
A Note on Slowing Quicksort

R.Chaudhuri and A .C.Dempster
Department of Computer Scienc e

Eastern Michigan University
Ypsilanti, Mich. 48197.

ABSTRACT :
We present a simple linear time algorithm for generating a worst case sequence for

Quicksort when the pivot element is chosen as the middle element of the (sub)array in eac h
pass .

1 . INTRODUCTION:
Quicksort, introduced by C.A .R. Hoare in 1962, is a recursive method for sorting an

array a[1 . . n] by partitioning it into two subarrays such tha t
1) some key x (called the 'pivot') is in its final position a[j] in the array if x happens to b e

the j-th smallest elemen t
2) the elements a[1], a[2], . . . , a[j-1] of the left subarray are less than or equal to x
3) the elements a[j+l], a[j+2], . . . , a[n] of the right subarray are greater than or equal to x
4) the left and the right subarrays are then sorted recursively by Quicksort .
The performance of Quicksort depends on the choice of the pivot element in successive
passes. If we always happen to select the median of the elements as the pivot, then th e
partitioning process splits the array into two halves resulting in the O(n log n) best
performance of the sort . On the other hand, if in each pass we pick the largest or th e
smallest value as the pivot then the worst case performance of 0(n2) happens. However ,
the efficiency of Quicksort is due to the fact that its average performance is also 0(n log n) .

In most texts, the pivot is selected as the first or the last element of each subarray . In such a
case, a worst case sequence for Quicksort is the sorted array itself . We suspect that the ease
of identifying and constructing this particular sequence is a main reason why most texts use
such a pivot choice. In [1], however, Wirth chooses the pivot as the middle element of the
subarray in each pass and asserts that the average performance improves slightly (by a
constant factor) as a result of such a choice . In the following, we give a Pascal version o f
the Quicksort procedure where the pivot is always the middle element of the subarray to b e
sorted .

PROCEDURE Quicksort (VAR a : array ;left, right : index) ;
VAR i, j : index; x : item;
BEGIN

i := left ; j := right ; x := a [(left + light) DIV 2] ;
REPEAT

WHILE a[i]<x DO is=i+1 ;
WHILE x < a[j] DO j := j - 1 ;
IFi<=j THEN

BEGIN
Swap (a[i] , a[j]) ; i := i + 1 ; j := j - 1

END
UNTIL i>j ;
IF left < j THEN Quicksort (a, left , j) ;
IF i < right THEN Quicksort (a, i , right)

END ;

SIGCSE Vol . 25 No . 2 June 199 3BULLETIN 57

http://crossmark.crossref.org/dialog/?doi=10.1145%2F152751.152764&domain=pdf&date_stamp=1993-06-01

The worst case behavior of the above algorithm is exhibited when the pivot turns out to b e
the smallest or the largest element in each pass . But what is a worst case sequence for the
above algorithm ? Does there exist an algorithm to generate a worst case sequence for every
n ? We needed one to use in an in-class sort timing demonstration program, and we give i t
in the next section .

2 . THE ALGORITHM :
In this section, we give a simple algorithm to generate a worst case sequence for

Quicksort for any positive integer n (>1) assuming that pivot element in each pass is th e
middle element of the subarray to be sorted . We use an array a[l . .n] to store the sequence .

	 1 . (Initialize)

FOR i :=lTOn DO
a[i] :=i ;

Step 2. (Generate worst case sequence for each i until n is reached)

FORi :=2TOnDO
Swap (a[(1 + i) DIV 2] , a[i]) ;

The above algorithm generates a worst case sequence that yields the pivotal sequenc e
n,n-1, n-2,	 2, 1 if we apply the above version of Quicksort to it . A simple inductive
argument shows that the algorithm is indeed correct . Clearly, for n=2 the sequence [2, 1]
generated by the algorithm is a worst case sequence. Assuming (a[1], a[2], . . . , a[k]) to be
the worst case sequence of length k generated after k-1 iterations of the loop in step 2, not e
that the worst case sequence of length k+l is obtained by appending the element k+l t o
the right of the worst case sequence (a[1], a[2], . . . , a[k]) of length k and swapping it wit h
the middle element a[(1+k+1) div 2] of the subarray a[1 . . k+l] since applying Quicksort to
the subarray a[1 .. k+l] now yields back the sequence (a[1], a[2], . . . , a[k], k+l) and the
subarray to be sorted next is the worst case sequence of length k by our assumption .
Replacing the loop in step 2 by the loo p

FOR i := n-1 DOWNTO 1 D O
Swap (a[i] , a[(i+n) DIV 2])

produces a worst case sequence for Quicksort whose pivotal sequence is 1, 2, . . . , n .
Clearly, our algorithm runs in linear time .

RE~'~REN E :
1) N.Wirth : " Algorithms + Data Structures = Programs", Prentice Hall, Englewoo d

Cliffs, N .J , 1976.

SIGCSE

	

Vol . 25 No . 2 Jane 199 3BULLETIN 58

