A Set of Programming Projects for a Second Programming Course

Kailash Chandra

Computer Science - Information Systems
Pittsburg State University
Pittsburg, KS 66762

Abstract

A set of six related programming projects are
presented. These projects are based on the
assignments given to a class taking a second
course in Pascal programming. The first project
started with a source code of a working program
assigned to the students giving them a jump start
and then taking them step by step to a project
where they developed a simple full-screen visual
text editor. It has been a very successful
experiment. It is hoped that the others can use
similar programming assignments in their classes.

Introduction

The purpose of this paper is to describe six
related programming projects for a second course
in Pascal programming. These are based on a
course titled "Principles of Software Design"
which the author taught in the Spring semester of
1992 at Pittsburg State University in the
Computer Science - Information Systems
Depariment. A book written by Sahni[l] was
used as a textbook for the course and several
other books were recommended to supplement it
[2-8]. The purpose of the first project was to
give the students a jump start by asking them to
type in a working simple text-viewing program to
display text stored in a dense list and make it
work. The entire set of projects consisted of six
assignments. The sixth project resulted into a
simple full-screen visual text editor. The projects
were required to be written in Turbo Pascal but
could easily be written in any other language such
as C, C++, Modula-2, Ada, or QuickBASIC.

SIGCSE
BULLETIN Vol. 25 ©No. 2 June 1993

A Summary of Assignments

The first assignment for the students was to type
in a complete Pascal program from the hard copy
provided to the students. This was a working
program which displayed text in a window on the
screen supporting Home, End, PgUp, PgDn,
UpArrow, DownArrow, and other edit keys.
Some of the important concepts that the students
learned from this assignment were: defining
constants, detecting control keys, passing arrays
as parameters, and passing value and variable
parameters. The 400-line program with several
procedures and functions was explained line by
line in class.

In the second assignment, the siudents were
asked to write at least ten functions or procedures
out of a list of 28 to handle a singly-linked list of
string values: from initializing a list to displaying
and disposing it. Though, only ten of the
procedures were required to be done, all the
procedures and functions were explained in class.
The purpose of this assignment was to give the
students a good understanding of pointer
variables, memory allocation, and memory
deallocation. Some of the students tried to save
the pointer information to the file also.

The third assignment was to create a
doubly-linked list, display it, save it to a file,
dispose it freeing the memory taken by it, and
load it from the file. The purpose of this
assignment was to give the students a good
understanding of doubly-linked lists.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F152751.152763&domain=pdf&date_stamp=1993-06-01

In the fourth assignment, the students were asked
to do everything they did in the first assignment
except that they had to use a doubly-linked list
instead of a dense list to store the text. This
resulted into a program that allowed one to view
a text file with vertical scrolling capabilities while
making use of the doubly-linked list structure to
store text and all the available memory.

The fifth assignment was to write a single-line
editor supporting LeftArrow, RightArrow,
Home, End, and other edit keys. In this
assignment, the user was supposed to input a
string of characters of up to a maximum specified
length and edit the information if necessary using
several edit keys.

In the last assignment, the students were asked to
combine the fourth and the fifth assignments so
that not only could the text file be viewed but it
could also be modified with additional features
such as deleting a line, inserting a new line,
dynamically allocating memory when a line is
inserted, and releasing memory when a line is
deleted. In this assignment, the following
features were also added: splitting a line into two
lines when the Enter key is pressed in the insert
mode and combining two lines into one line when
the BackSpace key is pressed at the beginning of
a line. The result was a full-screen visual editor
with vertical scrolling, line inserting, line deleting,
and other simple text-editing features.

First Assignment

Type in the Pascal program from the hard copy
(provided to the students). This is a working
program to display text in a window on the
screen supporting several edit keys for vertical
scrolling. A brief description of all the functions
and procedures is as follows:

function CopiesChar (Count:
c: char): string;
{Returns a string with Count copies of a specified
character}
function KeyCodelI:

integer;

integer;

SIGCSE

BULLETIN Vo'

25 No. 2 June 1993 52

{Returns a unique integer code for each key

pressed)
procedure Beep;

{Makes a beep for 50 ms
procedure DisplayList(x, ¢, wid,
deep: integer; Border: string;
StringArray; fc: integer; var
Selected: integer);
{Displays a list of items on the screen and allows
you to scan through it, where r is the row for the
left upper corner of the window, ¢ is the column for
the left upper corner of the window, wid is the
width of the items in the list, deep is the depth of
the window, Border is the six-character string
defining the border for the window, fa is the array
of items to be displayed, fc is the number of items
in the list, Selected is the item number of the
Sfocused item when the Enter key was pressed or
zero if the escape key was pressed to exit}
procedure DrawBox(rl, cl, x2, c2:
integer; Border: string);
{Draws a box on the screen where Border is
defined by a string of six characters'p—q | 4 V)
procedure Locate(Row, Col: byte);
{Moves the cursor to Row and Col position on the
screen)
procedure NormalVideo;
{Changes to normal video mode, white on black)}
procedure PrintPadR(s: string; w:
byte);
{Prints the string in s with trailing blanks if
necessary, it also adds a leading blank and a
trailing blank}
procedure ReverseVideo;
{Changes to reverse video mode, black on white)
type StringArray = array [1l..100] of
string[80];
{StringArray type definition}

fa:

The program allows the following keys with
corresponding movement/action:

Command Movement/Action
Ctrl-PgDn Last item of the list
Cul-PgUp Beginning of the list
DownArrow Next item in the list
End Last item in the window
Enter Select the highlighted item
Esc Exit without selecting
Home First item in the window
PgDn Next page/window
PgUp Previous page/window
UpArrow Previous item in the list

Second Assignment

Implement any ten of the following linked list
manipulation procedures and/or functions. Use
meaningful variable names, document your code,
submit the source code, and a sample run with
enough cases to show that your program works
most of the time.

type ptrType = “NodeType;
{Type declaration for the pointers)
type NodeType = record
begin
info: string;
next: ptrType;
end;
{Type declaration for the list items}
function sllAt (head:ptrType;
position: integer): string;
{Returns the item at a position in the list, position
of the first item is 0}
function sllCount (head: ptrType):
integer;
{Returns the number of items in a list}
function sllIndexOf (head: ptrType;
value: string);
{Returns the position of a given value}
procedure sllCheck (head: ptrType);
{Checks the integrity of a list for count, circular
references, and other possible errors)
procedure sllCombine (headl, headZ2:
ptrType; var head3: ptrType):
(Creates a list that has all the items in the two lists
including the duplicates)
procedure gllDifference (headl, head2:
ptrType; var head3: ptrType):
{Creates a list of items from the first list that are
not in the second list}
procedure sllDisplayAll (head:
ptrType) ;
{Displays all the items in a list}
procedure sllDisplayAllAcross (head:
ptrType; across: integer);
{Displays all the items in a specified columns)
procedure sllDisplayAt (head: ptrType;
position: integer);
{Displays the item at a given position}
procedure sllDisplayDistinct (head:
ptrType);
{Displays all the distinct values in a list)
procedure sllDisposelll (var head:
ptrType) ;
(Disposes all the items from a list and releases the
memory taken by them)
procedure sllDisposeAt (var head:
ptrType; position: integer);:

g'&i%%_m Vol. 25 No. 2 June 1993

53

{Disposes an item from a list at a given position}
procedure sllDisposeAtFromTo (var
head: ptrType; positionl,
position2: integer);
{Disposes all the items between the two given
positions including the items at the positions)
procedure sllDisposeDups(var head:
ptrType)
{Disposes all the duplicate items)
procedure sllDisposeValue (var head:
ptrType; value: string);
{Searches and dispose the item that matches a
given value from a list}
procedure sllDisposeValueAll (var
head: ptrType; value: string);
{Searches and dispose all the items that match a
given value from a list}
procedure sllFillRandom(var head:
ptrType; var count: integer);
{Inserts a random number of random items in a
list}
procedure sllInit (var head: ptrType);
{Initializes a singly-linked list)
procedure sllInsert {(var head:
ptrType; value: string);
{Inserts an item in the list at the tail of the list}
procedure sllInsertAt (var head:
ptrType; value: string; position:
integer);
{Inserts an item at a specified position in the list}
procedure sllIntersect (headl, head2:
ptrType; var head3: ptrType);
{Creates a list of common items in two lists}
procedure sllLoad(var head: ptrType;
fileName: string);
{Creates a list of values from a text file}
procedure sllReplaceAll (head:
ptrType; valueFor, valueWith:
string);
{Searches for all occurrences of a given value and
replace them with another given value)
procedure sllReplaceAt (head: ptrType;
position: integer; wvalue: string);
{Replaces the value of an item at a given position)
procedure sllSortBubble (var head:
ptrType)/
{Sorts a list in ascending order using Bubble sort)
procedure sllSortOther (var head:
ptrType);
{Sorts a list in ascending order using any other
sort method)
procedure sllStore(head: ptrType;
fileName: string);
{Saves the contents of a list to a text file}
procedure sllUnion (headl, head2:
ptrType; var head3: ptrType);
{Creates a list that has all the items from the two
lists excluding the duplicates)

Third Assignment

Implement the following procedures. Use
meaningful variable names, use proper
indentations, document your code, and submit the
source code and at least five sample runs to show
that your procedures work most of the time.

type ptrType = “NodeType;
{Type declaration for the pointers)

type NodeType = record
begin
info: string;
next: ptxrType;
prev: ptrType:;
end;

{Type declaration for the list items}
procedure dllDisplay (head: ptrType);
{Displays the contents of a doubly-linked list)

procedure dllDisplayReverse(tail:
ptrType);
{Displays the contents of a doubly-linked list in
reverse order, from tail to head)

procedure dllDispose(var head, tail:
ptrType);
{Disposes the memory taken by the elements of a

doubly-linked list}
procedure dllLoad (var head, tail:

ptrType; fileName: string);
{Loads the values from a text file into a doubly-
linked list)

procedure dllFillRandom(var head,
tail: ptrType; var count:
integer);
(Creates a doubly-linked list of random values}
procedure dllSave (head: ptrType
fileName: string);
{Saves the elements of a doubly-linked list to a text
file]
procedure dllSort (head: ptrType):
{Sorts the elements of a doubly-linked list}

Write a driver program that calls different
procedures in the following order and displays the

memory available after every procedure call:
FillRandom,
Digplay,
Sort,
Display,
Save,
Dispose,
Load,
Display,
DisplayReverse,
Dispose

SIGCSE

BULLETIN June 1993

Vol. 25 No. 2

54

Fourth Assignment
Write a text file viewer program in Pascal with
the following features:

1. Use a doubly-linked list to load the text file
contents.

2. Display the focused line in reverse video.

3. Display the memory available before the file
is loaded, after the file is loaded, and after
disposing the list.

Support the following keys:

Command Movement

Cirl-End Bottom of window

Curl-Home Top of window

Ctrl-PgDn End of file

Cul-PgUp Beginning of file

Ctrl-W Scroll up one line

Ctrl-Z Scroll down one line

DownArrow or Line down

Ctrl-X

Esc Free memory and quit the
program

PgDn or Ctrl-C Page down

PgUp o1 Ctrl-R Page up

UpArrow or Ctrl-E | Line up

Fifth Assignment

Write a procedure named EditLine in Pascal and a
driver program to test it until the string 'Quit' is
entered. Also write the necessary procedures and
functions to support it.

Prototype of the EditLine procedure is:

procedure EditLine (maxLength: byte:;

oldLine: string; var newline:
string; autoRepeat: boolean; var
exitCode: integer);

{Edits a line where maxLength is the maximum
number of characters allowed, oldLine is the line
to be edited, newLine is the returned line,
autoRepeat is a switch to allows auto repeat, and
exitCode returns the code for the key which caused
exit from the procedure)

Support the following keys: 3. Display the memory available before the file

is loaded, after the file is loaded, after the

Command | Function list is saved, and after the list is disposed.
BackSpace Destructive backspace 4, Describe the purpose of each procedure
Ctrl-LeftArr | Move cursor left one word and function, give enough comments, use
ow ot Ctrl-A meaningful variable names where possible,
Ctrl-QDel | Delete all characters from the cursor and use proper indentations. Submit the
position to the beginning of the line printed source code, source code on a
Ctrl-QY Delete all characters from cursor disk d th iled
position to the right end of the line 1skette and the compiled program.
Ctrl-RightAr | Move cursor right one word
row or Ctrl-F Support the following keys:
Ctrl-T Delete word from cursor position to the
right Command Function
Cerl-Y Wipe entire line . : :
Del or Ctrl-G | Delete character at cursor position BackSpace If in the middle of a line then
DownArrow | Exit with new line and a code in delete the character left to the
exitCode cursor and move cursor to the
End or Move cursor to right end of current line left, otherwise move the current
Ctrl-QD line at the end of the line before
Enter Exit with new line and a code in Ctrl-End Move cursor to the bottom of the
exitCode window
Esc Exit with new line and a code in Ctrl-Home or Move cursor to the top of the
exitCode Ctrl-QE window
Home or Move cursor to beginning of current Ctrl-KS Save the doubly-linked list and
Cul-QS line continue editing
Ins or Ctrl-V | Turn insertion on or off Ctrl-LeftArrow or Move cursor to the left one word
LeftArrow or | Move cursor left one character Ctrl-A
Ctrl-H Ctrl-N Insert a return, moving text to
PgDn or Exit with new line and a code in next line and leaving cursor
Ctrl-C exitCode where it was when Ctrl-N was
PgUp or Exit with new line and a code in pressed
Ctrl-R exitCode Ctrl-PgDn or Move cursor to the end of the
RightArrow | Move cursor right one character Ct1l-QC file
or Ctrl-D Ctl-PgUp or Move cursor to the beginning of
Shift-Tab Move cursor left one word Cul-QR the file
Tab If in insert mode insert § blanks else Ctrl-Q Del Delete all characters from the
move cursor right one word cursor Posmon to the beginning
UpAtrrow or | Exit with new line and a code in of the line
Ctrl-E exitCode Ctrl-QY Delete all characters from cursor
to the right
Ctrl-RightArrow or | Move cursor right one word
. . Ctrl-F
Sixth ASSlgnment Ctrl-T Delete word from cursor position
Write a full-screen text editor program in Pascal to the right
with the following features: Ctrl-W Scroll up one line
Ctrl-Y Delete focused line
. . Curl-Z Scroll down one line
1. Use a doubly-linked list to load the text file Del o Cirl-G: Delste character at cUrsor
contents, position

2. Display the focused line in reverse video.

SIGCSE
BULLETIN

Vol. 25 No. 2

June 1993

Command Function
DownArrow or Move cursor one line down
Ctrl-X

Move cursor to right end of
current line

If in insert mode then insert a
line carrying all the characters
starting at the cursor to the new
line else move cursor to the
beginning of the next line

Save the linked list, free the
memory, and quit program
Move cursor to beginning of the
line

Turtn insertion on or off

Move cursor left

Page down

Page up

End or Ctrl-QD

Enter

Esc or Cttl-KD
Home or Ctrl-QS

Ins or Ctrl-V
LeftArrow or Ctrl-S
PgDn or Ctrl-C
PgUp or Cirl-R

RightArrow or Move cursor right one character
Ctrl-D

Shift-Tab Move cursor left one word

Tab If in insert mode insert 8 blanks

else move cursor right one word
Move cursor one line up

UpArrow or Ctrl-E

Conclusion

It is felt that the projects in the given sequence
are valuable. The students are exposed to a
complete working program and are systematically
allowed to add useful features until it ends up to
be something useful. The projects also provide
an opportunity to plan through the process of
decomposition or modularization, a feature that
clearly distinguishes the novice from the expert
programmer. The projects also emphasize
practice in building programs from previously
existing modules by adding new modules.

References

[1] Sahni, Sartaj, Software Development in
Pascal, The Camelot Publishing Company,
Second Edition, 1989.

[2] Horowitz, Ellis and Sartaj Sahni,
Fundamentals of Data Structures,
Computer Science Press, 1976.

[31 Horowitz, Ellis and Sartaj Sahni,
Fundamentals of Data Structures in Pascal,
Computer Science Press, Second Edition,
1987.

SIGCSE Vol. 25 ©No. 2 June 1993

BULLETIN

56

(4]

(5]

(6]

[7]
[8]

Knuth, Donald E., The Art of Computer
Programming - Fundamental Algorithms,
Addison-Wesley Publishing Company,
Second Edition, 1973.

Nance, Douglas W. and Thomas L. Naps,
Introduction to Computer Science:
Programming, Problem Solving, and Data
Structures, West Publishing, Second
Edition, 1992,

Naps, Thomas L. and Bhagat Singh,

Introduction to Data Structures with
Pascal, West Publishing, 1986.
Salmon, William 1., Structures and

Abstractions, Irwin, 1992,

Santi, Barbara L., Lydia Mann, and Fred
Zlotnick, Algorithms, Programming, Pascal,
Wadsworth Publishing, 1987,

