
Parsing with C++ Constructors

Phil ip W. Hall IV
University of Cincinnati, MS student

halipwcd@ucunix.san.uc.edu
hall@dec254

6733 Murray Ave.
Cincinnati, Ohio 45227

1. Introduction

This paper gives a brief sketch of how to build a
recursive descent parser using C++ constructor

functions, l The advantages gained from program-
ming with C++ classes and constructors stem from
the use of classes to organize the implementation
of the parser and the fact that parser generation can
be made a systematic translation of BNF-type pro-
duction rules to class definitions.

2. Translation from rules to classes

The translation process from BNF-type context
free grammar description to parser classes is
straight forward. Recall from automata theory th~it
a BNF grammar for a context free language has a
set of production rules. Each rule has a left-hand
non-terminal symbol, a delimiter, and a fight-hand
set of mixed terminal and non-terminal symbols.
We also know that for each non-terminal symbol in
the grammar there is at least one production rule in
the grammar.

Each rule in the grammar is translated into a class
definition, called a g rammar rule class. An
instance of a grammar rule class is called a gram-
mar rule object. As with traditional recursive
descent parsers, a function is created which
attempts to consume the input associated with the
rule in the grammar (Aho, 1986) Under the
scheme introduced in this paper that function is a
constructor for the grammar rule class. Each con-
structor function created in this way is passed a
sentence object holding the sentence to be parsed.
The sentence object must be capable of producing
a token stream as a standard lexical analyzer does.

For each new grammar rule class, GRC, a con-
structor is coded so that it creates grammar rule

i see (Ellis, 1990) for a full treatment of C++ constructor
functions.

objects for each non-terminal that appears in the
fight-hand side of GRC's production rule. The
constructor is also coded to consume any terminal
strings.

3. Parsing with Classes

An example will show a typical parse for a simpli-
fied grammar. First a key to notation:

Symbol Description

<...> non-terminal

I signifies choice

"..." signifies a terminal string

::= separator

Example grammar:

<expr> ::= <digit><op><digit>
<op> ::= "+'T'-"
<digit> ::= "0"1"1"1"2"1"3"1"4"1"5"1"6"1"7"1"8"1"9"

The translation process would produce three class
definitions, one for each of the non-terminal sym-
bols: <expr>, <op>, and <digit>. In the following
code sample generated from the above grammar,
identifiers which start with a capitalized letter
denote class names and all lower case identifiers
denote objects. Also, the class definitions for the
objects "sentence" and "token" are omitted.

67 ACM SIGPLAN Notices, Volume 28, No. 4 April 1993

http://crossmark.crossref.org/dialog/?doi=10.1145%2F152739.152750&domain=pdf&date_stamp=1993-04-01

Expr::Expr(Sentence &sentence)
{

digitl = new Digit(sentence);
operator = new Op(sentence);
digit2 = new Digit(sentence);

1;

Op::Op(Sentence &sentence)
I

sentence.get_next_token(token);

Digit: :Digit(Sentence &sentence)
{

sentence.get_next_token(token);
I;

The following code shows how the parser might be
invoked for this language:

Sentence *sentence;

sentence = new Sentence(" 1+2");
expr = new Expr(sentence);

Using C++ classes provides many convenient and
intuitive ways to organize the implementation of a
parser. For example, sentences are given the role
of lexically analyzing themselves. Also, we might
change the implementation of the grammar rule
class private data so that it produces a list of gram-
mar rule objects. This list would contain success-
ful and unsuccessful parses. The reader, I'm sure,
can imagine other additions and enhancements.

4. Discussion

The technique described in this paper is simple and
of somewhat limited use. It is restricted to gram-
mars which are parsable in a top-down fashion.
However, its usefulness stems from two character-
istics: it takes advantage of object-based program
organization, making it easier to understand and
modify, and it is fairly trivial to automate the pro-
cess of generating parsers from BNF style gram-
mar description. This technique is well suited as a
tool for teaching recursive descent parsing.

My final example of a text-based message protocol
will help illustrate why this technique is useful for
simple context-free grammars.

Imagine an inter-process message is received as
text string. A message protocol parser object is
instantiated passing the text string to its

constructor. When the application interprets the
message it simply exa'acts commands and parame-
ters from the message protocol.

This particular example suggests an enhancement
to the parser: the ability to ex~act text strings from
the parsed message object by the name (left-hand
non-terminal symbol) of the grammar rule used to
parse it. In this way, for example, the token text
represented by a grammar rule called
<source_process> (representing the process name
of the sender of the message) could be exlracted
from the message protocol parser object by invok-
ing a member function called
get_value("source_process").

This enhancement has several advantages. It can
be generalized for any grammar rule (of course
repeated parses of the same rule would have to be
disambiguated somehow). It would also be consis-
tent with the BNF description given to specify the
grammar, thus making the application conform
more closely to the specification.

5. Conclusion

Using C++ class constructors to implement a
recursive descent parser offers a variety of poten-
tial advantages over similar top-down parsing
implementations, including encapsulation of gram-
mar rules in objects, standardized interfaces to
parsed representations, and a good environment for
systematizing parser generation. With a few sim-
ple interfaces such as the get_value0 function, a
grammar rule object is made easy for an applica-
tion to use as well as forcing it to conform more
closely to the original grammar specification.

References

Ellis, 1990.
M.A. Ellis and B. Stroustrup, The Annotated
C++ Reference Manual, Addison-Wesley,
Reading, Massachusetts (1990).

Aho, 1986.
Alfred V. Aho, Ravi Sethi, and Jeffrey D.
Ullman, Compilers: Principles, Techniques,
and Tools, Addison Wesley, Reading, Mas-
sachusetts (1986). 0-201-10088-6

68

