Check for
Updates

Levels of Abstraction in CS2

James P. Kelsh
Department of Computer Science
Central Michigan University

Mt.

The principle of an abstract data type
accustons us to thinking of a program at
two levels: The application program and the
underlying implementation of the data types
involved. Convincing students to maintain
this distinction can be difficult: The
temptation to use details of the chosen
implementation often overcomes their good

intentions. One solution is to introduce a
"second degree" of data abstraction,
separating the ‘'core'" operations (which

must use the details of an abstract data

type’s implementation) from higher-level
operations on the abstract data type and
then freely exchange data type
implementations. This can also prepare

students for later exercises which will
require more levels of abstraction.

1.Data Abstraction and Strings.

We expect our (52 course to
students to use abstract data types [2].
However, many students learn more about
coding one implementation of each data type
than about abstraction. (See Kumar &
Beidler(3) for an earlier discussion of
this problem.) McCracken (4] provides an
excellent example, showing the reader an
implementation and encouraging the student
to program at a higher level (ignoring the
details of the implementation). However,
when my students used these routines for
character strings, they often found it
easier to manipulate the characters 1in
relatively high-level procedures than to
learn how to use the supplied string
procedures. Even when the multiple
implementations provided by Dale & Lilly
[1] were available, many students would ask

teach

"Which implementation do you want us to
use?" and then use the details of that
implementation rather than learn the
calling syntax of the routines. They

learned to code data types, but missed the
abstraction we want them to learn.

To discourage this approach, I produced
three different string implementations and
an interface separating them from the

SIGCSE

BULLETIN Vol. 25 No. 2

June 1993

Pleasant, MI

35

48859

programmer. (A fourth has recently been
added: See section 4: Next Developments.) A
program that works correctly with all three
must not be using special features of the
implementation. If the currently available
implementation changes from day to day,
programs are forced to be implementation-
independent. The three implementations are:

The "standard'" implementatioen: (More
authors than I could possibly acknowledge
have written such implementations.)

ChRay = packed array [1..MaxStrLength] of
char;
StrType = record
Str ChRay;
Length integer
end;

MaxStrLength is a programmer-specified
constant. Str holds the characters and
Length specifies how many of the available
characters are in use.

The Turbo Pascal implementatioen:

StrType = packedarray([0..MaxStrLength] of
char;
This emulates the type String(N)

provided by the Turbo Pascal compiler. N
specifies the maximum number of characters
the string may hold. The compiler
implements String(N) as a packed array
[0..N]) of char. Positions 1..N hold the
characters; position 0 holds a character
whose ordinal value is the length of the
string (the analog of the "Length" field
above) .

The ¢ implementation:

StrType = packed array [0..MaxStrLength] of
char;

This emulates the way the C language
handles strings. It resembles the Turbo
Pascal implementation, but only positions
0..(N-1) hold the characters of the string,
where N is the number of characters in the
string. The final character is followed by
chr(0), a terminator in C.


http://crossmark.crossref.org/dialog/?doi=10.1145%2F152751.152760&domain=pdf&date_stamp=1993-06-01

2.5trings: Independent in the Second Degree
Choosing three implementations triples
the task of writing the code. Believing
strongly in reusing software components, I
soon extracted a core of string routines
that were intimately involved with the
details of the string implementation:

procedure MakeStringEmpty (var S:StrType);
Sets its parameter to the empty ("null')
string.

procedure AppendChar (var S: StrType; C:
char) ;
Appends the character C to the end of
the string S if the result would not
exceed MaxStrLength. In that (error)
case, AppendChar takes no action.

function StrLen (S: StrType): integer;
Returns the current length of the string
S.

function Nthch (N: integer; S:
char;
Returns the character in position N of
string S. (If N exceeds StrLen(S), NthCh
returns a blank.)

StrType):

These core routines constitute an
intermediate level of abstraction: All the
other routines are defined in terms of

them. (The fourth implementation --
described in Section 4 -- required adding a
fifth core routine.) For example, to

concatenate a "source" string to the end of
a "target" string:

procedure ConcatStr (var Target: StrType;
Source: StrType);

var I integer;
begin
for I := 1 to StrLen(Source) do

AppendChar (Target, NthCh(I, Source))
end;

Note that any anomalous conditions are
handled by AppendChar and NthcCh.

The string package includes, among
others:
function StringsAreBEqual (S1, S2:
StrType): boolean;
function Compare8tr (S1, S2: StrType):
char;

procedure ReadLn8tr (var FileV: text; var
S: StrType); .

procedure Writestr (var FileV: text; S:
StrType);

procedure ReversesStr (var S3: StrType);
procedure IntToS8tring (I: integer; var S:
StrType) ;

procedure Intval (S: StrType; var Int,
Err: integer);

procedure Realval (S: Str?ype; var
RealNum: real; var Err: integer);

SIGCSE

BULLETIN Vol. 25 No. 2

June 1993

procedure Shorten (var S: Strtype;,
HowMuch: integer) ;

procedure UpperCasgestring (var S:
StrType) ;

This intermediate level distinguishes
this approach from that of [1]: Although
that text provides multiple implementations

of each abstract data type, the book
develops programs at only two levels of
abstraction: The program and the
implementation.

To change from one string implementation
to another requires merely changing the
type definitions and exchanging the first 4
"core" subprograns. Students react
favorably to this, possibly because the
string routines themselves illustrate how
to produce implementation-independent code.
Although these "second-degree" independent
operations have been useful 1in several
programs, their main purpose is still to
illustrate how to use an abstract data type
without using the details of its
implementations.

3.Results for Student and Instructor.

I've released the "second-degree!"
abstract string routines to four classes
(C32, Compiler Construction, Documentation,
and Software Engineering). <CS2 students
were required to use them, while the
students in the more advanced courses were
merely given the option. In many cases, the
more advanced students had more problems
adjusting: Although many were moderately
familiar with string extensions in the
Pascal they had used, few knew the details
of the implementation well enouagh to avoid
surprises. Like many other language
extensions, string extensions can surprise
students who use code like:

S := 'ABC’;
T 1= S; {Both have Length = 3}
S[4) = X",

if 8 = T then {Does the 4th char matter?}
writeln(’Yes’)

else
writeln(’No’);

Students who encounter surprises with
the '"second-degree' routines can read the
code to find out what happened. But at the
same time, the fact that the routines are
usually "included" rather than being part
of the source file seems to encourage
students to use them as "black boxes'" while
designing their programs.

Students writing a compiler felt
challenged by the programming assignment
and were happy to use the string routines.
Those who took their programming projects
lightly were more likely to feel that
learning to use the "second-degree"
routines would take too lohg. One devised



his own pool of '"string space" complete
with garbage <collection. None of the
students who chose to develop their own
string routines completed a working program
by the due date.

4.Next Developments in strings.

Some users of these string
implementations are troubled by the
"MaxStrLength" limitation: This constant
must be known at compile-time and every
string will use that much space. This is
the standard questions of static vs.

dynamic storage allocation.
fourth implementation:

It led to a
StrType. Inf.

In this case, StrType is a pointer to a

"block" which resembles the earlier
StrType.Std. A block can contain up to
"CharsPerBlock" (a new programmer-defined

constant) characters and possibly a pointer
to another block. Thus, the length of a
string is limited only by available memory
and short strings can be as short as one
block.

Although a working implementation is
possible with only the four core routines
described in section 2, efficient use of
dynamic data structures usually requires

some form on initialization. The fifth
"core" routine is InitsStr (S).
InitStr guarantees that storage is

available for S. Every program should call
InitStr before using a string. Although the
std, TP, and C versions of Initstr do
nothing, the 1Inf version uses NEW to
allocate space for the first block, sets
the length field to 0, and sets the first
block’s "Next'" pointer to nil. Separating
core operations from higher-level
operations allowed creating a reasonably
full set of operations on a dynamic data
structure with surprisingly little coding.

Certainly other data structures are
amenable to this level of separation. I

recently shared a layered toolkit for
character-based windowing (using these
string routines) with a software
engineering class (They surprised

themselves with the quality of their user
interfaces!) and am now re-~implementing its
"core"” to port it to two other compilers
running on dJdifferent operating systems.
Maybe "second-degree" data abstraction will
help the cause of software portability,
too.

I can supply a copy of the "second
degree" string routines and some sample
programs to anyone who sends one formatted
MS-DOS diskette in a self-addressed stamped
mailer.

References:
1. Dale, and Lilly. Pascal Plus Data
Structures, Third Ed. D. C. Heath
& Company, Lexington, Ma, 1991.
SIGCSE Vol. 25 No. 2 June 1993

BULLETIN

37

2. Koffman, Eliot B., Stemple,
David, and Wardle, Caroline E.
"Recommended Curriculum for CS2,
1984," Communications of the ACM,

28, 8 (Aug. 1985), pp. 815-818.

3. Kumar, Ashok, and Beidler, John.
"Using Generics Modules to
Enhance the cs2 Course,"
Proceedings of the Twentieth
SIGCSE Technical Symposium on
Computer Science Education (Feb.
1989), pp. 61-65).

4. McCracken, Daniel D. A4 Second

Course 1in Computer Science With

Pascal. John Wiley & Sons, New

York, 1987.
5. Collins, William, and McMillan,
Thomas. "Implementing Abstract
Data Types 1in Turbo Pascal,"
Proceedings of the Twenty-First
SIGCSE Technical Symposium on
Computer Science Education (Feb.
1990), pp. 134-138.

KEKKRAERRARRREARRRAKRARRR AR R R IRk k kR e Rk ke hedR
TQ REFERENCES-- continued from page 34

Tripp, Leonard L. "Software Engineering
Standards: Today and Tommorrow, Part 2. ",
Software Quality, September, 1992.

Walton, Mary. The Deming Management Method.
New York: The Putnam Publishing Group,
1986.

Training

American Society for Quality Control, P.O.

Box 3005, Milwaukee, WI 53201-3005
Specific courses in TQM, Quality
Control, Software Quality Assurance.
George Washington University, Continuing
Engineering Education Program, 801 22n
Street NW, Washington, DC 20052
Offers a wide variety of quality
oriented courses.
Juran Institute, Inc. 11 River Road,
Wilton, CT.

Special training in quality management
as related to software engineering, as well

as, courses in quality control and
management.
Quality Assurance Institute, Suite 350,

7575 Dxr. Phillips Blvd., Orlando, FL. 32819

Provides quality training in a wide
variety of information system and software
engineering fields. Specific courses
offered in testing and measurement.



