
An Integrated Hardware Simulator

Delmar E. Searls
Asbury College

1 Macklem Drive
Wilmore, KY 40390-119 8

(606)-858-3511 x223 8

Introduction

Computer systems courses include a dis-
cussion of hardware and programming at a num-
ber of levels often using a simplified example a s
a focus of the discussion. Andrew S.
Tanenbaum's widely adopted text, Structured
Computer Organization, utilizes this approach
with the Mic-1 microarchitecture and Mac- 1
machine language levels. While simulators for
this example machine have been available for a
number of years they tend to concentrate on the
microarchitecture . Over the years we have
developed a menu-driven simulator for IBM -
compatible machines that, we believe, offers a
uniquely integrated approach that includes
micro-programming,

	

machine

	

language

programming, and assembly language program-
ming. The utility of the simulator can even be
extended to programming in a simplified versio n
of Pascal .

The Microa rch itecture Leve l

The user of the simulator has full access
to the 256 x 32 bit control store . When the
program is first run, a slightly modified version
of Tanenbaum's microprogram (which interprets
his Mac-1 machine language instruction set) i s
loaded by default . The simulator includes a
built-in editor (see figure 1) that allows the use r
to view and/or modify the contents of the contro l
store. A help screen is available to remind
students which codes to use in which fields to

SIGCS@

	

Vol . 25 No . 2 June 199 3BULLETIN

Control M C A

	

M M

	

E
Address U N L

	

B A R W N
Dec Hex X D U SH R R D R C C

	

B

0 00 +	 Microinstruction Fields 	
1 01
2 02

	

AMUX : 0 => A latch

	

COND : 00 => No jump
3 03

	

1 => MBR

	

01 => Jump if N= l
4 04 ;

	

10 => Jump if Z= 1
5 05

	

11 => Jump alway s
6 06
7 07

	

ALU : 00 => A + B

	

SH : 00 => No shif t
8 08

	

01 => A and B

	

01 => Shift right
9 09

	

10 => A

	

10 => Shift lef t
10 OA

	

11 => not A

	

11 => (not used)

Figure 1 . Part of a screen snapshot of the control store editor with the help scree n
superimposed on top . Data is entered in binary in the appropriate columns. (The
screen snapshots here and below do not faithfully duplicate the text mode lin e
graphics of the actual screen display .)

[Fl] = Help

A

	

ADDR

24

http://crossmark.crossref.org/dialog/?doi=10.1145%2F152751.152757&domain=pdf&date_stamp=1993-06-01

accomplish which tasks . The control-store can
be totally cleared, allowing students to writ e
their own microprograms from scratch. For
example, a student might try to write a
microprogram that interprets a two-address
instruction set rather than the Mac-1 instruction
set provided by Tanenbaum . The contents of th e
control store can be saved to disk and reloaded a t
any time .

Initially, we ask our students to write
rather simple microprograms such as adding the
value in main memory location zero to memory
location one and store the result in memory
location two. To emphasize the ability to d o
several things at once at the microprogramming
level, we make a contest of it by awarding bonu s
points to those who can do the job with the
fewest number of microinstructions . Even a sim-
ple assignment like this gives the students mor e
of a feel for the flexibility of microinstructions
than does a reading of the text alone,

To facilitate assignments like this (a s
well as machine language programming), a
second built-in editor is provided expressly fo r
the purpose of viewing and modifying mai n
memory. As with the control store, the content s
of main memory can be saved and reloaded at
any time .

During the execution of a microprogram
the movement of data through the CPU is graphi-
cally displayed on the screen (see figure 2) .
CGA text mode graphics are used so the program
should run on any MS-DOS-based machine . In
Mic-1, microinstruction execution is broken int o
four subeycles : (1) load the microinstruction into
the microinstruction register, (2) gate data fro m
registers to the A and B latches, (3) produce a
stable output in the ALU and shifter and (4) stor e
the output (if necessary) in an internal registe r
and/or the memory data register (MBR). The
simulator can run a microprogram in a numbe r
of different modes, the first of which single steps

PC

	

[0000000000000000]---> ;	 > +	 +
AC

	

[0000000000000000] Microcod e
SP [1111111111111100)
IR [0000000000000000) AMUX 0

TIR [0000000000000000) COND -- -
0 [0000000000000000] ALU A

+1 [0000000000000001] SH -- -
-1 [1111111111111111) MBR 0

AMASK [0000111111111111) MAR 1
SMASK [0000000011111111] RD 1

A [0000000000000000] wR o
B [0000000000000000] DNC 0

	

;
C

	

[0000000000000000] c 0
D

	

[0000000000000000] B 0
B

	

[0000000000000000) A 0
F

	

[0000000000000000] ADDR 0
v

	

v

	

+	 +
A[0000000000000000] B[0000000000000000]

MAR [000000000000] <--- ;	 ;	 +

	

+	 +
MPC

	

0
+	 +

N 0
ALU [+->0000000000000000

	

) Z 1

	 [0000000000000000] SHIFTE R

v
] ;

	

[0000000000000000] AMUXMBR [

Figure 2. A screen snapshot of the Mc-1 simulator .

SIG CS E

	

Vol . 25 No . 2 June 199 3BULLETIN 2 5

through the program one subeycle at a time .
This allows the student to clearly understand
what happens during each subeycle as the
movement of data is illustrated on the screen .

The second, more common, execution
mode single steps through the program one
complete microinstruction at a time. This mode
is very useful in helping students understand ho w
the machine language interpreter works or for
debugging their own microprograms .

A third instruction mode single steps one
machine language instruction at a time .
(Actually, it pauses every time th e
microinstruction program counter reaches zero
but since the machine language interpreter
always goes to microinstruction zero to load th e
next machine language instruction, the net effec t
is that the simulator single steps through
machine language programs . It would continue
to do so even if some other machine language

instruction set were implemented, as long as th e
loading of the next machine language instruction
begins at zero in the microprogram!)

The final execution mode does no single -
stepping at all and just runs the microprogram to
completion . A microprogram is considered com-
plete when the microprogram counter points to a
null (all zero) instruction .

During microprogram execution, the user
can freely switch from one execution mode t o
another or even terminate program execution en-
tirely .

The Machine Language Leve l

Since the student can modify main mem-
ory, as indicated above, the microarchitectur e
simulator can be used as a machine language
simulator as well . But the program also include s
a separate Mac-1 simulator (see figure 3) . By

+	 INPUT/OUTPUT	 MEMORY	 +

0 0111000000100000 28704 ;
;

	

--> 1 1111101000000000 64000 ;
2 0111000000000100 28676 ;

3 1111010000000000 62464 ;
4 0111000000000101 28677 ;
5 1111010000000000 62464 ;

;	 REGISTERS	 STACK ---- 6 1110000000001011 57355 ;
21 0

	

: 7 1111110000000010 64514 ;
PC :

	

2 22 0

	

; 8 0001000000001010 4106 ;
23 0 9 1111111100000000 65280 ;

AC :

	

1020 24 0 10 0000000000000000 0 ;
25 0 11 1000000000000001 32769 ;

SP :

	

32 26 0 12 1010000000000010 40962 ;
27 0

	

: 13 1111100000000000 63488 ;
+	 + 28 0

	

: 14 0000000000000000 0 ;
SWAP 29 0

	

; 15 0000000000000000 0 ;
+	 + 30 0 16 0000000000000000 0 ;

31 0

	

: 17 0000000000000000 0 1
--> 32 o

	

: 18 0000000000000000 0 ;
33 0

	

; 19 0000000000000000 0 ;
34 0

	

: 20 0000000000000000 0 ;
35 0 21 0000000000000000 o :
36 0 22 0000000000000000 0 ;

+	

Figure 3 . Screen snapshot of the Mac-1 simulator .

SIGCS E

	

Vol . 25 No . 2 June 199 3BULLETIN 26

using the memory editor, the student can writ e
machine language programs in binary (see Figure
4). A help screen containing machine language
formats and an explanation of each instruction
can be called up while editing memory .

When running the Mac-1 simulator, the
user can see the contents of the three register s
available to the machine language programmer
(program counter, accumulator, and stack
pointer), the region of memory containing th e
instruction currently being executed, and the
region of memory pointed to by the stack
pointer. As the program counter and stack
pointer change values these memory windows
dynamically adjust to show the corresponding
memory regions. A separate input\output
window allows the user to program memory -
mapped I/O .

The Assembly Language Leve l

There are a number of important
concepts that can be introduced using the Mac- 1
machine language instruction set (e .g. parameter
passing via the stack). Since coding longer
programs in binary is tedious and perhap s
counterproductive, the simulator also includes a
built-in assembler and an assembly languag e
editor (see Figure 5) . The assembler is not fanc y

SIGCSE

	

Vol . 25 No . 2 June 1993BULLETIN

(no macros, for example) but fully functional an d
includes an EQU directive along with DCL S
(declare storage) and DCLW (declare word)
directives . A HALT statement has been added to
the machine language instruction set to provide
an orderly termination of a program .

The assembler requires a fixed-forma t
source and generates the corresponding binar y
machine language code. As with the contro l
store and main memory, assembly language
programs can be saved to and loaded from the
disk as ASCII text files, The assembler is a
traditional two-pass assembler and the generated
listing can be sent to the screen or to a printer .
Error messages are inserted directly into the
source code and will be automatically remove d
when the corrected code is re-assembled . The
user can access a help screen that lists th e
assembler mnemonics and describes the meanin g
of each .

The simulator allows the user to print ou t
a copy of the current assembly language
program, the contents of the control store, or the
contents of main memory ; each in a nicely
formatted style . When printing the contents of
either type of memory, only data up to (an d
including) the last nonzero value is printed . This
prevents wasting a lot of paper when only a
small fraction of memory is actuAly used .

Main Memory
Address Machine Languag e
Dec Hex Instruction

--------------------- -

0 000

	

: 0000 0000

	

0000 011 0
1 001

	

: 0010 0000

	

0000 011 1
2 002

	

: 0001 0000

	

0000 100 0
3 003 0011 0000

	

0000 011 1
4 004

	

: 0001 0000

	

0000 100 1
5 005 1111 1111

	

0000 000 0
6 006

	

: 0000 0000

	

0000 100 0
7 007

	

: 0000 0000

	

0000 001 1
8 008 0000 0000

	

0000 0000

Figure 4 . Part of a screen snapshot of the mem-
ory editor.

Fi1e : CALLBUS .ASM

	

[F1) = HEL P

LINE LABEL OP OPIUM COMMENTS
	

1 • CALLSUB .ASM

2 .

3 • THIS PROGRAM TESTS AND ILLUSTRATES THE SUBROUTINE
4 • CALLING MECHANISM OP MAC-1 AND THE PASSING O P
5 • VALUE PARAMETERS ON THE STACK .

7

8

	

LOCO 3 2
9

	

DMA.

	

8P := 3 2
10

	

LOCO 4

11

	

PUSH

	

I PUSH PARAMDTRAB
12

	

LOCO 5

	

I ONTO THE STAC K
13

	

PUS H
14

	

('LIT, ADDBB CATS. ADD SUBROUTINE
15

	

IHSP 2

	

REMOVE PARAMETER S

Figure 5 : Part of a screen snapshot of the as-
sembly language program editor .

2 7

2 8

The Pascal Level

We follow our computer systems course
with a systems programming course and we con-
tinue to use the simulator as our target machine .
We progress through a number of programming
assignments (done as team projects) that allo w
the students to apply what they are studying in
class. Each assignment is a stand-alone project .

The first project is an assembler which
translates the Mac-1 assembly code into an
object file format. The program duplicates th e
work of the simulator's assembler except for th e
format of the output. Another difference is that
the students' assembler must provide for globa l
defines and external references . The teams are
provided with a linker that will convert their
object files to machine language files which ca n
then be loaded into the main memory of th e
simulator and tested . Asking them to write a
functional clone (of the simulator's assembler) is
helpful in that they have a model to follow and
are already familiar with most of the features
they are expected to include . Getting through
this project helps give them confidence that they
can complete the remaining projects .

After completing the assembler, the stu-
dents are required to write a macro processor .
(Actually, it would be more appropriate to call i t
a pre-processor.) An assembly language
program containing macro definitions and macr o
invocations is supplied as the source file to the
macro processor. The output is an assembl y
language program with the macro invocation s
expanded into assembly language code . This
output can then be used as input for the
assembler .

The third project involves the writing of a
linker . This is their implementation of the linker
they have already been using in the previous two
projects. The input is in the form of one or more
object files and the output is an executable ma -
chine language file .

SIGGSB

	

Vol . 25 No . 2 June 199 3BULLETIN

The next three projects together comprise
a compiler for a greatly simplified version o f
Pascal. The students first write a tokenizer that
takes a Pascal source file and creates a tokenize d
file. Then they write a grammar checker that
takes the tokenized file as input and checks fo r
syntax errors. The final component is a code
generator that takes the tokenized file an d
generates a Mac-1 assembly language output fil e
that (as you have already guessed) can be
assembled by the students' assembler and linked
with a Pascal library object file by their linker
and run on the simulator .

Conclusion

Our students have remarked that th e
highly integrated hardware simulator has been
helpful to them in learning the concepts
presented in Tanenbaum's text . They appreciate
the continuity of example hardware as they move
into the systems programming course . I am
making the simulator available to a broade r
audience in the hope that others will find it
equally useful . If you would like a copy of the
program just write to me . I will require $5 .00 to
cover the cost of the disk, the mailer, and
postage. You may freely copy the program for
distribution to students and/or colleagues .

The simulator is less than 100K in size
and requires nothing fancier than a CGA colo r
display on an IBM-PC or compatible . A
reference manual, a tutorial, and sampl e
programs are also included on the disk .

