. The sec-
ond population is represented by the vector y. There also
exists a matrix A whose elements aij represent the reward
when genotypes i (from the first population) and j (from the
second population) are combined to form a joint solution.

One common EGT model breaks the evolutionary process
into two parts. First, the fitness of each individual is as-
sessed. We will use the vector u to represent the fitness of
the genotypes in the first population such that each geno-
type i has fitness ui. Likewise, we will use w for the second
population. Wiegand [19] defined the fitness of a genotype
as the average reward received when pairing it with every
member of the other population. That is, at time t:
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Second, we then update the genotype proportions for the
next generation (time t+ 1) using a formulation that simu-
lates fitness-proportional selection:

x
(t+1)
i = x

(t)
i

 
u

(t)
iP

k xku
(t)
k

!
y
(t+1)
j = y

(t)
j

 
w

(t)
jP

k ykw
(t)
k

!
(2)

Wiegand found that this “complete mixing” model could
converge towards local suboptima surrounding Nash Equi-
libria in the joint space: if a suboptimum basin were large
and broad, the system would collect at its peak rather than
at another taller but narrower peak centered at a global op-
timum. This was largely because the fitness procedure aver-
aged the performance of an individual over all individuals in
the corresponding population, without regard to how good
collaborators those corresponding individuals were. Wie-
gand termed this pathology relative overgeneralization.

Later research has shown that the system will converge
if we change the fitness assessment procedure. One solu-
tion is to base the fitness of individuals in a population not
on average collaboration but rather on the maximum per-

formance over all collaborations. Following Panait [8] we
might change Equation 1 to:

u
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i
aij (3)

Panait provided a proof of convergence to the optimum [8]
using this in combination with tournament selection rather
than fitness-proportional selection, assuming that the opti-
mum is unique. Panait’s derivation of tournament selection
(of tournament size H) transformed Equation 2 to:
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This curious equation is a result of the order statistics
to compute the expected maximum over a set of size H.
In each subequation there are two terms raised to H each.
These compute the probability that, of a tournament of size
H, the winners (there may be ties) will include a genotype
whose fitness is the same as genotype i. The first term gives
the probability that all H tournament entrants will have a
fitness less than or equal to i’s fitness, and the second term
gives the probability that all will have a fitness less than
that of i. The denominators in each subequation compute
the probability that the first such winner is in fact i, as
opposed to other fitness-equivalent genotypes.

So far, these theoretical models are fairly divorced from
real-world CCEAs: the population is infinite; there is no
breeding, only selection; and the evaluation procedure in-
volves scanning across all possible collaborators. But this
situation may be improved somewhat. Panait et al. [10]
provided a weakened convergence proof for a more realis-
tic evaluation procedure: take the maximum performance
when paired N times with randomly chosen collaborators.
The proof shows that for any probability ε, there exists an
Nε such that given Nε evaluations, the algorithm is guar-
anteed to achieve convergence to the global optimum with
probability 1− ε, when coupled with tournament selection.

The maximum-of-N evaluation procedure, which replaces
Equations 1 or 3, is:
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Note the similarity to Equation 4. This equation is also an
order statistic to compute the maximum over N evaluations.

How large should N be? In a real scenario, N is effectively
bounded by the size of the collaborating population(s). But
even this upper bound is problematic: large values of N are
more accurate and more likely to converge to the optimum;
but may require more total number of evaluations than is
realistic given the evaluation budget. Thus recent empir-



ical work [2, 9] has focused on reducing the total number
of evaluations by identifying an archive of individuals from
the collaborating population(s) which provide as good an as-
sessment as testing with the entire collaborating population
would provide. As it turns out, this archive size can be very
small, resulting in a significant reduction in evaluations.

3. UNIVARIATE ESTIMATION OF
DISTRIBUTION ALGORITHMS

Estimation of Distribution Algorithms (EDAs) replace the
evolutionary computation population with a statistical dis-
tribution of an infinite population. Most such algorithms
iteratively generate samples (individuals) from the distribu-
tion, test those samples, and then update the distribution
so that high-fitness samples are generated more often in the
future and low-fitness samples are generated less often.

An important design decision for EDAs is to select a repre-
sentation for the probability distribution. An obvious prob-
lem is that the joint distribution over a typical solution space
is of high dimensionality and complexity. Early on, a com-
mon approach was to break the joint distribution into sepa-
rate distributions per-gene. That is, we assume an individ-
ual consists of a set of genes, and for each gene, we maintain
a distribution of probabilities of the possible settings (alleles)
for that gene. In the simplest case, if the individual were a
Boolean vector, then each gene distribution would be repre-
sented by a single real value [0, 1] indicating the probability
of setting the gene to a 1 instead of 0. If the individual were
instead a vector of floating-point numbers, each gene may
be represented as a Gaussian distribution over the range of
possible values. Common univariate EDAs include the Uni-
variate Marginal Distribution Algorithm (UMDA) [4], the
Compact Genetic Algorithm (CGA) [15], and Population-
Based Incremental Learning (PBIL) [1]. To illustrate, here
is the pseudocode for PBIL, one of several such EDAs:

Algorithm 2: PBIL

loop
for q from 1 to Q do

Create an individual iq by choosing an allele at
random from distribution Dg for each gene g

Evaluate(iq)

Select the best R individuals from among i1...iq
for each gene g do

Let Ng be the distribution of alleles for g among
the R best individuals

Update gene distribution Dg ← (1− α)Dg + αNg

By pushing the joint distribution into individual marginal
distributions, univariate EDAs discard information that is
normally available to a more traditional evolutionary algo-
rithm. Such information is important to solve non-separable
problems. In univariate EDAs, each distribution is being up-
dated based solely on its performance, without consideration
of the other distributions with which it is being conjoined.
Non-separable problems require such consideration, as their
fitness is based on the nonlinear combination of various el-
ements. Recognizing this weakness, EDA designers have
attempted to create richer distributions involving more re-
lationships among the genes. Perhaps best known are vari-
ations of the Bayesian Optimization Algorithm (BOA) [12,
11], which attempt to use a Bayesian network to model the
entire joint space in a sparse manner.

Despite these difficulties, there has been some theoret-
ical work on convergence properties in univariate EDAs.
UMDA has been shown to converge to the optimum for sep-
arable problems [6], and for non-separable problems when
augmented with a simulated-annealing-like Boltzmann se-
lection [5, 7]. A theoretical infinite-population version of
UMDA has also been shown to converge to the optimum
[20, 21]. Rastegar and Hariri have shown convergence to
local optima for PBIL [17] and CGA [16].

4. EDAS AND THE EGT INFINITE
POPULATION MODEL OF CCEAS

While CCEAs in practice may have any number M >
1 of populations, previous theoretical work in CCEAs has
generally focused on the M = 2 case. We begin by extending
the model to any M > 1.

To do this, we define X to be the set of collaborating pop-
ulations {X1...XM}. We define pxi to be the proportion of
genotype i of populationXp. Next, we define Yp to be the set
of all possible tuples of genotypes chosen from all populations
other than Xp, that is, Yp = X1×...×Xp−1×Xp+1×...×XM .
Thus Yp consists of all possible collaborating tuples for mem-
bers of Xp. We define pyj to be the proportion of tuple j
from Yp. Finally, A is redefined such that its elements aij
define the reward obtained when genotype pxi from popu-
lation Xp is combined with the genotypes in tuple pyj ∈ Yp
(we omit indicating the p, as in paij , because it will always
be clear from context). Now we can expand Equation 5 to
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for each population Xp. Likewise Equation 4 expands to
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In Section 2.1, we discussed a proof of an ε-bounds on con-
vergence to the optimum in a two-population EGT CCEA
using the maximum-of-N -collaborators evaluation proce-
dure (Equation 3) in combination with tournament selection
(Equation 4). We extended this to the more general M -
population model described above. The theorem and proof
for this extension are described in Section 6.

Consider this more general result. CCEAs do not oper-
ate over a joint population but rather over a set of marginal
populations, each responsible for some portion of the joint
solution. In the EGT infinite population model of CCEAs,
these marginal populations are infinite in size — that is, they
are (in the general case) M > 1 distributions rather than
samples. Crucially, univariate EDAs do exactly the same
thing: they break the joint solution into some M > 1 pieces
(perhaps genes or clusters of genes), and each piece has a



marginal distribution over the possible forms that piece can
take. Though we are not used to viewing EDAs’ marginal
distributions as “infinite populations” in the CCEA sense,
that is what they are. The EGT framework used in CCEA
theory is not just an equivalent model for theoretical uni-
variate EDAs, it is a univariate EDA.

This implies that univariate EDAs and “real” (as opposed
to EGT) CCEAs are cousin algorithms. There are only two
significant differences between them. First, CCEAs repre-
sent their marginal distributions with samples (the individu-
als), whereas EDAs commonly represent their marginal dis-
tributions with tables, histograms, or parameterized distri-
butions (such as Gaussians). Second, because they have ac-
tual samples in their marginal distributions, CCEAs employ
EC-style breeding operators to update those samples.1

This connection between the two techniques may permit
some cross-pollination. For example, the CCEA community
has spent considerable energy to understand exactly why
CCEA models exhibit pathologies. This work may prove
fruitful in explaining similar issues in EDAs. Likewise, the
EDA community has generated efficient algorithms which
may improve on CCEA approaches. The EDA community
has also moved from univariate to richer representations of
the joint distribution: these might inform CCEAs as well.

This theorem suggests a new EDA algorithm, derived di-
rectly from the parallel generational CCEA algorithm (Al-
gorithm 1), with optimal convergence properties as shown
in the theorem. For each allele in each gene, the algorithm
repeatedly constructs N individuals using that allele, then
determines the maximum fitness among the N . In the theo-
retical model, this procedure is notionally iterated infinitely
and the expected maximum-of-N fitness is assessed. The
algorithm below is obviously an approximation as it uses
only a single sample rather than the expected value. Then
the distributions are adjusted to reflect tournament selec-
tion over the expected maximum allele fitnesses. We aug-
ment the theoretical algorithm with an optional PBIL-style
“folding in” of the new distribution, using a parameter α.
The algorithm, dubbed the Cooperative Estimation of Dis-
tribution Algorithm (CEDA), is:

Algorithm 3. CEDA

loop
for each gene g do

for each allele a ∈ g do
for n from 1...N do

Construct an individual i using gene g fixed
to a, and with other alleles selected at
random under the remaining gene
distributions.

Evaluate(i)

Fg,a ← max fitness over all N individuals
for each gene g do

Let Ng be the distribution of alleles for g resulting
from performing tournament selection of size H
over mean allele fitnesses F̄g,a∀a ∈ g (using
Equation 4).

Update gene distribution Dg ← (1− α)Dg + αNg

1We believe that standard one-population EAs may be
cousins with EDAs consisting of one joint distribution over
the whole space: and that such a joint-distribution EDA
may be equivalent to the infinite population EA models pop-
ularized by Vose [18].
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Figure 1: Mean best-so-far fitness versus number of
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bit MaxOnes problem where N = 1, N = 4, and
N = 16. Confidence intervals are omitted for clarity.

The algorithm is not particularly efficient: for each gene,
we construct and test multiple individuals to assess that
gene, but do not reuse their results to inform other gene
distributions. As a result, in this form, it would be expected
to require many more evaluations per round than PBIL,
CGA, and UMDA — but we offer it here as an example of
just how close CCEAs and univariate EDAs are.

4.1 Comparison and Results
This section presents some of the simulation results for

CEDA. All experiments were averaged over 50 runs and use
a tournament size of H = 2.

From the theorem in Section 6, we expect the probability
of convergence to the global optimum for the EGT model to
increase with number of collaborators. We likewise expect
to see a similar effect as we increase the number of collabora-
tors in CEDA. Figure 1 plots the convergence trajectory of
CEDA with 1, 4, and 16 collaborators on MaxOnes, using
the definition:

Definition 1. MaxOnes: {0, 1}n → R is defined as:
MaxOnes(x) =

Pn
i xi .

We observe that the solution quality improves as N in-
creases: without a sufficiently large value of N , CEDA con-
verges too rapidly, and ultimately prematurely, even on as
simple a problem as MaxOnes. The differences in means
shown are highly statistically significant: using an unknown-
variance 2-tailed t-test, all p− values are less than 10−15.

We then compared CEDA with one univariate EDA
(namely, PBIL) on the LeadingOnesBlocks problem, de-
fined as:

Definition 2. For n ∈ R and b ∈ {1, ..., n} so that
n/b ∈ N, LeadingOnesBlocksb : {0, 1}n → R is defined

as: LeadingOnesBlocksb(x) =
Pn/b
i=1

Qb·i
j=1 xj .

Figure 2 shows the results for the two, with H = 2, N =
8, α = 1 for CEDA, and PBIL set to 100 samples, with a
selection size of 10. CEDA clearly does not converge to the
optimum fitness. (Very highly statistically significant with
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evaluations for LeadingOnesBlocks problem, 100
bits, 5-bit blocks (so that the ideal fitness is 20).
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p < 10−65). Rather than dramatically increase the num-
ber of samples (N) in CEDA to achieve an optimal solution
quality, we chose instead to apply a probability update rule
(α < 1) that is similar to the one used in PBIL, thus only
gradually mixing in new values to the population distribu-
tions. Experiment suggests that a good value for CEDA is
α = 0.05. Figure 3 shows the results after applying α = 0.05
to CEDA with N = 8. Using a smaller learning rate in this
manner helps CEDA to achieve the optimal solution.

However, as the figures indicate, CEDA is still wasteful in
terms of the number of evaluations. In Section 4 we noted
that CEDA can be very inefficient as we construct and eval-
uate at least N unique individuals for every single allele, but
do not reuse our results to inform the distributions for the
other alleles. Figure 3 illustrates this problem.

The wastefulness of CEDA in terms of evaluations is bad
news in practice, since we have found that CEDA quickly
gets trapped in local optima on some problems when the
number of collaborators is insufficient. We’ve found similar
results on related test problems.

5. CONCLUSION
As it turns out, univariate EDAs and CCEAs are very

similar methods. The standard univariate EDA data model
is essentially identical to the CCEA infinite-population EGT
model. Given this, it is possible to transfer theory and algo-
rithms from CCEAs to EDAs and vice versa. As an example,
we have extended an existing CCEA theoretical result, orig-
inally for the 2-population CCEA case, to the M -population
case. This result shows that a given CCEA algorithm can be
made to converge with a probability of 1− ε for any desired
setting of ε regardless of the problem. We then transferred
this result to the univariate EDA framework as well, demon-
strating an EDA algorithm that approximates the theoret-
ical model. However, the algorithm is very expensive in
terms of evaluations, and as expected, it does not perform
well compared to PBIL, one of several common univariate
EDA algorithms.
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We believe this example serves as an illustration of what
might be possible given the connection between these two
techniques. This opens up many avenues for future work.
For example, how would CCEA-style marginal “population”
sample distributions compare to EDA-style marginal distri-
butions? Could we convert algorithms such as CGA, PBIL,
or UMDA to operate in the sample-distribution situation
of CCEAs? Can further theory from either side inform the
other? What would the equivalent of BOA be in a CCEA
context? And importantly: are there other disparate meth-
ods which might actually be closely related?

6. PROOFS
As discussed in Section 2.1, it has been shown that

a two-population cooperative coevolutionary EGT model,
with tournament selection, and with maximum-of-M -
collaborations fitness assessment, will converge to the op-
timum within some ε probability given a sufficiently large
value of M . This model is the one described by Equations 4
and 5. The theorem here extends this convergence proof to
an N -population cooperative coevolutionary Evolutionary
Game Theory model.

Notation.
For the following proof, we apply the same notation used

in Section 4. We describe it again here, for clarity.
We use Xp to denote the space of genotypes of the p-

th population. For simplicity, we have Xp = {1, 2, 3, ..., np}
where np is the number of genotypes for the p-th population.
For each population p from 1 to M , and for each genotype i

from 1 to np, we let px
(t)
i denote the ratio of individuals with

genotype i in population p at generation t. We further define
Yp = X1× ...×Xp−1×Xp+1× ...×XM as the joint space of
all possible collaborators for an individual from population
p (notice that Xp is missing).



Here we will deviate from our previous equations in our
use of j. Now j will represent a tuple of genotypes chosen
from various populations to collaborate with genotype i.

We will also extend pyj to refer not to the proportion
of genotype j in the second population (as was the case
earlier) but rather to the proportion of collaborating tu-
ple j in the joint collaboration space. That is, for tuple

j ∈ Yp with j = (j1, ..., jp−1, jp+1, ..., jM ), we use the nota-

tion py
(t)
j =

Q
v=1..M :v 6=p vx

(t)
jv

. Likewise, aij is the reward
for genotype i when combined with collaborators in tuple j.

Likewise for clarity, we repeat Equations 6 and 7, which
describe the formal model for CCEAs with N individuals.
For each population p and each genotype i ∈ p:
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Lemma 1. Assume the populations for the EGT model
are initialized at random based on a uniform distribution
over all possible initial populations. Then, for any ε > 0,
there exists θε > 0 such that

P
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< ε (10)
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i ≥ 1− θε

”
< ε (11)

for all populations p from 1 to M .

Proof. One method to sample the simplex ∆n uniformly
is described in [3] (pages 568–569): take n−1 uniformly dis-
tributed numbers in [0, 1], sort them, and use the differences
between consecutive numbers (also, the difference between
the smallest number and 0, and the difference between 1 and
the largest number) as the coordinates for the point.

Let p be an arbitrary population from 1 to M . It fol-

lows that (px
(0)
i )i=1..np can be generated as the difference

between n − 1 numbers generated uniformly in the range

[0, 1]. It then follows that mini=1..n px
(0)
i is the closest dis-

tance between two such numbers (and possibly including the
boundaries 0 and 1).

Suppose γ > 0 is a sufficiently small number. We iterate
over the np− 1 uniformly-distributed random numbers that

are needed to generate an initial population (px
(0)
i )i=1..np .

The probability that the first number is not within γ of the
boundaries 0 and 1 is 1− 2γ. The probability that the sec-
ond number is not within γ of the boundaries, or of the
first number, is less than or equal to 1 − 4γ. In general,
the probability that the kth number is not within γ of the
boundaries, or of the first k−1 numbers, is less than or equal
to 1− 2kγ. Since the numbers are generated independently
of one another, the probability that the closest pair of points
(considering the boundaries) is farther apart than γ is:

P

„
min

i=1..np
px

(0)
i ≤ γ

«
= 1− P

„
min

i=1..np
px

(0)
i > γ

«

= 1−
np−1Y
i=1

(1− 2iγ)

≤ 1− (1− 2 (np − 1) γ)np−1

≤ 1− (1− 2 (np∗ − 1) γ)np∗−1

where np∗ = maxi=1..M ni. Given that

lim
γ→0

1− (1− 2 (np∗ − 1) γ)np∗−1 = 0

it follows that for any ε > 0 there exists θε > 0 such that

P (mini=1..np px
(0)
i ≤ θε) < ε for all populations p1...pM .

To prove Inequality 11, note that maxi=1..np px
(0)
i ≥ 1− θε

implies that all other pxi ratios except for the maximum are
smaller than θε, which, as proven above, occurs with prob-
ability smaller than ε.

Lemma 2. Assume the populations for the EGT model
are initialized at random based on a uniform distribution
over all possible initial populations. Then, for any ε > 0,
there exists ηε > 0 such that

P

„
min

p=1..M
min

i=1..np
px

(0)
i > ηε ∧ max

p=1..M
max
i=1..np

px
(0)
i < 1− ηε

«
≥ 1− ε

In other words, there is an arbitrary probability that the
initial populations contain reasonable values (not too close
to either 0 or 1) for all proportions of genotypes.

Proof. We apply Lemma 1 for 1− M√1−ε
2

, which is greater
than 0. The specific value of ηε for this proof equals the value
of θ 1− M

√
1−ε

2

from Lemma 1. It follows that:



P
“

minp=1..M mini=1..np px
(0)
i > ηε ∧maxp=1..M maxi=1..np px

(0)
i < 1− ηε

”
=
Q
p=1..M P

„
mini=1..np px

(0)
i > θ 1− M

√
1−ε

2

∧maxi=1..np px
(0)
i < 1− θ 1− M

√
1−ε

2

«
=
Q
p=1..M

„
1− P

„
mini=1..np px

(0)
i ≤ θ 1− M

√
1−ε

2

∨maxi=1..np px
(0)
i ≥ 1− θ 1− M

√
1−ε

2

««
≥
Q
p=1..M

„
1−

„
P

„
mini=1..np px

(0)
i ≤ θ 1− M

√
1−ε

2

«
+ P

„
maxi=1..np px

(0)
i ≥ 1− θ 1− M

√
1−ε

2

«««
≥
Q
p=1..M

“
1− 2 1− M√1−ε

2

”
= 1− ε

Theorem 1. Given a joint reward system with a unique
global optimum ai?1i?2 ...i?M , for any ε > 0 and any H ≥ 2,
there exists a value Nε ≥ 1 such that the theoretical CCEA
model in Equations 6–7 converges to the global optimum with
probability greater than (1− ε) for any number of collabora-
tors N such that N ≥ Nε.

Proof. We only use ε as a guarantee for the worst case
scenario for the proportions of individuals in the initial pop-
ulations. From Lemma 2, it follows that there exists ηε > 0
such that with probability at least 1 − ε, it holds that

ηε < px
(0)
i < 1 − ηε for all genotypes i in all populations

p. In other words, with probability ε, the initial populations
will not have any proportion of individuals that cover more
than 1− ηε, nor cover less than ηε of the entire population.

We will prove that there exists Nε ≥ 0 such that the EGT
model converges to the global optimum for any N ≥ Nε and

for all initial configurations that satisfy ηε < px
(0)
i? < 1− ηε

for all populations p. To this end, let α be the second highest

element joint reward (α < ai∗j∗). It follows that pu
(t)
i ≤ α

for all i 6= i? in all populations p. This is because (by refining
Equation 6):

pu
(t)
i =

X
j∈Yp

aij
py

(t)
jX

k∈Yp:
aik=aij

py
(t)
k

0BB@
0BB@ X

k∈Yp:
aik≤aij

py
(t)
k

1CCA
N

−

0BB@ X
k∈Yp:
aik<aij

py
(t)
k

1CCA
N1CCA

pu
(t)
i ≤

X
j∈Yp

α
py

(t)
jX

k∈Yp:
aik=aij

py
(t)
k

0BB@
0BB@ X

k∈Yp:
aik≤aij

py
(t)
k

1CCA
N

−

0BB@ X
k∈Yp:
aik<aij

py
(t)
k

1CCA
N1CCA

≤ α
X
j∈Yp

0BB@
0BB@ X

k∈Yp:
aik≤aij

py
(t)
k

1CCA
N

−

0BB@ X
k∈Yp:
aik<aij

py
(t)
k

1CCA
N1CCA ≤ α

Next, we work on identifying a lower bound for pu
(t)
i?p

. For simplicity, let i∗ stand for i∗p, and j∗ stand for the optimal tuple

of collaborators for i∗.

pu
(t)
i? =

X
j∈Yp

ai?j
py

(t)
jX

k∈Yp:
ai?k=ai?j

py
(t)
k

0BB@
0BB@ X

k∈Yp:
ai?k≤ai?j

py
(t)
k

1CCA
N

−

0BB@ X
k∈Yp:

ai?k<ai?j

py
(t)
k

1CCA
N1CCA

= ai∗j∗

„
1−

“
1− py

(t)
j?

”N«
+

X
j∈Yp:
j 6=j?

ai?j
py

(t)
jX

k∈Yp:
ai?k=ai?j

py
(t)
k

0BB@
0BB@ X

k∈Yp:
ai?k≤ai?j

py
(t)
k

1CCA
N

−

0BB@ X
k∈Yp:

ai?k<ai?j

py
(t)
k

1CCA
N1CCA



We further refine the lower bound for pu
(t)
i? :

pu
(t)
i? = ai∗j∗

„
1−

“
1− py

(t)
j?

”N«
+

X
j∈Yp:

j 6=j?∧ai?j≥0

ai?j
py

(t)
jX

k∈Yp:
ai?k=ai?j

py
(t)
k

0BB@
0BB@ X

k∈Yp:
ai?k≤ai?j

py
(t)
k

1CCA
N

−

0BB@ X
k∈Yp:

ai?k<ai?j

py
(t)
k

1CCA
N1CCA+

X
j∈Yp:

j 6=j?∧ai?j<0

ai?j
py

(t)
jX

k∈Yp:
ai?k=ai?j

py
(t)
k

0BB@
0BB@ X

k∈Yp:
ai?k≤ai?j

py
(t)
k

1CCA
N

−

0BB@ X
k∈Yp:

ai?k<ai?j

py
(t)
k

1CCA
N1CCA

≥ ai∗j∗

„
1−

“
1− py

(t)
j?

”N«
+

X
j∈Yp:

j 6=j?∧ai?j<0

ai?j
py

(t)
jX

k∈Yp:
ai?k=ai?j

py
(t)
k

0BB@
0BB@ X

k∈Yp:
ai?k≤ai?j

py
(t)
k

1CCA
N

−

0BB@ X
k∈Yp:

ai?k<ai?j

py
(t)
k

1CCA
N1CCA

≥ ai∗j∗

„
1−

“
1− py

(t)
j?

”N«
+

X
j∈Yp:

j 6=j?∧ai?j<0

ai?j
py

(t)
jX

k∈Yp:
ai?k=ai?j

py
(t)
k

0BB@ X
k∈Yp:

ai?k≤ai?j

py
(t)
k

1CCA
N

Given that
Pm
k=1 py

(t)
k = 1, we further refine the previous inequality:

pu
(t)
i? ≥ ai∗j∗

„
1−

“
1− py

(t)
j?

”N«
+

X
j∈Yp:

j 6=j?∧ai?j<0

ai?j
py

(t)
jX

k∈Yp:
ai?k=ai?j

py
(t)
k

“
1− py

(t)
j?

”N

≥ ai∗j∗

„
1−

“
1− py

(t)
j?

”N«
+
“

1− py
(t)
j?

”N X
j∈Yp:

j 6=j?∧ai?j<0

ai?j

= ai∗j∗ −
“

1− py
(t)
j?

”N 0BB@ai∗j∗ − X
j∈Yp:

j 6=j?∧ai?j<0

ai?j

1CCA (12)

= ai∗j∗ −

0B@1−
Y

r=1..M:
r 6=p

rx
(t)
j?r

1CA
N
0BB@ai∗j∗ − X

j∈Yp:
j 6=j?∧ai?j<0

ai?j

1CCA (13)

The inequalities ηε < rx
(0)
j?r

< 1 − ηε hold for all initial populations r, as inferred earlier from Lemma 2. It follows from

Equation 13 that:

pu
(0)
i? ≥ ai?j? −

“
1− ηεM−1

”N
0BBB@ai?j? −X

j∈Yp:
j 6=j?∧ai?j<0

ai?j

1CCCA (14)



However,

lim
N→∞

ai?j?−
“

1− ηεM−1
”N
0BBB@ai?j? −X

j∈Yp:
j 6=j?∧ai?j<0

ai?j

1CCCA = ai?j?

(15)

Given that ai?j? > α, Equation 15 implies that there ex-
ists Np ≥ 1 such that

ai?j? −
“

1− ηεM−1
”N
0BBB@ai?j? −X

j∈Yp:
j 6=j?∧ai?j<0

ai?j

1CCCA > α (16)

for all N ≥ Np. From Equations 13 and 16, it follows that

pu
(0)
i? > α for all N ≥ Np. Observe that Np does not depend

on the initial population p we considered this far.
Let Nε = maxp=1..M (Np), and let N ≥ Nε. Next, we

show by induction by t (the number of iterations of the
model, i.e. the number of generations) that the following
inequalities hold for all populations p:

pu
(t)
i? ≥ ai?j? −

“
1− ηεM−1

”N
0BBB@ai?j? −X

j∈Yp:
j 6=j?∧ai?j<0

ai?j

1CCCA
px

(t+1)
i? ≥ px

(t)
i?

At the first generation (t = 0), the first inequality holds
(from Equation 14). For a population p, we combine this

with the definition of N . It follows that pu
(0)
i? > pu

(0)
i for all

i 6= i?. As a consequence, px
(1)
i? = 1 − (1 − px

(0)
i? )H > px

(0)
i?

(from Equation 6).
To prove the inductive step, it follows from Equation 13

and from the inductive hypothesis that

pu
(t+1)
i? ≥ ai?j? −

“
1− py

(t+1)
j?

”N
0BBB@ai?j? −X

j∈Yp:
j 6=j?∧ai?j<0

ai?j

1CCCA

≥ ai?j? −
“

1− py
(t)
j?

”N
0BBB@ai?j? −X

j∈Yp:
j 6=j?∧ai?j<0

ai?j

1CCCA
· · ·

≥ ai?j? −
“

1− py
(0)
j?

”N
0BBB@ai?j? −X

j∈Yp:
j 6=j?∧ai?j<0

ai?j

1CCCA

≥ ai?j? −
“

1− ηεM − 1
”N
0BBB@ai?j? −X

j∈Yp:
j 6=j?∧ai?j<0

ai?j

1CCCA

Given the definitions of N and α, this also implies that

pu
(t+1)
i? > α > pu

(t+1)
i for all i 6= i?. As a consequence,

px
(t+1)
i? = 1− (1− px

(t)
i? )H ≥ px

(t)
i? (from Equation 6).

Having shown that px
(t)
i? are monotonically increasing for

all populations p, and given that they are all bounded be-
tween 0 and 1, it follows that they each converge to some

value. Given that pu
(t)
i? > pu

(t)
i for all i 6= i? at each it-

eration, it follows that px
(t+1)
i? = 1 − (1 − px

(t)
i? )H at each

iteration as well. If px̄ is the limit of the px
(t)
i? values when

t goes to ∞, then px̄ = 1 − (1− px̄)H , which implies that

px̄ is either 0 or 1. We can rule out the 0 limit because the

values of px
(t)
i? are monotonically increasing and px

(0)
i? > ηε.

Thus, px
(t)
i? converges to 1 for all populations p.
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