
Levels of Abstraction in CS 2

James P . Kelsh
Department of Computer Scienc e
Central Michigan University

Mt . Pleasant, MI 4885 9

3 5

The principle of an abstract data typ e
accustoms us to thinking of a program a t
two levels : The application program and th e
underlying implementation of the data type s
involved . Convincing students to maintain
this distinction can be difficult : The
temptation to use details of the chose n
implementation often overcomes their goo d
intentions . One solution is to introduce a
"second degree" of data abstraction ,
separating the "core" operations (which
must use the details of an abstract dat a
type's implementation) from higher-leve l
operations on the abstract data type and
then freely exchange data type
implementations . This can also prepar e
students for later exercises which wil l
require more levels of abstraction .

1 .Data Abstraction and strings .
We expect our CS2 course to teac h

students to use abstract data types [2] .
However, many students learn more abou t
coding one implementation of each data type
than about abstraction . (See Kumar &
Beidler[3] for an earlier discussion o f
this problem .) McCracken [4] provides an
excellent example, showing the reader an
implementation and encouraging the studen t
to program at a higher level (ignoring the
details of the implementation) . However ,
when my students used these routines fo r
character strings, they often found i t
easier to manipulate the characters in
relatively high-level procedures than t o
learn how to use the supplied string
procedures . Even when the multipl e
implementations provided by Dale & Lill y
[1] were available, many students would as k
"Which implementation do you want us to
use?" and then use the details of that
implementation rather than learn th e
calling syntax of the routines . They
learned to code data types, but missed th e
abstraction we want them to learn .

To discourage this approach, I produce d
three different string implementations an d
an interface separating them from th e

SIGCSE

	

Vol . 25 No . 2 June 1993BULLETIN

programmer . (A fourth has recently bee n
added : See section 4 : Next Developments .) A
program that works correctly with all thre e
must not be using special features of th e
implementation . If the currently availabl e
implementation changes from day to day ,
programs are forced to be implementation -
independent . The three implementations are :

The "standard" implementation : (More
authors than I could possibly acknowledg e
have written such implementations .)
ChRay = packed array [1 . .MaxStrLength] of
char ;
StrType = recor d

Str

	

: ChRay ;
Length : integer

end ;
MaxStrLength is a programmer-specified

constant . Str holds the characters an d
Length specifies how many of the availabl e
characters are in use .

The Turbo Pascal implementation :
StrType e packedarr.ay[O . .MaxStrLength] of
char ;

This emulates the type String[N]
provided by the Turbo Pascal compiler . N
specifies the maximum number of characters
the string may hold . The compiler
implements String[N] as a packed array
[0 . .N] of char . Positions 1 . .N hold the
characters ; position 0 holds a characte r
whose ordinal value is the length of th e
string (the analog of the "Length" field
above) .

The C implementation :
StrType = packed array [0 . .MaxStrLength) o f
char ;

This emulates the way the C languag e
handles strings . It resembles the Turbo
Pascal implementation, but only position s
0 . .(N-l) hold the characters of the string ,
where N is the number of characters in the
string . The final character is followed b y
chr(0), a terminator in C .

http://crossmark.crossref.org/dialog/?doi=10.1145%2F152751.152760&domain=pdf&date_stamp=1993-06-01

3 6

2 .Strings : Independent in the Second Degre e
Choosing three implementations triple s

the task of writing the code . Believing
strongly in reusing software components, I
soon extracted a core of string routine s
that were intimately involved with th e
details of the string implementation :

procedure MakestringEmpty (var S :StrType) ;
Sets its parameter to the empty ("null")
string .

procedure AppendChar (var S : StrType ; C :
char) ;

Appends the character C to the end o f
the string S if the result would no t
exceed MaxStrLength . In that (error)
case, AppendChar takes no action .

function StrLen (S : StrType) : integer ;
Returns the current length of the strin g
S .

function NthCh (N : integer ; S : StrType) :
char ;

Returns the character in position N o f
string S . (If N exceeds StrLen(S), NthC h
returns a blank .)

These core routines constitute an
intermediate level of abstraction : All the
other routines are defined in terms o f
them . (The fourth implementation --
described in Section 4 -- required adding a
fifth core routine .) For example, to
concatenate a "source" string to the end o f
a "target" string :

procedure ConcatStr (var Target : StrType ;
Source : StrType) ;
var

	

I : integer ;
begin

for I := 1 to StrLen(Source) d o
AppendChar(Target, NthCh(I, Source))

end ;

Note that any anomalous conditions are
handled by AppendChar and NthCh .

The string package includes, amon g
others :

function StringsAreEqual (S1, S2 :
StrType) : boolean ;

function CompareStr (S1, S2 : StrType) :

char ;
procedure ReadLnStr (var FileV : text ; va r

S : StrType) ;
procedure WriteStr (var FileV : text ; S :

StrType) ;
procedure ReverseStr (var S : StrType) ;
procedure IntTostring (I : integer ; var S :
StrType) ;
procedure Intval (S : StrType ; var Int ,
Err : integer) ;
procedure RealVal (S : StrType ; var
RealNum : real ; var Err : integer) ;

SIG CS E

	

Vol . 25 No . 2 June 1993BULLETIN

procedure Shorten (var S : Strtype ; ,
HowMuch : integer) ;
procedure UpperCaseString (var S :
StrType) ;

This intermediate level distinguishe s
this approach from that of [1] : Although
that text provides multiple implementation s
of each abstract data type, the book
develops programs at only two levels o f
abstraction: The program and the
implementation .

To change from one string implementatio n
to another requires merely changing th e
type definitions and exchanging the first 4
"core" subprograms . Students react
favorably to this, possibly because th e
string routines themselves illustrate ho w
to produce implementation-independent code .
Although these "second-degree" independen t

useful in severa l
purpose is still to
an abstract data typ e

details

	

of

	

its
implementations .

3 .Results for Student and Instructor .
I've released the "second-degree "

abstract string routines to four classe s
(CS2, Compiler Construction, Documentation ,
and Software Engineering) . CS2 students
were required to use them, while th e
students in the more advanced courses were
merely given the option . In many cases, the
more advanced students had more problems
adjusting : Although many were moderatel y
familiar with string extensions in th e
Pascal they had used, few knew the detail s
of the implementation well enouah to avoi d
surprises . Like many other languag e
extensions, string extensions can surpris e
students who use code like :

S

	

'ABC' ;
T := S ;

	

{Both have Length = 3 }
S[4]

	

'X' ;
if S = T then {Does the 4th char matter? }
writeln('Yes')

else
writeln('No') ;

Students who encounter surprises wit h
the "second-degree" routines can read th e
code to find out what happened . But at the
same time, the fact that the routines ar e
usually "included" rather than being part
of the source file seems to encourag e
students to use them as "black boxes" whil e
designing their programs .

Students writing a compiler fel t
challenged by the programming assignment
and were happy to use the string routines .
Those who took their programming project s
lightly were more likely to feel tha t
learning to use the "second-degree "
routines would take too long . One devise d

operations have bee n
programs, their main
illustrate how to us e
without using the

3 7

his own pool of "string space" complet e
with garbage collection . None of th e
students who chose to develop their ow n
string routines completed a working program
by the due date .

4 .Next Developments in strings .
Some users of these strin g

implementations are troubled by th e
"MaxStrLength" limitation : This constan t
must be known at compile-time and ever y
string will use that much space . This i s
the standard questions of static vs .
dynamic storage allocation . It led to a
fourth implementation : StrType .Inf .

In this case, StrType is a pointer to a
"block" which resembles the earlie r
StrType .Std . A block can contain up to
"CharsPerBlock" (a new programmer-define d
constant) characters and possibly a pointe r
to another block . Thus, the length of a
string is limited only by available memory
and short strings can be as short as on e
block .

Although a working implementation i s
possible with only the four core routine s
described in section 2, efficient use of
dynamic data structures usually requires
some form on initialization . The fifth
"core" routine is InitStr (S) .

InitStr guarantees that storage is
available for S . Every program should cal l
InitStr before using a string . Although the
Std, TP, and C versions of InitStr d o
nothing, the Inf version uses NEW t o
allocate space for the first block, sets
the length field to 0, and sets the firs t
block's "Next" pointer to nil . Separating
core operations from higher-leve l
operations allowed creating a reasonably
full set of operations on a dynamic data
structure with surprisingly little coding .

Certainly other data structures ar e
amenable to this level of separation . I
recently shared a layered toolkit fo r
character-based windowing (using these
string

	

routines)

	

with

	

a

	

software
engineering class (They surprised
themselves with the quality of their use r
interfaces!) and am now re-implementing its
"core" to port it to two other compilers
running on different operating systems .
Maybe "second-degree" data abstraction wil l
help the cause of software portability ,
too .

I can supply a copy of the "second
degree" string routines and some sample
programs to anyone who sends one formatted
MS-DOS diskette in a self-addressed stampe d
mailer .

References :

1 . Dale, and Lilly . Pascal Plus Data
Structures, Third Ed . D . C . Heath
& Company, Lexington, MA, 1991 .

SIGCSE

	

Vol . 25 No . 2 June 199 3
BULLETIN

2. Koffman, Eliot B ., Stemple ,
David, and Wardle, Caroline E .
"Recommended Curriculum for CS2 ,
1984," Communications of the ACM ,
28, 8 (Aug . 1985), pp . 815-818 .

3. Kumar, Ashok, and Beidler, John .
"Using

	

Generics

	

Modules

	

to
Enhance the CS2 Course, "
Proceedings of the Twentieth
SIGCSE Technical Symposium on
Computer Science Education (Feb .
1989), pp . 61-65) .

4. McCracken, Daniel D . A Second
Course in Computer Science Wit h
Pascal . John Wiley & Sons, Ne w
York, 1987 .

5. Collins, William, and McMillan ,
Thomas . "Implementing Abstract
Data Types in Turbo Pascal, "
Proceedings of the Twenty-First
SIGCSE Technical Symposium on
Computer Science Education (Feb .
1990), pp . 134-138 .

*** *
TQ REFERENCES-- continued from page 3 4

Tripp, Leonard L . "Software Engineering
Standards : Today and Tommorrow, Part 2 . " ,
Software Quality, September, 1992 .

Walton, Mary . The Deming Management Method .
New York : The Putnam Publishing Group ,
1986 .

Training

American Society for Quality Control, P .O .
Box 3005, Milwaukee, WI 53201-300 5

Specific courses in TQM, Quality
Control, Software Quality Assurance .

George Washington University, Continuin g
Engineering Education Program, 801 22 n
Street NW, Washington, DC 2005 2

Offers a wide variety of quality

oriented courses .

Juran Institute, Inc . 11 River Road ,
Wilton, CT .

Special training in quality management
as related to software engineering, as wel l
as, courses in quality control an d
management .

Quality Assurance Institute, Suite 350 ,
7575 Dr . Phillips Blvd ., Orlando, FL . 3281 9

Provides quality training in a wid e
variety of information system and softwar e
engineering fields . Specific course s
offered in testing and measurement .

