
A Set of Programming Projects for a Second Programming Course

Kailash Chandra

Computer Science - Information Systems
Pittsburg State University

Pittsburg, KS 66762

51

Abstract
A set of six related programming projects are
presented. These projects are based on the
assignments given to a class taking a secon d
course in Pascal programming . The first project
started with a source code of a working program
assigned to the students giving them a jump start
and then taking them step by step to a project
where they developed a simple full-screen visua l
text editor. It has been a very successful
experiment . It is hoped that the others can use
similar programming assignments in their classes .

Introduction
The purpose of this paper is to describe six
related programming projects for a second cours e
in Pascal programming. These are based on a
course titled "Principles of Software Design "
which the author taught in the Spring semester of
1992 at Pittsburg State University in the
Computer Science - Information Systems
Department . A book written by Sahni[l] was
used as a textbook for the course and several
other books were recommended to supplement i t
[2-8] . The purpose of the first project was to
give the students a jump start by asking them t o
type in a working simple text-viewing program t o
display text stored in a dense list and make i t
work. The entire set of projects consisted of six
assignments . The sixth project resulted into a
simple full-screen visual text editor . The projects
were required to be written in Turbo Pascal bu t
could easily be written in any other language suc h
as C, C++, Modula-2, Ada, or QuickBASIC .

SIGCSE

	

Vol . 25 No . 2 June 1993
BULLETIN

A Summary of Assignment s
The first assignment for the students was to typ e
in a complete Pascal program from the hard copy
provided to the students . This was a working
program which displayed text in a window on the
screen supporting Home, End, PgUp, PgDn,
UpArrow, DownArrow, and other edit keys .
Some of the important concepts that the students
learned from this assignment were: defining
constants, detecting control keys, passing array s
as parameters, and passing value and variable
parameters . The 400-line program with several
procedures and functions was explained line by
line in class .

In the second assignment, the students were
asked to write at least ten functions or procedure s
out of a list of 28 to handle a singly-linked list of
string values : from initializing a list to displayin g
and disposing it . Though, only ten of the
procedures were required to be done, all the
procedures and functions were explained in class .
The purpose of this assignment was to give the
students a good understanding of pointe r
variables, memory allocation, and memory
deallocation . Some of the students tried to save
the pointer information to the file also .

The third assignment was to create a
doubly-linked list, display it, save it to a file ,
dispose it freeing the memory taken by it, an d
load it from the file . The purpose of thi s
assignment was to give the students a goo d
understanding of doubly-linked lists .

http://crossmark.crossref.org/dialog/?doi=10.1145%2F152751.152763&domain=pdf&date_stamp=1993-06-01


5 2

In the fourth assignment, the students were aske d
to do everything they did in the first assignmen t
except that they had to use a doubly-linked lis t
instead of a dense list to store the text . This
resulted into a program that allowed one to view
a text file with vertical scrolling capabilities whil e
making use of the doubly-linked list structure t o
store text and all the available memory .

The fifth assignment was to write a single-line
editor supporting LeftArrow, RightArrow ,
Home, End, and other edit keys . In this
assignment, the user was supposed to input a
string of characters of up to a maximum specified
length and edit the information if necessary using
several edit keys .

In the last assignment, the students were asked t o
combine the fourth and the fifth assignments s o
that not only could the text file be viewed but i t
could also be modified with additional features
such as deleting a line, inserting a new line ,
dynamically allocating memory when a line is
inserted, and releasing memory when a line is
deleted . In this assignment, the following
features were also added : splitting a line into tw o
lines when the Enter key is pressed in the inser t
mode and combining two lines into one line whe n
the BackSpace key is pressed at the beginning o f
a line. The result was a full-screen visual edito r
with vertical scrolling, line inserting, line deleting,
and other simple text-editing features .

First Assignment
Type in the Pascal program from the hard copy
(provided to the students) . This is a working
program to display text in a window on th e
screen supporting several edit keys for vertical
scrolling. A brief description of all the functions
and procedures is as follows :

function CopiesChar(Count : integer ;
c : char) : string ;
(Returns a string with Count copies of a specifie d
character)

function KeyCodel : integer ;

SIGCSE

	

Vol . 25 No . 2 June 1993BULLETIN

(Returns a unique integer code for each ke y
pressed)

procedure Beep ;
(Makes a beep for 50 m s

procedure DisplayList(r, c, wid ,
deep : integer ; Border : string ; fa :
StringArray ; fc : integer ; va r
Selected : integer) ;
(Displays a list of items on the screen and allow s
you to scan through it, where r is the row for th e
left upper corner of the window, c is the column fo r
the left upper corner of the window, wid is th e
width of the items in the list, deep is the depth of
the window, Border is the six-character string
defining the border for the window, fa is the array
of items to be displayed, fc is the number of item s
in the list, Selected is the item number of th e
focused item when the Enter key was pressed o r
zero if the escape key was pressed to exit)

procedure DrawBox(rl, c1, r2, c2 :
integer ; Border : string) ;
(Draws a box on the screen where Border i s
defined by a string of six characters 'r -1 3 t- ' )

procedure Locate(Row, Col : byte) ;
(Moves the cursor to Row and Col position on th e
screen)

procedure NormalVideo ;
(Changes to normal video mode, white on black)

procedure PrintPadR(s : string; w :
byte) ;
{Prints the string in s with trailing blanks if
necessary, it also adds a leading blank and a
trailing blank}

procedure ReverseVideo ;
{Changes to reverse video mode, black on white )

type StringArray = array [1 . .100] o f
string[80] ;
(StringArray type definition)

The program allows the following keys with
corresponding movement/action :

Command Movement/Action

Ctrl-PgDn
Ctrl-PgU p
DownArrow
End
Ente r
Esc
Home
PgDn
PgUp
UpArrow

Last item of the lis t
Beginning of the list
Next item in the list
Last item in the window
Select the highlighted item
Exit without selectin g
First item in the window
Next page/window
Previous page/windo w
Previous item in the list



5 3

Second Assignment
Implement any ten of the following linked lis t
manipulation procedures and/or functions . Use
meaningful variable names, document your code ,
submit the source code, and a sample run with
enough cases to show that your program work s
most of the time .

type ptrType = ^NodeType ;
(Type declaration for the pointers)

type NodeType = recor d
begi n
info : string ;
next : ptrType ;
end ;
(Type declaration for the list items)

function sllAt(head :ptrType ;
position : integer) : string ;
(Returns the item at a position in the list, position
of the first item is 0)

function sllCount(head : ptrType) :
integer ;
(Returns the number of items in a list )

function slllndexOf(head : ptrType ;
value : string) ;
(Returns the position of a given value)

procedure sllCheck(head : ptrType) ;
(Checks the integrity of a list for count, circula r
references, and other possible errors )

procedure sllCombine(headl, head2 :
ptrType ; var head3 : ptrType) ;
(Creates a list that has all the items in the two lists
including the duplicates)

procedure sllDifference(headl, head2 :
ptrType ; var head3 : ptrType) ;
(Creates a list of items from the first list that are
not in the second list)

procedure sllDisplayAll(head :
ptrType) ;
(Displays all the items in a list)

procedure sllDisplayAllAcross(head :
ptrType ; across : integer) ;
{Displays all the items in a specified columns)

procedure sllDisplayAt(head : ptrType ;
position : integer) ;
(Displays the item at a given position)

procedure sllDisplayDistinct(head :
ptrType) ;
(Displays all the distinct values in a list)

procedure sllDisposeAll(var head :
ptrType) ;
(Disposes all the items from a list and releases th e
memory taken by them)

procedure sllDisposeAt(var head :
ptrType ; position : integer) ;

SIGCSE

	

Vol . 25 No . 2 June 199 3

BULLETIN

(Disposes an item from a list at a given position)
procedure sllDisposeAtFromTo(va r

head : ptrType ; positions ,
position2 : integer) ;
(Disposes all the items between the two give n
positions including the items at the positions )

procedure sllDisposeDups(var head :
ptrType) ;
(Disposes all the duplicate items)

procedure sliDisposeValue(var head :
ptrType ; value : string) ;
(Searches and dispose the item that matches a
given value from a list)

procedure sllDisposeValueAll(va r
head : ptrType ; value : string) ;
(Searches and dispose all the items that match a
given value from a list)

procedure sllFiliRandom(var head :
ptrType ; var count : integer) ;
(Inserts a random number of random items in a
list)

procedure slllnit(var head : ptrType) ;
(Initializes a singly-linked list)

procedure slllnsert(var head :
ptrType ; value : string) ;
(Inserts an item in the list at the tail of the list)

procedure slllnsertAt(var head :
ptrType ; value : string ; position :
integer) ;
(Inserts an item at a specified position in the list)

procedure slllntersect(headl, head2 :
ptrType ; var head3 : ptrType) ;
(Creates a list of common items in two lists)

procedure sllLoad(var head : ptrType ;
fileName : string) ;
(Creates a list of values from a text file)

procedure sllReplaceAll(head :
ptrType ; valueFor, valueWith :
string) ;
(Searches for all occurrences of a given value and
replace them with another given value)

procedure sllReplaceAt(head : ptrType ;
position : integer ; value : string) ;
(Replaces the value of an item at a given position)

procedure sllSortBubble(var head :
ptrType) ;
(Sorts a list in ascending order using Bubble sort)

procedure sllSortOther(var head :
ptrType) ;
(Sorts a list in ascending order using any other
sort method)

procedure sllStore(head : ptrType ;
fileName : string) ;
(Saves the contents of a list to a text file)

procedure sllUnion(headl, head2 :
ptrType ; var head3 : ptrType) ;
(Creates a list that has all the items from the tw o
lists excluding the duplicates)



5 4

indentations, document your code, and submit th e
source code and at least five sample runs to show

	

1 .
that your procedures work most of the time .

2 .
type ptrType

	

^NodeType ;
(Type declaration for the pointers)

	

3 .

Third Assignmen t
Implement the following procedures .

	

Use
meaningful variable names, use prope r

type NodeType = recor d
begin
info : string ;
next : ptrType ;
prev : ptrType ;
end ;
(Type declaration for the list items)

procedure dllDisplay(head : ptrType) ;
{Displays the contents of a doubly-linked list )

procedure dllDisplayReverse(tail :
ptrType) ;
(Displays the contents of a doubly-linked list i n
reverse order, from tail to head}

procedure dllDispose(var head, tail :
ptrType) ;
(Disposes the memory taken by the elements of a
doubly-linked list)

procedure dllLoad(var head, tail :
ptrType ; fileName : string) ;
(Loads the values from a text file into a doubly -
linked list)

procedure dllFillRandom(var head ,
tail : ptrType ; var count :
integer) ;
(Creates a doubly-linked list of random values)

procedure dllSave(head : ptrType
fileName : string) ;
(Saves the elements of a doubly-linked list to a tex t
file)

procedure dllSort(head : ptrType) ;
(Sorts the elements of a doubly-linked list)

Write a driver program that calls different
procedures in the following order and displays th e
memory available after every procedure call :

FillRandom ,
Display ,
Sort ,
Display ,
Save ,
Dispose ,
Load ,
Display ,
DisplayReverse ,
Dispose

SIGCsE

	

Vol . 25 No . 2 June 199 3BULLETIN

Fourth Assignmen t
Write a text file viewer program in Pascal wit h
the following features :

Support the following keys :

Command Movemen t

Ctrl-End
Ctrl-Hom e
Ctrl-PgDn
Ctrl-PgU p
Ctrl-W
Ctrl-Z
DownArrow or
Ctrl-X
Esc

PgDn or Ctrl- C
PgUp or Ctrl-R
UpArrow or Ctrl-E

Bottom of window
Top of window
End of fil e
Beginning of fil e
Scroll up one lin e
Scroll down one lin e
Line dow n

Free memory and quit th e
progra m
Page down
Page up
Line up

Fifth Assignmen t
Write a procedure named EditLine in Pascal and a
driver program to test it until the string 'Quit' i s
entered. Also write the necessary procedures an d
functions to support it .

Prototype of the EditLine procedure is :

procedure FditLine(maxLength : byte ;
oldLine : string ; var newLine :
string; autoRepeat : boolean ; var
exitCode : integer) ;
(Edits a line where maxLength is the maximu m
number of characters allowed, oldLine is the lin e
to be edited, newLine is the retu r ned line ,
autoRepeat is a switch to allows auto repeat, and
exitCode returns the code for the key which cause d
exit from the procedure)

Use a doubly-linked list to load the text fil e
contents .
Display the focused line in reverse video .
Display the memory available before the fil e
is loaded, after the file is loaded, and afte r
disposing the list .



55

Support the following keys :

Command Function

BackSpace
Ctrl-LeftArr
ow or Ctrl-A
Ctrl-Q De l

Ctrl-QY

Ctrl-RightAr
row or Ctrl-F
Ctrl-T

Ctrl-Y
Del or Ctrl-G
DownArrow

End or
Ctrl-QD
Ente r

Esc

Home or
Ctrl-QS
Ins or Ctrl-V
LeftArrow o r
Ctrl-H
PgDn o r
Ctrl-C
PgUp or
Ctrl-R
RightArrow
or Ctrl-D
Shift-Ta b
Tab

UpArrow or
Ctrl-E

Destructive backspace
Move cursor left one word

Delete all characters from the curso r
position to the beginning of the lin e
Delete all characters from cursor
position to the right end of the lin e
Move cursor right one word

Delete word from cursor position to th e
righ t
Wipe entire lin e
Delete character at cursor positio n
Exit with new line and a code in
exitCode
Move cursor to right end of current line

Exit with new line and a code i n
exitCode
Exit with new line and a code i n
exitCode
Move cursor to beginning of current
line
Turn insertion on or off
Move cursor left one character

Exit with new line and a code i n
exitCode
Exit with new line and a code i n
exitCode
Move cursor right one characte r

Move cursor left one wor d
If in insert mode insert 8 blanks else
move cursor right one word
Exit with new line and a code in
exitCode

Sixth Assignment
Write a full-screen text editor program in Pascal
with the following features :

1. Use a doubly-linked list to load the text file
contents .

2. Display the focused line in reverse video .

SIGCSE

	

vol . 25 No . 2 June 199 3
BULLETIN

3. Display the memory available before the file
is loaded, after the file is loaded, after th e
list is saved, and after the list is disposed .

4. Describe the purpose of each procedure
and function, give enough comments, use
meaningful variable names where possible ,
and use proper indentations . Submit the
printed source code, source code on a
diskette and the compiled program .

Support the following keys :

Command Function

BackSpace

Ctrl-End

Ctrl-Home o r
Ctrl-QE
Ctrl-KS

Ctrl-LeftArrow or
Ctrl-A
Ctrl-N

Ctrl-PgDn or
Ctrl-Q C
Ctrl-PgUp or
Ctrl-QR
Ctrl-Q Del

Ctrl-QY

Ctrl-RightArrow o r
Ctrl-F
Ctrl-T

Ctrl-W
Ctrl-Y
Ctrl-Z
Del or Ctrl-G

If in the middle of a line the n
delete the character left to the
cursor and move cursor to th e
left, otherwise move the curren t
line at the end of the line before
Move cursor to the bottom of th e
window
Move cursor to the top of the
window
Save the doubly-linked list an d
continue editing
Move cursor to the left one word

Insert a return, moving text t o
next line and leaving curso r
where it was when Ctrl-N wa s
pressed
Move cursor to the end of the
file
Move cursor to the beginning o f
the file
Delete all characters from the
cursor position to the beginning
of the line
Delete all characters from curso r
to the right
Move cursor right one wor d

Delete word from cursor position
to the righ t
Scroll up one line
Delete focused line
Scroll down one line
Delete character at cursor
position



5 6

Command Function

DownArrow or Move cursor one line down
Ctrl-X
End or Ctrl-QD Move cursor to right end of

Enter
current lin e
If in insert mode then insert a

Esc or Ctrl-KD

line carrying all the characters
starting at the cursor to the ne w
line else move cursor to th e
beginning of the next line
Save the linked list, free th e

Home or Ctrl-QS
memory, and quit program
Move cursor to beginning of th e

Ins or Ctrl-V
line
Turn insertion on or off

LeftArrow or Ctrl-S Move cursor left
PgDn or Ctrl-C Page down
PgUp or Ctrl-R Page u p
RightArrow or Move cursor right one characte r
Ctrl-D
Shift-Tab Move cursor left one word
Tab If in insert mode insert 8 blanks

UpArrow or Ctrl-E
else move cursor right one word
Move cursor one line up

Conclusio n
It is felt that the projects in the given sequence
are valuable. The students are exposed to a
complete working program and are systematicall y
allowed to add useful features until it ends up t o
be something useful. The projects also provide
an opportunity to plan through the process o f
decomposition or modularization, a feature that
clearly distinguishes the novice from the exper t
programmer. The projects also emphasize
practice in building programs from previousl y
existing modules by adding new modules .

References
[1] Sahni, Sartaj, Software Development in

Pascal, The Camelot Publishing Company ,
Second Edition, 1989 .

[2] Horowitz,

	

Ellis

	

and Sartaj

	

Sahni ,
Fundamentals

	

of

	

Data

	

Structures ,
Computer Science Press, 1976 .

[3] Horowitz,

	

Ellis

	

and

	

Sartaj

	

Sahni ,
Fundamentals of Data Structures in Pascal ,
Computer Science Press, Second Edition ,
1987 .

SIGCSE

	

Vol . 25 No . 2 June 199 3BULLETIN

[4] Knuth, Donald E., The Art of Computer
Programming - Fundamental Algorithms ,
Addison-Wesley Publishing Company ,
Second Edition, 1973 .

[5] Nance, Douglas W. and Thomas L. Naps ,
Introduction to Computer Science :
Programming, Problem Solving, and Dat a
Structures, West Publishing, Second
Edition, 1992 .

[6] Naps, Thomas L . and Bhagat Singh,
Introduction to Data Structures with
Pascal, West Publishing, 1986 .

[7] Salmon, William I ., Structures and
Abstractions, Irwin, 1992 .

[8] Santi, Barbara L ., Lydia Mann, and Fre d
Zlotnick, Algorithms, Programming, Pascal ,
Wadsworth Publishing, 1987 .


